内积空间中的正交与投影
内积空间中正交和投影

则有 x x0 M
定理 2.3.8 设 M 是希尔伯特空间 X 的线性闭子空间, 则 X 中的元素 x 在 M 中存在唯一的正交投影 x0 ,即有
x x0 y , x0 M , y M
定义232正交补中所有与m正交的矢量组成之集合定理233勾股定理若为内积空间232正交投影定义234正交投影设上的正交投影上式也称作x的正交分解
⑶ 若对 x M 和 y N 都有 x, y 0 ,则称 M 与 N 正交,记作 M N ;
⑷ 设 X 为线性空间, M , N 是 X 的两个子空间, 且 M N 。若对于某个 x X 可唯一地表示成
x yz, yM , zN
则称 X 为 M , N 的正交和,并表示成 X M N 。
定 义 2.3.2 ( 正 交 补 ) 设 X 为 内 积 空 间 , M X ,称 X 中所有与 M 正交的矢量组成之集合 为 M 的正交补,记作 M ,即
M x x X, x M
定理 2.3.3(勾股定理)若 x1, x2 ,L , xn 为内积
空间 X 中彼此正交的矢量组,则有
n
2
n
xk
xk 2
k 1
k 1
2.3.2 正交投影 定义 2.3.4(正交投影)设 M 为内积空间 X 的线
性子空间, x X ,如果 x0 M , y M ,使得
x x0 y
则称 x0 是 x 在 M 上的正交投影,上式也称作 x 的正交
分解。
定理 2.3.5(正交投影的唯一性)设 M 为内积空间 X 的线性 子空间, x X ,若 x 在 M 上有正交投影,则该投影是唯一的。
引理 2.3.6 若 M 是希尔伯特空间 X 的一个线性闭子空间, x X ,定义 x 到 M 的距离为
第3讲 实内积空间汇总

第3讲 实内积空间内容:1. 实内积空间2. 正交基及正交补与正交投影3. 内积空间的同构4. 正交变换与对称变换在线性空间中,元素(向量)之间的运算仅限于元素(向量)的线性运算.但是,如果以向量作为线性空间的一个模型,则会发现向量的度量(即长度)与向量间的位置关系在线性空间的理论中没有得到反映,而这些性质在许多实际问题中却是很关键的.因此,将在抽象的线性空间中引进内积运算,导出内积空间,并讨论正交变换与正交矩阵及对称变换与对称矩阵.§1 内积空间在解析几何中,向量的长度与夹角等度量性质都可以通过向量的数量积来表示,而向量的数量积具有以下的代数性质:对称性),(),(αββα=;可加性 ),(),(),(γβγαγβα+=+;齐次性R k k k ∈∀=),,(),(βαβα;非负性0),(≥αα,当且仅当0=α时,0),(=αα.以数量积为基础,向量的长度与夹角可表示为: ),(ααα=,βαβαβα⋅>=<),(,cos .可见数量积的概念蕴涵着长度与夹角的概念,将该概念推广至抽象的线性空间.定义1.1 设V 是实线性空间,若对于V 中任意两个元素(向量)α和β,总能对应唯一的实数,记作),(βα,且满足以下的性质:(1) 对称性 ),(),(αββα=(2) 可加性 ),(),(),(γβγαγβα+=+(3) 齐次性 R k k k ∈∀=),,(),(βαβα(4) 非负性 0),(≥αα,当且仅当0=α时,0),(=αα. 则称该实数是V 中向量α和β的内积.称内积为实数的实线性空间V 为欧几里得(Euclid)空间,简称为欧氏空间.称定义了内积的线性空间为内积空间.例 1.1 在n 维向量空间n R 中,任意两个向量:T n x x x ),,,(21 =α,T n y y y ),,,(21 =β,若规定:βαβαT nk k k n n y x y x y x y x ==+++=∑=12211),( ,则容易验证,这符合内积的定义,是n R 中向量α和β的内积.另外,若规定:∑==nk k k y kx 1),(βα,0>k ,同样可验证,这也是n R 中向量α和β的内积.由此可见,在同一个实线性空间的元素之间,可以定义不同的内积,即内积不是唯一的.从而,同一个实线性空间在不同内积下构成不同的欧氏空间.例 1.2 在[]b a ,上连续的实函数的实线性空间[]b a C ,中,对任意函数[]b a C x g x f ,)(),(∈,定义:⎰=ba dx x g x f g f )()(),(,则可以证明这是[]b a C ,上)(x f 与)(x g 的一种内积.欧氏空间V 中的内积具有如下的性质:(1) V o o ∈∀==ααα,0),(),((2) R k V k k ∈∀∈∀=,,),,(),(βαβαβα(3) V ∈∀+=+γβαγαβαγβα,,),,(),(),((4) ),(),(1111∑∑∑∑=====n j ni j i j i n i n j j j i i y x l k y l x k事实上,由定义1.1有:0),(0),0(),(===αβαβαo ;),(),(),(),(βααβαββαk k k k ===;),(),(),(),(),(),(γαβααγαβαγβγβα+=+=+=+;因此,性质(1)至(3)成立,再结合数学归纳法容易验证性质(4)也成立.定义1.2 设α是欧氏空间V 中的任一元素(向量),则非负实数),(αα称为元素(向量)α的长度或模,记作α.称长度为1的元素(向量)称为单位元素(向量),零元素(向量)的长度为0.由定义1.2易知,元素(向量)的长度具有下列性质: (1) V R k k k ∈∀∈∀⋅=ααα,,(2) 当o ≠α时,,11=αα即αα1是一个单位元素(向量).通常称此为把非零元素(向量)α单位化.定理1.1 (Cauchy-Schwarz 不等式). 设βα,是欧氏空间V 中的任意两个元素(向量),则不等式βαβα⋅≤),(,对V ∈∀βα,均成立,并且当且仅当α与β线性相关时,等号成立.证明:当α与β至少有一个是零元素(向量)时,结论显然成立.现在设βα,均为非零元素(向量),则)),(),(,),(),((ββββααββββαα--[]0),(),(),(2≥-=βββααα, 因此有[]),(),(),(2ββααβα≤, 即βαβα⋅≤),(.而且当且仅当ββββαα),(),(=,即α与β线性相关时,等号成立.定义1.3 设x 与y 是欧氏空间V 中的任意两个元素(向量),则称yx y x ),(arccos =θ为x 与y 的夹角,记作,,><y x 即 ),0(,),(arccos ,πθ≤><≤=>=<y x yx y x y x . 例 1.3 试证明欧氏空间V 中成立三角不等式V y x y x y x ∈∀+≤+,,.证明 因),(2y x y x y x ++=+),(),(2),(y y y x x x ++=,由Schwarz Cauchy -不等式,有 222222)(2),(2y x y y x x y y x x y x +=++≤++=+, 即有 y x y x +≤+ .§2 正交基及正交补与正交投影1 正交基定义 2.1 设y x ,是欧氏空间V 中的任意两个元素(向量),如果0),(=y x ,则称元素(向量)x 与y 正交,记作.y x ⊥.由定义2.1易知,零元素(向量)与任何元素(向量)均正交.若,o x ≠由于,0),(>x x 所以非零元素(向量)不会与自身正交,即只有零元素(向量)才与自己正交.例 2.1 在2R 中,对于任意两个向量x 与y 的内积,定义:(1)y x y x T =1),(;(2) Ay x y x T =),(,其中⎥⎦⎤⎢⎣⎡=2111A .由此所得的两个欧氏空间分别记为21R 与22R ,试判断向量T x )1,1(0=与T y )1,1(0-=在21R 与22R 中是否正交?解 由于 011)1,1(),(100=⎪⎪⎭⎫⎝⎛-=y x ;01112111)1,1(),(200≠=⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=y x . 故向量x 与y 在21R 中正交,在22R 中不正交.说明:两元素(向量)正交与否由所在空间的内积确定. 此外,在欧氏空间V 中也有勾股定理,即当y x ⊥时,有 222y x y x +=+.可将其推广至多个元素(向量),即当m ααα,,,21 两两正交时,有22221221m m αααααα+++=+++ .定义2.2 欧氏空间V 中一组非零元素(向量),若两两正交,则称其为一个正交元素(向量)组.定理 2.1 若m ααα,,,21 是欧氏空间V 中一个正交元素(向量)组,则m ααα,,,21 线性无关.证明 设有一组数m k k k ,,,21 ,使o k k k m m =+++ααα 2211,在上式两边分别用),2,1(m i i =α作内积,可得),,2,1(,0),(),(),(21m i k k k i m m i i ==+++αααααα, 由于j i ≠时,0),(=j i αα故可得),,2,1(0),(m i k i i i ==αα,又 0≠i α时, 0),(>i i αα, 从而有),2,1(0m i k i ==,所以m ααα,,,21 线性无关.推论:在n 维欧氏空间中,正交元素(向量)组所含元素(向量)的个数不会超过n 个.定义2.3 在n 维欧氏空间V 中,由n 个元素(向量)构成的正交元素(向量)组称为V 的正交基;由单位元素(向量)组成的正交基叫作标准正交基.定理 2.2 (Schmidt 正交化方法) 设n ααα,,,21 是n 维欧氏空间V 的任意一个基,则总可将其进行适当运算后化为V 的一个正交基,进而将其化为一个标准正交基.证明 因为m ααα,,,21 线性无关,所以),,2,1(0n i i =≠α. 首先, 取11αβ=;其次, 令1111222),(),(ββββααβ-=,则可得两个正交元素(向量)21,ββ;再次, 令222231111333),(),(),(),(ββββαββββααβ--=,则得到三个正交元素(向量).,,321βββ依此进行下去,一般有),,3,2(),(),(),(),(),(),(111122221111n i i i i i i i i i i =----=----ββββαββββαββββααβ 这样得到V 的一个正交基.再将其单位化,令 ),,2,1(1n i i i i ==ββγ,则可得V 的一组标准正交基n γγγ,,,21 .例2.1 在4R 中,将基T )0,0,1,1(1=α,T )0,1,0,1(2=α,T )1,0,0,1(3-=α, T )1,1,1,1(4--=α,用Schmidt 正交化方法化为标准正交基.解 先正交化令 ;)0,0,1,1(11T ==αβ ;)0,1,21,21(),(),(1111222T -=-=ββββααβ ;)1,31,31,31(),(),(),(),(222231111333T -=--=ββββαββββααβ T )1,1,1,1(),(),(),(),(),(),(33334222241111444--=---=ββββαββββαββββααβ 再单位化令 T )0,0,21,21(1111==ββγ T)0,62,61,61(1222-==ββγ T )123,121,121,121(1333-==ββγ T )21,21,21,21(1444--==ββγ则 4321,,,γγγγ 就是所要求的标准正交基.例2.2 设n εεε,,,21 是n 维欧氏空间V 的一个标准正交基, n n x x x x εεε+++= 2211,n n y y y y εεε++= 2211,则有),(),(11∑∑===n j j j n i i i y x y x εε∑==n i ii y x 1.在标准正交基下,V 中任意两个元素(向量)的内积等于它们对应坐标的乘积之和.定义2.4 设n εεε,,,21 是n 维欧氏空间V 的一个基,x ,y 在其基下的坐标表示分别为T n x x x x ),,,(21 =,T n y y y y ),,,(21 =,(∑==n i i i x x 1ε,∑==n i i i y y 1ε),则有Gy x y g x y x y x y x T j nj i ij i j j n j i i i n j j j n i i i ====∑∑∑∑======111111),(),(),(εεεε.其中,)(ij g G G =为n 阶方阵,n j i g j i ij ,,2,1,),,( ==εε.称G 为度量矩阵,它为对称可逆矩阵.2 正交补与正交投影定义 2.5 设1W 和2W 是欧氏空间V 的两个子空间,若对任意的21,W y W x ∈∈总有0),(=y x 成立,则称1W 与2W 正交,记作21W W ⊥.若对某个确定的x 及任意的W y ∈,总有0),(=y x 成立,则称x 与W 正交,记作x W ⊥.例 2.3 设{}R y x y x W ∈=,)0,,(1,{}R z z W ∈=),0,0(2 ,则容易得1W 和2W 均为3R 的子空间,且 12W W ⊥.定理2.3 设s W W W ,,,21 是欧氏空间V 的子空间,且两两正交,则s W W W +++ 21是直和.证明 设),,2,1(s i W i i =∈α且 o s =+++ααα 21,分别用iα在上式两边作内积,得0),(=i i αα,即),,2,1(s i oi ==α,即s W W W +++ 21是直和.定义 2.6 设1W 和2W 是欧氏空间V 的两个子空间,若21W W ⊥,且V W W =+21,则称1W 与2W 互为正交补,记作⊥=21W W 或12W W V ⊕=. 定理 2.4 欧氏空间V 的任一个子空间W ,都存在唯一的正交补W ⊥.证明 先证存在性.设m εεε,,,21 是子空间W 的一个标准正交基,则可以扩充为V 的一个标准正交基:n m m εεεεε,,,,,1,21 +,显然:),,(1n m L W εε +⊥=.再证唯一性.设1W 与2W 都是W 的正交补,则1W W V ⊕=,2W W V ⊕=,令任意的o x W x ≠∈,2,则 W x ∉,且W y y x ∈∀=,0),(,所以1W x ∈ ,即12W W ⊂.同理有 21W W ⊂.因此得 12W W =.定理2.4既证明了欧氏空间中任意子空间的正交补是存在且唯一的,又给出了正交补的计算方法.另外,V 中的任一向量x 都可唯一地分解为⊥∈∈+=W z W y z y x ,,.由此可引进正投影的概念.定义2.7 设x 是欧氏空间V 中任意的一个元素(向量),W 是V 的一个子空间,且x 被分解为.,,⊥∈∈+=W z W y z y x ,则称y 元素(向量)为x 元素(向量)在子空间W 上的正投影(又称内投影).显然W W =⊥⊥)(,故z 为元素(向量)x 在⊥W 上的正投影.例2.4 设 {}R x x W ∈=)0,0,(,则W 是3R 的一个子空间,且它的正交补为{}R z y z y W ∈=⊥,),,0(.若3),,(R c b a ∈=α,α在W 上的正投影为)0,0,(a ,在⊥W 上的正投影为),,0(c b .§3 实内积空间的同构定义3.1 设V 与U 是两个欧氏空间,若存在V 到U 的一个一一对应σ,使(1) U V ∈∈∀+=+)(),(;,),()()(βσασβαβσασβασ(2) U k R k V k k ∈∈∀∈∀=)(;,),()(ασαασασ(3) U V ∈∈∀=)(),(;,),,())(),((βσασβαβαβσασ则称σ为V 到U 的一个同构映射,并称欧氏空间V 与U 同构.同构作为欧氏空间的关系与线性空间的同构相同,因此有:同构的有限维欧氏空间必有相同的维数;任意一个n 维欧氏空间均与n R 同构.此外,欧氏空间的同构还具有以下性质:反身性:任意一个欧氏空间V 均与自己同构;对称性:若V 与V '同构,则V '与V 同构;传递性:若V 与V '同构, V '与V ''同构,则V 与V ''同构.事实上,(1) V 到V 的恒等映射是一个同构映射;(2)设σ是V 到V '的同构映射,记1-σ为σ的逆映射,则对V ∈∀βα,有βαβασσβσασσ+=+=+--))(())()((11))(())((11βσσασσ--+=, ))(())(())((111ασσαασσασσ---===k k k k ,))(),((),()))(()),(((11βσασβαβσσασσ==--,即1-σ是V '到V 的一个同构映射.(3) 传递性的证明留作习题.§4 正交变换与对称变换1 正交变换与正交矩阵定义 4.1 设V 是一个欧氏空间,σ是V 上的线性变换,如果对任意的元素(向量)V ∈βα,,均有),())(),((βαβσασ=成立,则称σ是V 上的一个正交变换.例如,恒等变换是一个正交变换,坐标平面上的旋转变换也是一个正交变换.正交变换可以从以下几个方面来刻画.定理4.1 设σ是欧氏空间V 上的一个线性变换,则下列命题是等价的:(1) σ是一个正交变换;(2) 保持元素(向量)的长度不变,即对任意的V ∈α,有αασ=)(;(3) V 中的任意一个标准正交基在下的象仍是一个标准正交基;(4) 在任一个标准正交基下的矩阵是正交矩阵,即E A A AA T T ==.证明 采用循环证法。
5_内积空间与希尔伯特空间(讲稿)

其中的投影定理是一个理论和应用上都极其重要的定理,利用投影
定理可以将内积空间分解成两个字空间的正交和。这是内积看所特
有的性质,这个定理在一般的巴拿赫空间中并不成立(因为巴拿赫
空间中没有正交性的概念)。在实际应用中,投影定理还常被用来
判定最佳逼近的存在性和唯一性。
机动 目录 上页 下页 返回 结束
第12页
定理14 (投影定理) 设M是希尔伯特空间H的闭线性子空间,则对
xH在M中存在唯一的正交投影x0, 使得
x =x0+x1
(其中x1M).
证 xH, 令x到M的距离
{yn}M, 使得||yn-x||d (n) (下确界定义)
机动 目录 上页 下页 返回 结束
1) 证明 {yn}是基本列 M是H的线性子空间ym,ynM,有
(2) 距离函数 (x, y) x y x y, x y 称为由内积诱导的距离。
注: (1) 内积与由内积诱导的范数的三角不等式关系—— 许瓦兹不等式 x, y x y . (2) 内积与由内积诱导的范数的等式关系:
x, y 1 ( x y 2 x y 2 i x iy 2 i x iy 2) 4
<·,·>:HHK, 使得:对x,y,zH,K,满足
第2页
则称<x, y>为数域K中x与y的内积,而称定义了内积的空间H为 内积空间。 注:1) 当数域K为实数域时,称H为实的内积空间;
当数域K为复数域C时,则称H为复的内积空间。
机动 目录 上页 下页 返回 结束
第3页
2 由内积诱导的范数及由内积诱导的距离 定义2 (1) 范数 x x, x 称为由内积诱导的范数。
机动 目录 上页 下页 返回 结束
第3讲 实内积空间

第3讲 实内积空间内容:1. 实内积空间2. 正交基及正交补与正交投影3. 内积空间的同构4. 正交变换与对称变换在线性空间中,元素(向量)之间的运算仅限于元素(向量)的线性运算.但是,如果以向量作为线性空间的一个模型,则会发现向量的度量(即长度)与向量间的位置关系在线性空间的理论中没有得到反映,而这些性质在许多实际问题中却是很关键的.因此,将在抽象的线性空间中引进内积运算,导出内积空间,并讨论正交变换与正交矩阵及对称变换与对称矩阵.§1 内积空间在解析几何中,向量的长度与夹角等度量性质都可以通过向量的数量积来表示,而向量的数量积具有以下的代数性质:对称性),(),(αββα=;可加性 ),(),(),(γβγαγβα+=+;齐次性R k k k ∈∀=),,(),(βαβα;非负性0),(≥αα,当且仅当0=α时,0),(=αα.以数量积为基础,向量的长度与夹角可表示为: ),(ααα=,βαβαβα⋅>=<),(,cos .可见数量积的概念蕴涵着长度与夹角的概念,将该概念推广至抽象的线性空间.定义1.1 设V 是实线性空间,若对于V 中任意两个元素(向量)α和β,总能对应唯一的实数,记作),(βα,且满足以下的性质:(1) 对称性 ),(),(αββα=(2) 可加性 ),(),(),(γβγαγβα+=+(3) 齐次性 R k k k ∈∀=),,(),(βαβα(4) 非负性 0),(≥αα,当且仅当0=α时,0),(=αα. 则称该实数是V 中向量α和β的内积.称内积为实数的实线性空间V 为欧几里得(Euclid)空间,简称为欧氏空间.称定义了内积的线性空间为内积空间.例 1.1 在n 维向量空间n R 中,任意两个向量:T n x x x ),,,(21 =α,T n y y y ),,,(21 =β,若规定:βαβαT nk k k n n y x y x y x y x ==+++=∑=12211),( ,则容易验证,这符合内积的定义,是n R 中向量α和β的内积.另外,若规定:∑==nk k k y kx 1),(βα,0>k ,同样可验证,这也是n R 中向量α和β的内积.由此可见,在同一个实线性空间的元素之间,可以定义不同的内积,即内积不是唯一的.从而,同一个实线性空间在不同内积下构成不同的欧氏空间.例 1.2 在[]b a ,上连续的实函数的实线性空间[]b a C ,中,对任意函数[]b a C x g x f ,)(),(∈,定义:⎰=ba dx x g x f g f )()(),(,则可以证明这是[]b a C ,上)(x f 与)(x g 的一种内积.欧氏空间V 中的内积具有如下的性质:(1) V o o ∈∀==ααα,0),(),((2) R k V k k ∈∀∈∀=,,),,(),(βαβαβα(3) V ∈∀+=+γβαγαβαγβα,,),,(),(),((4) ),(),(1111∑∑∑∑=====n j ni j i j i n i n j j j i i y x l k y l x k事实上,由定义1.1有:0),(0),0(),(===αβαβαo ;),(),(),(),(βααβαββαk k k k ===;),(),(),(),(),(),(γαβααγαβαγβγβα+=+=+=+;因此,性质(1)至(3)成立,再结合数学归纳法容易验证性质(4)也成立.定义1.2 设α是欧氏空间V 中的任一元素(向量),则非负实数),(αα称为元素(向量)α的长度或模,记作α.称长度为1的元素(向量)称为单位元素(向量),零元素(向量)的长度为0.由定义1.2易知,元素(向量)的长度具有下列性质: (1) V R k k k ∈∀∈∀⋅=ααα,,(2) 当o ≠α时,,11=αα即αα1是一个单位元素(向量).通常称此为把非零元素(向量)α单位化.定理1.1 (Cauchy-Schwarz 不等式). 设βα,是欧氏空间V 中的任意两个元素(向量),则不等式βαβα⋅≤),(,对V ∈∀βα,均成立,并且当且仅当α与β线性相关时,等号成立.证明:当α与β至少有一个是零元素(向量)时,结论显然成立.现在设βα,均为非零元素(向量),则)),(),(,),(),((ββββααββββαα--[]0),(),(),(2≥-=βββααα, 因此有[]),(),(),(2ββααβα≤, 即βαβα⋅≤),(.而且当且仅当ββββαα),(),(=,即α与β线性相关时,等号成立.定义1.3 设x 与y 是欧氏空间V 中的任意两个元素(向量),则称yx y x ),(arccos =θ为x 与y 的夹角,记作,,><y x 即 ),0(,),(arccos ,πθ≤><≤=>=<y x yx y x y x . 例 1.3 试证明欧氏空间V 中成立三角不等式V y x y x y x ∈∀+≤+,,.证明 因),(2y x y x y x ++=+),(),(2),(y y y x x x ++=,由Schwarz Cauchy -不等式,有 222222)(2),(2y x y y x x y y x x y x +=++≤++=+, 即有 y x y x +≤+ .§2 正交基及正交补与正交投影1 正交基定义 2.1 设y x ,是欧氏空间V 中的任意两个元素(向量),如果0),(=y x ,则称元素(向量)x 与y 正交,记作.y x ⊥.由定义2.1易知,零元素(向量)与任何元素(向量)均正交.若,o x ≠由于,0),(>x x 所以非零元素(向量)不会与自身正交,即只有零元素(向量)才与自己正交.例 2.1 在2R 中,对于任意两个向量x 与y 的内积,定义:(1)y x y x T =1),(;(2) Ay x y x T =),(,其中⎥⎦⎤⎢⎣⎡=2111A .由此所得的两个欧氏空间分别记为21R 与22R ,试判断向量T x )1,1(0=与T y )1,1(0-=在21R 与22R 中是否正交?解 由于 011)1,1(),(100=⎪⎪⎭⎫⎝⎛-=y x ;01112111)1,1(),(200≠=⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=y x . 故向量x 与y 在21R 中正交,在22R 中不正交.说明:两元素(向量)正交与否由所在空间的内积确定. 此外,在欧氏空间V 中也有勾股定理,即当y x ⊥时,有 222y x y x +=+.可将其推广至多个元素(向量),即当m ααα,,,21 两两正交时,有22221221m m αααααα+++=+++ .定义2.2 欧氏空间V 中一组非零元素(向量),若两两正交,则称其为一个正交元素(向量)组.定理 2.1 若m ααα,,,21 是欧氏空间V 中一个正交元素(向量)组,则m ααα,,,21 线性无关.证明 设有一组数m k k k ,,,21 ,使o k k k m m =+++ααα 2211,在上式两边分别用),2,1(m i i =α作内积,可得),,2,1(,0),(),(),(21m i k k k i m m i i ==+++αααααα, 由于j i ≠时,0),(=j i αα故可得),,2,1(0),(m i k i i i ==αα,又 0≠i α时, 0),(>i i αα, 从而有),2,1(0m i k i ==,所以m ααα,,,21 线性无关.推论:在n 维欧氏空间中,正交元素(向量)组所含元素(向量)的个数不会超过n 个.定义2.3 在n 维欧氏空间V 中,由n 个元素(向量)构成的正交元素(向量)组称为V 的正交基;由单位元素(向量)组成的正交基叫作标准正交基.定理 2.2 (Schmidt 正交化方法) 设n ααα,,,21 是n 维欧氏空间V 的任意一个基,则总可将其进行适当运算后化为V 的一个正交基,进而将其化为一个标准正交基.证明 因为m ααα,,,21 线性无关,所以),,2,1(0n i i =≠α. 首先, 取11αβ=;其次, 令1111222),(),(ββββααβ-=,则可得两个正交元素(向量)21,ββ;再次, 令222231111333),(),(),(),(ββββαββββααβ--=,则得到三个正交元素(向量).,,321βββ依此进行下去,一般有),,3,2(),(),(),(),(),(),(111122221111n i i i i i i i i i i =----=----ββββαββββαββββααβ 这样得到V 的一个正交基.再将其单位化,令 ),,2,1(1n i i i i ==ββγ,则可得V 的一组标准正交基n γγγ,,,21 .例2.1 在4R 中,将基T )0,0,1,1(1=α,T )0,1,0,1(2=α,T )1,0,0,1(3-=α, T )1,1,1,1(4--=α,用Schmidt 正交化方法化为标准正交基.解 先正交化令 ;)0,0,1,1(11T ==αβ ;)0,1,21,21(),(),(1111222T -=-=ββββααβ ;)1,31,31,31(),(),(),(),(222231111333T -=--=ββββαββββααβ T )1,1,1,1(),(),(),(),(),(),(33334222241111444--=---=ββββαββββαββββααβ 再单位化令 T )0,0,21,21(1111==ββγ T)0,62,61,61(1222-==ββγ T )123,121,121,121(1333-==ββγ T )21,21,21,21(1444--==ββγ则 4321,,,γγγγ 就是所要求的标准正交基.例2.2 设n εεε,,,21 是n 维欧氏空间V 的一个标准正交基, n n x x x x εεε+++= 2211,n n y y y y εεε++= 2211,则有),(),(11∑∑===n j j j n i i i y x y x εε∑==n i ii y x 1.在标准正交基下,V 中任意两个元素(向量)的内积等于它们对应坐标的乘积之和.定义2.4 设n εεε,,,21 是n 维欧氏空间V 的一个基,x ,y 在其基下的坐标表示分别为T n x x x x ),,,(21 =,T n y y y y ),,,(21 =,(∑==n i i i x x 1ε,∑==n i i i y y 1ε),则有Gy x y g x y x y x y x T j nj i ij i j j n j i i i n j j j n i i i ====∑∑∑∑======111111),(),(),(εεεε.其中,)(ij g G G =为n 阶方阵,n j i g j i ij ,,2,1,),,( ==εε.称G 为度量矩阵,它为对称可逆矩阵.2 正交补与正交投影定义 2.5 设1W 和2W 是欧氏空间V 的两个子空间,若对任意的21,W y W x ∈∈总有0),(=y x 成立,则称1W 与2W 正交,记作21W W ⊥.若对某个确定的x 及任意的W y ∈,总有0),(=y x 成立,则称x 与W 正交,记作x W ⊥.例 2.3 设{}R y x y x W ∈=,)0,,(1,{}R z z W ∈=),0,0(2 ,则容易得1W 和2W 均为3R 的子空间,且 12W W ⊥.定理2.3 设s W W W ,,,21 是欧氏空间V 的子空间,且两两正交,则s W W W +++ 21是直和.证明 设),,2,1(s i W i i =∈α且 o s =+++ααα 21,分别用iα在上式两边作内积,得0),(=i i αα,即),,2,1(s i oi ==α,即s W W W +++ 21是直和.定义 2.6 设1W 和2W 是欧氏空间V 的两个子空间,若21W W ⊥,且V W W =+21,则称1W 与2W 互为正交补,记作⊥=21W W 或12W W V ⊕=. 定理 2.4 欧氏空间V 的任一个子空间W ,都存在唯一的正交补W ⊥.证明 先证存在性.设m εεε,,,21 是子空间W 的一个标准正交基,则可以扩充为V 的一个标准正交基:n m m εεεεε,,,,,1,21 +,显然:),,(1n m L W εε +⊥=.再证唯一性.设1W 与2W 都是W 的正交补,则1W W V ⊕=,2W W V ⊕=,令任意的o x W x ≠∈,2,则 W x ∉,且W y y x ∈∀=,0),(,所以1W x ∈ ,即12W W ⊂.同理有 21W W ⊂.因此得 12W W =.定理2.4既证明了欧氏空间中任意子空间的正交补是存在且唯一的,又给出了正交补的计算方法.另外,V 中的任一向量x 都可唯一地分解为⊥∈∈+=W z W y z y x ,,.由此可引进正投影的概念.定义2.7 设x 是欧氏空间V 中任意的一个元素(向量),W 是V 的一个子空间,且x 被分解为.,,⊥∈∈+=W z W y z y x ,则称y 元素(向量)为x 元素(向量)在子空间W 上的正投影(又称内投影).显然W W =⊥⊥)(,故z 为元素(向量)x 在⊥W 上的正投影.例2.4 设 {}R x x W ∈=)0,0,(,则W 是3R 的一个子空间,且它的正交补为{}R z y z y W ∈=⊥,),,0(.若3),,(R c b a ∈=α,α在W 上的正投影为)0,0,(a ,在⊥W 上的正投影为),,0(c b .§3 实内积空间的同构定义3.1 设V 与U 是两个欧氏空间,若存在V 到U 的一个一一对应σ,使(1) U V ∈∈∀+=+)(),(;,),()()(βσασβαβσασβασ(2) U k R k V k k ∈∈∀∈∀=)(;,),()(ασαασασ(3) U V ∈∈∀=)(),(;,),,())(),((βσασβαβαβσασ则称σ为V 到U 的一个同构映射,并称欧氏空间V 与U 同构.同构作为欧氏空间的关系与线性空间的同构相同,因此有:同构的有限维欧氏空间必有相同的维数;任意一个n 维欧氏空间均与n R 同构.此外,欧氏空间的同构还具有以下性质:反身性:任意一个欧氏空间V 均与自己同构;对称性:若V 与V '同构,则V '与V 同构;传递性:若V 与V '同构, V '与V ''同构,则V 与V ''同构.事实上,(1) V 到V 的恒等映射是一个同构映射;(2)设σ是V 到V '的同构映射,记1-σ为σ的逆映射,则对V ∈∀βα,有βαβασσβσασσ+=+=+--))(())()((11))(())((11βσσασσ--+=, ))(())(())((111ασσαασσασσ---===k k k k ,))(),((),()))(()),(((11βσασβαβσσασσ==--,即1-σ是V '到V 的一个同构映射.(3) 传递性的证明留作习题.§4 正交变换与对称变换1 正交变换与正交矩阵定义 4.1 设V 是一个欧氏空间,σ是V 上的线性变换,如果对任意的元素(向量)V ∈βα,,均有),())(),((βαβσασ=成立,则称σ是V 上的一个正交变换.例如,恒等变换是一个正交变换,坐标平面上的旋转变换也是一个正交变换.正交变换可以从以下几个方面来刻画.定理4.1 设σ是欧氏空间V 上的一个线性变换,则下列命题是等价的:(1) σ是一个正交变换;(2) 保持元素(向量)的长度不变,即对任意的V ∈α,有αασ=)(;(3) V 中的任意一个标准正交基在下的象仍是一个标准正交基;(4) 在任一个标准正交基下的矩阵是正交矩阵,即E A A AA T T ==.证明 采用循环证法。
丘维声高等代数第十章2

(k) = k
因此,是 V 上的线性变换。▌ 性质 实内积空间 V 上的正交变换是 V 到自身 的同构映射。 证明 只需证明正交变换是单射:设是 V 上 的正交变换,任取 , V ,若 =,则
| |2 ( , ) ( ( ), ( )) | ( ) |2 | |2 | |2 0
所以
2 , U
从而 2 U ,由此得 1 2 U U ,即
V U U
所以 ( , ) 0 设 U U , 则 U 且 U , 从而 ,即U U { } 。 综上所述,V U U 。 ▌
T 1
4.326 A 1.739
T
由 X 是 () 的最小二乘解,可得
k 1.739kg / cm
于是,此弹簧的受力方程为
12
y 4.326 1.739 x
▌
推论 设 AX 是不相容线性方程组,这里
A R mn , R m 。若 rank( A ) = n,则此方程组有
AX AX ( AX , AX ) 0 ( AX )T AX 0 ( AX )T A 0 AT ( AX ) 0
AT AX AT
故 X 应为线性方程组
AT AX AT
③
的解。 可以证明 对任意 A R mn , R m ,线性方
1
( 2 , j ) ( 1 , j ) ( , j ) (1 , j ) ( , j ) ( , 1 )( 1 , j ) ( , m )( m , j ) ( , j ) ( , j )( j , j ) ( , j ) ( , j ) 0
泛函分析第4章内积空间

泛函分析第4章内积空间第四章介绍的是内积空间,是泛函分析中非常重要的一个概念。
内积空间是在向量空间上赋予了内积运算的结构,它将几何空间的概念引入到向量空间中,从而使得我们能够定义向量的长度、角度等几何概念。
在内积空间中,我们首先需要定义内积的概念。
内积是一个数学结构,它将两个向量映射到一个实数上。
在内积空间中,内积满足一系列性质,如线性性、对称性和正定性等,这些性质保证了内积的合理性和实用性。
比如,线性性保证了内积对于向量的加法和标量乘法是线性的,对称性保证了内积的对换性质。
通过内积,我们能够定义向量的长度和角度。
向量的长度可以通过内积定义一个标准,即向量与自身的内积的平方根。
这个定义与我们熟悉的欧氏几何空间中的向量长度一致。
而向量的角度可以通过内积定义出余弦值,从而表示两个向量之间的夹角。
这个定义使得我们能够对向量的方向进行描述。
内积空间还引入了正交的概念。
在内积空间中,两个向量相互垂直时称为正交。
正交向量在几何空间中有很重要的应用,比如可以作为一组基底,并且正交向量之间的内积为零,这使得我们能够对向量进行分解和投影等操作。
内积空间还引入了内积的连续性概念。
通过内积的连续性,我们可以定义向量的极限、收敛等概念。
这使得内积空间成为了一个完备的空间,即任何一个柯西序列都存在一个极限。
内积空间是泛函分析中非常有用的一个概念。
它不仅能够将几何概念应用到向量空间中,还能够定义向量的长度和角度等概念,从而使得向量空间具有了更强的几何性质。
在泛函分析中,内积空间是研究函数空间、傅里叶变换等问题的基础。
因此,对于内积空间的理解和掌握是非常重要的。
总之,第四章介绍的内积空间是泛函分析中非常重要的一个概念。
它通过引入内积的概念,使得向量空间具有了几何性质,定义了向量的长度、角度等几何概念。
内积空间是泛函分析中非常有用的一个工具,对于研究函数空间、傅里叶变换等问题具有重要的意义。
因此,对于内积空间的理解和掌握是泛函分析学习的重点。
内积空间的正交基与正交投影

内积空间的正交基与正交投影内积空间是数学中一个重要的概念,它在向量空间中定义了向量之间的内积运算。
在内积空间中,有两个重要的概念:正交基和正交投影。
本文将介绍内积空间的概念,探讨正交基的性质以及正交投影的应用。
一、内积空间的定义和性质内积空间是一个向量空间,其中定义了向量间的内积运算。
一个内积空间必须满足以下条件:1. 正定性:对于任意非零向量x,有内积⟨x, x⟩大于0,并且仅当x 为零向量时等于0。
2. 线性性:对于任意向量x、y和标量a,有内积的线性性质:⟨ax + y, z⟩ = a⟨x, z⟩ + ⟨y, z⟩。
3. 对称性:对于任意向量x和y,有内积的对称性质:⟨x, y⟩ = ⟨y, x⟩。
内积空间的一个重要性质是Cauchy-Schwarz不等式,它表明对于任意向量x和y,有|⟨x, y⟩| ≤ ∥x∥∥y∥,其中∥x∥和∥y∥分别表示向量x和y的范数。
二、正交基的定义和性质在内积空间中,如果一个向量组中的向量两两正交且非零,那么这个向量组称为正交基。
正交基的一个重要性质是,内积空间中的任意向量都可以由正交基线性表示。
假设V是一个n维内积空间,{v_1, v_2, ..., v_n}是V的一个正交基,那么对于任意向量x ∈ V,可以将x表示为线性组合的形式:x =c_1v_1 + c_2v_2 + ... + c_nv_n,其中c_1, c_2, ..., c_n为常数。
三、正交投影的定义和应用正交投影是内积空间中的一个重要应用,它可以将一个向量投影到另一个向量上,得到其在后者上的正交投影。
设V是一个内积空间,W是V的一个子空间,对于任意向量x ∈V,将其正交投影到W上的向量记作Proj_W(x)。
那么Proj_W(x)满足以下两个条件:1. Proj_W(x) ∈ W,即正交投影的结果在子空间W中。
2. 向量x - Proj_W(x)与W上的所有向量正交,即内积⟨x -Proj_W(x), w⟩ = 0,对于任意w ∈ W成立。
矩阵论第2章内积空间综述

(2) , V , x11 x2 2 xnn ; y11 y2 2 yn n ;
y1
则
n
,
i 1
n
xi y j i , j
j 1
x1,
x2
,,
xn
A
y2
xT
Ay
yn
即抽象的向量的内积可通过他们在基下的坐标及度量矩阵 的双线性函数来计算。
定理2:设 1,2,与,n 1为,2n,维,欧n 氏空间V的基,它们 的度量矩阵为A和B,,C是1,2,到,n 1,的2 ,过,渡n 矩阵,则 B CT AC (证明详见P26-27) 即同一欧氏空间不同基的度量矩阵是相合矩阵。
A
0
2 3
0
2
3
0
2
5
(2)求 f (x) 1与x x2 g(x的) 内1积4。x 5x2
方法一:利用定义,直接计算
f
( x),
g(x)
1
1
f
(x)g(x)dx
方法二:利用基的度量矩阵及向量在基下的坐标可求两 个向量的内积。
f (x), g(x) 在基1,x,x2的坐标分别为 (1,1,1)T , (1,4,5)T ,
例5 设欧氏空间 P[x]3中的内积为 f (x), g(x)
1
f (x)g(x)dx
1
(1)求基1,x,x2的度量矩阵;
(2)求 f (x) 1与x x2 g(x的) 内1积4。x 5x2
解:设基1,x,x2的度量矩阵为 A (aij )33 ,
a11 (1,1)
1
11dx
2
矩阵,则 B CH AC
练习P38 1;2;3
即同一酉空间不同基的度量矩阵是复相合矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注3若 在 上有投影,则投影必定是唯一的。
定理5.2.1设 是积空间 的线性子空间, . 若 是 在 上的投影,则
,(5.2.2)
且 是 中使(5.2.2)成立的惟一向量。
证因为 是 在 上的投影,所以 .
对于 ,因为 ,而 ,所以
.
这样的点列称为“极小化”序列。
下面证明 是基本点列。由平行四边形公式得:
.(5.2.5)
因为 是凸集,所以 ,因此 . 由(5.2.5)得:
.
令 ,则有
.
所以 是基本点列。
因为 是完备的,所以 ,使得 . 这时
.
若 ,使得 ,则点列 显然是“极小化”序列。这说明 ,也就是说在 中使 的元 是唯一的。
(3)若 ,则 ;
(4)对 ,恒有 ;
注 不意味着 .
(5)勾股弦定理:当 时, .
引理5.2.1设 是积空间, ,则 是 的闭线性子空间。
证(自证!)
注因为 未必是 的闭线性子空间,所以一般地, ,但有 .
若 是 的闭线性子空间,则 .
推论设 ,若 是 成的闭线性子空间,则
.
证因为 ,所以 .
反过来,若 ,即 ,这时 .
即:存在 ,使得 ,且这种分解是唯一的。
特别地,当 时, .
证由引理5.2.2,有 ,使得 .
由引理5.2.3得: . 记 ,则
,且 ,
就是 在 上的投影。
下证唯一性。设另有分解 ,其中 .因为
,
而 ,故 ,由此得
.
特别地,当 时,因为
,
所以 .证毕!
推论1设 是积空间 中的完备线性子空间,且 ,则在 中必有非零元素。
,
故由“勾股定理”得
(5.2.3)
显然(5.2.3)式只有当 时,等号才成立。
由(5.2.3)知:(5.2.2)式成立,且(5.2.2)式中右边的下确界只有当 时才能达到。 证毕!
5.2.2投影定理
引理5.2.2(变分引理)设 是积空间 中完备的凸集, . 记
(5.2.4)
则必有唯一的 ,使得 .
证由下确界的定义,必定有 中的点列 ,使得
5.2积空间中的正交与投影
5.2.1 正交和投影
定义5.2.1设 是积空间, ,若 ,则称 与 正交,记作 .
设 ,当 与 中所有向量都直交时,称 与 正交,记作 .
设 ,若对 ,都有 ,则称 与 正交,记作 .
设 ,记 ,并称之为 的正交补(集)。
注 .
正交性质:
(1)若 ,则 ;
(2)若 ,则 ;
若 ,则由推论1知:必有非零元素 ( ).
由 ,由 得: .
因此 ,于是 . 这与 矛盾。故 .证毕!
由引理5.2.1知: 是 的闭子空间, 而 是包含 的最小的闭集,所以
或
得: .综上所述,有 .证毕!
定义5.2.2设 是积空间, 是 的两个线性子空间,若 ,则称
为 与 的正交和,记作 .
命题5.2.1设积空间 能分解为 与 的线性和
则它为正交和 .
In fact,“ ”设 ,则由定义5.2.3知: . 于是
唯一性另证:若 ,使得 ,则由平行四边形公式得:
故
证毕!
引理5.2.3设 是积空间 中的线性子空间, , .若 ,则
,即 .
证任取 ,对任意数 ,因为 ,所以
.(5.2.6)
令 (这是使(5.2.6)式右端取极小值的 ),就得到
.
因为 ,所以 . 这就证明了 . 证毕!
定理5.2.2(投影定理)设 是积空间 中的完备Байду номын сангаас性子空间,则对 , 在 上的投影唯一地存在。
证因为 ,取 , 在 上的投影记为 ,则
,即 .
但是 ,因此 ,即 中有非零元素。证毕!
推论2设 是Hilbert空间 中的线性子空间,则 .( )
特别地,若 ,则 在 中稠密。( )
证由引理5.2.1, 是 的闭线性子空间,因而是完备的。
显然 ,而 是包含 的最小闭集,所以 .
另一方面, 也是Hilbert空间 的闭线性子空间。
,
故 . 同理可证 .
“ ”设 ,往证 .因为 已经分解为 与 的线性和:
,
所以,要证明 ,只需证明 .
因为 ,所以显然有 .证毕!
定义5.2.3设 是积空间 的线性子空间, . 若存在 ,使得
(5.2.1)
则称 是 在 上的(正交)投影,或 在 上的投影分量。
注1 是 在 上的(正交)投影,或 在 上的投影分量。