机器视觉构成简介及应用

合集下载

机器人视觉系统介绍

机器人视觉系统介绍

机器人视觉(Robot Vision)简介机器视觉系统的组成机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。

按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。

三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。

所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。

机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。

如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。

机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。

将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。

产品的分类和选择也集成于检测功能中。

下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。

视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。

图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。

数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。

机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。

图像的获取图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:*照明*图像聚焦形成*图像确定和形成摄像机输出信号1、照明照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少3 0%的应用效果。

由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。

机器视觉技术简介

机器视觉技术简介

机器视觉技术简介机器视觉技术是一种模拟人类视觉的技术,利用计算机和摄像机等设备,使计算机能够接收、处理和解释图像或视频数据。

它结合了图像处理、模式识别、计算机视觉和人工智能等多个学科,被广泛应用于制造业、医疗保健、交通监控、军事安全等领域。

一、机器视觉的基本原理机器视觉的基本原理是通过摄像机采集图像,然后利用图像处理算法对图像进行处理和解读。

首先,摄像机将物体拍摄下来,并将其转换为数字图像。

然后,图像处理算法对图像进行滤波、增强、分割等操作,以提取出图像中的有用信息。

最后,模式识别算法对处理后的图像进行分析和识别,以实现对物体的检测、定位、跟踪等任务。

二、机器视觉的应用领域1. 制造业:机器视觉技术在制造业中常用于产品质量检测、零部件定位、装配验证等任务。

例如,在汽车制造过程中,机器视觉可以检测车身表面的瑕疵,以及零部件的尺寸和位置是否符合要求。

2. 医疗保健:机器视觉技术在医疗保健领域有着广泛的应用,例如医学影像分析、病例诊断和手术辅助等。

通过对医学图像的处理和分析,机器视觉可以帮助医生更准确地诊断疾病,并提供更有效的治疗方案。

3. 交通监控:机器视觉技术在城市交通监控中起到了重要作用。

通过安装摄像头和采用机器视觉算法,可以实现车辆违章检测、交通流量统计和事故预警等功能。

这些技术可以提高道路交通的效率和安全性。

4. 军事安全:机器视觉技术在军事领域的应用日益广泛,如目标识别、目标跟踪和情报分析等。

通过机器视觉系统的帮助,可以实现实时监测和分析敌方目标的动态,提供有效的军事情报支持。

三、机器视觉技术的挑战与发展机器视觉技术虽然在许多领域取得了突破性的进展,但仍面临一些挑战。

首先,图像数据的多样性和复杂性给图像处理和模式识别算法带来了挑战。

其次,计算机硬件性能的提升以及深度学习等人工智能算法的兴起,为机器视觉技术的发展提供了更大的空间。

未来,机器视觉技术有望在更多领域得到应用。

随着人工智能领域的不断发展,机器视觉技术可能会与自动驾驶、智能机器人、增强现实等技术相结合,创造更多的商业和科研价值。

机器视觉的技术和应用

机器视觉的技术和应用

机器视觉的技术和应用机器视觉,又称视觉智能,是指模拟和实现人类视觉的能力,通过使用电子传感器和计算机算法来解析和理解视觉信息,从而实现对图像和视频的分析、处理和理解。

随着计算机和图像处理技术的不断发展,机器视觉技术成为了一个快速发展和广泛应用的新兴领域,在工业、医疗、交通、安防等多个行业都得到了广泛应用和推广。

一、机器视觉技术1、图像采集图像采集是机器视觉技术的基础,它通过相机、摄像机等设备将目标物体采集成数字信号,然后通过特定的图像处理算法将其转化为可供计算机处理的数字图像。

目前图像采集的设备种类繁多,从普通的数码相机、摄像机到高端的医疗影像设备和工业相机,应用领域也非常广泛。

2、图像预处理图像预处理是指将数字图像预处理成为更好的质量和格式,以方便机器视觉算法的使用。

图像预处理包括灰度变换、色彩空间转换、噪声过滤、边缘检测、图像增强等多个方面。

3、特征提取特征提取是指根据目标应用的需要从数字图像中提取出具有代表性的特征,并以数学形式进行表达。

常见的特征包括边缘、颜色、纹理等,通常需要根据具体应用进行设计和选择。

4、图像分割图像分割是将数字图像分割成不同的区域,并且将不同区域分配给不同的对象和结构。

常见的图像分割算法包括基于阈值的分割、基于边缘的分割、基于区域的分割等。

5、目标识别目标识别是指根据图像特征检测和图像分割的结果,将某个特定目标从图像中提取出来,并进行进一步的分析和处理。

目标识别常用的算法包括支持向量机、决策树、深度学习等。

二、机器视觉的应用1、工业应用机器视觉在工业领域的应用广泛,包括自动化生产、质量控制、安全监测等多个方面。

在自动化生产中,机器视觉可以实现对物品的识别、判别和分类,从而实现自动化生产;在质量控制中,机器视觉可以自动检测并判断产品是否符合质量标准,从而提高质量检测的效率和准确性;在安全监测中,机器视觉可以实现对工厂的监控和安全防护,从而保障工业安全。

2、医疗应用机器视觉在医疗领域的应用也十分广泛,包括医学影像分析、疾病诊断、手术辅助等多个方面。

机器视觉的原理及应用

机器视觉的原理及应用

机器视觉的原理及应用
一、机器视觉的原理
机器视觉的核心技术主要包括图像预处理、光学测量、图像处理和模式识别等。

图像预处理是对输入图像进行纠正、校正和增强等操作;光学测量是根据物体的形状和特征来测量物体的尺寸、轮廓等参数;图像处理是根据图像中存在的物体的纹理、色调等特征来进行分析;模式识别技术是把捕获的图像与预先存储的图像进行对比,以确定图像中的内容。

二、机器视觉的应用
1、电子与半导体行业:电子与半导体行业的机器视觉应用主要包括SMT电路板定位、SMT元件类型识别、SMT元件定位、电路板检测等。

这些功能的实现都需要通过机器视觉系统进行自动识别和检测,以提高生产的效率和提高精度。

2、汽车行业:汽车行业也大量采用机器视觉技术,如车架、汽车底盘、发动机部件、外观模型等都需要机器视觉系统进行检测和识别。

机器视觉介绍范文

机器视觉介绍范文

机器视觉介绍范文
机器视觉(Machine Vision)是一门以机器、计算机和相关的传感器、硬件和软件等技术手段,利用对物体、环境和其他图像信息的自动捕捉、
处理、分析和识别技术,为机器人、机器自动化控制、过程检测、物流检测、无人驾驶、图像识别和计算机图像等提供有力的技术支撑。

机器视觉是由众多技术所组成,包括照明技术、图像传感器技术、图
像取样和采样技术、图像处理技术、特征提取和分析技术以及机器学习等
技术。

机器视觉技术可以提供有效的物体和环境信息,作为决策支持和关
键技术中介,获取机器操作所需的输入和输出信息,为提高自动化系统的
性能和准确性提供有力技术支持。

机器视觉系统的应用范围涵盖了从制造业到日常生活的各领域,主要
应用于智能机器人、自动化系统、机器人定位、机器人追踪、机器人控制
系统、检测与质检、计算机安全等。

其中,在制造业中,机器视觉作为自
动化控制及检测的关键技术,不仅可以提高工业生产的效率和质量,而且
可以减少劳动成本,提高生产率,延长产品使用寿命。

在日常生活中,机器视觉也扮演着重要角色。

机器视觉技术及其应用研究

机器视觉技术及其应用研究

机器视觉技术及其应用研究随着计算机科学技术的不断进步,机器视觉技术已经成为了一种实现自动检测和识别的重要技术。

它的应用可以涵盖多个领域,例如工业生产、医疗、教育等。

在本文中,我们将探究机器视觉技术的原理及其在不同领域中的应用。

一、机器视觉技术的原理机器视觉技术的原理主要是指利用计算机对图像进行处理和分析的过程。

通俗地说,机器视觉技术是一种通过计算机,将图像转化为数字信息,并通过计算机分析这些数字信息,来实现对图片的检测、识别和分类等处理过程。

机器视觉技术主要由以下几个步骤构成:1. 采集图像:利用摄像头等设备采集实际场景中的图像。

2. 图像预处理:对采集的图像进行过滤、去噪、增强等处理。

3. 特征提取和特征匹配:利用算法从图像中提取出关键特征,并通过特定的匹配算法将图像与机器已有的模板进行比对。

4. 图像分类和识别:将提取的特征与机器已有的模板进行对比,从而实现对图像的分类和识别。

二、机器视觉技术的应用1. 工业生产领域中的应用在工业生产领域,机器视觉技术广泛应用于零件检测、产品排序、自动识别等方面。

例如,在一条生产线上,机器视觉技术可以通过相机对生产的零件进行检测,实现产品流水线自动化和质检,从而提高生产效率,降低人工成本。

2. 医疗领域中的应用医疗领域是机器视觉技术的又一大应用领域,可以应用于医学图像分析、疾病诊断等方面。

例如,在CT扫描中,机器视觉技术可实现对影像图像的分析,提高诊断的准确性和速度,为患者提供快速、有效的医疗服务。

3. 教育领域中的应用机器视觉技术在教育领域中的应用主要涉及教学模式创新、学生评估等方面。

例如,在教育评估中,机器视觉技术可以通过人脸识别和表情分析技术,从而判断学生在学习上的表现和情感状态,实现教育评估自动化,提高效率和准确性。

三、总结总的来说,机器视觉技术的应用范围十分广泛,从工业生产到医疗、教育,都可以找到其应用的踪迹。

但是,机器视觉技术的性能和稳定性仍然需要进一步提高,并且在实际应用中,还需要考虑数据处理和隐私保护等问题。

机器视觉的基本原理和应用

机器视觉的基本原理和应用

机器视觉的基本原理和应用1. 什么是机器视觉?机器视觉(Machine Vision)是一种使用摄像机和计算机技术来模拟和实现人类视觉的技术。

它通过捕捉、处理和分析图像来获取和理解信息。

机器视觉系统可以在不同的环境下进行图像识别、目标检测和测量等任务。

2. 机器视觉的基本原理机器视觉的基本原理包括图像获取、图像处理和图像分析。

2.1 图像获取图像获取是机器视觉的第一步,它使用摄像机或其他图像采集设备来获取物体的图像。

图像采集的质量和分辨率对后续的图像处理和分析非常重要。

2.2 图像处理图像处理是对获取到的图像进行预处理和增强,以提取特征并改善图像质量。

它包括图像去噪、图像平滑、图像增强和图像压缩等操作。

2.3 图像分析图像分析是机器视觉的核心部分,它使用图像处理技术和模式识别算法来理解和解释图像信息。

图像分析可以包括目标检测、目标识别、图像分类和测量等任务。

3. 机器视觉的应用机器视觉在各个领域都有广泛的应用。

以下是机器视觉的一些主要应用领域:3.1 工业自动化机器视觉在工业自动化中起着重要的作用。

它可以用于产品质量控制、生产线监测和机器人导航等任务。

通过机器视觉技术,可以实现对产品的外观、尺寸和位置的快速检测和测量,提高生产效率和质量。

3.2 医学影像诊断机器视觉在医学影像诊断中有广泛的应用,如X射线图像分析、病理图像处理和医学图像分类等任务。

通过机器视觉技术,可以帮助医生快速准确地诊断疾病,提高医疗效率和准确性。

3.3 交通安全机器视觉在交通安全领域有重要的应用,如车牌识别、交通流量监测和智能交通系统等任务。

通过机器视觉技术,可以实现对车辆和行人的识别和跟踪,提高交通安全和管理效率。

3.4 农业领域机器视觉在农业领域中有广泛应用,如农作物的识别和分类、果实的检测和采摘等任务。

通过机器视觉技术,可以实现农作物的自动化种植和采摘,提高农业生产效率和质量。

3.5 安防监控机器视觉在安防监控中有重要的应用,如视频监控和人脸识别等任务。

机器视觉系统详述

机器视觉系统详述

右图中,绿色背景 采用红色光源提高 对比度 (灰阶图像)
光源
代码 R G B V W IR UV
颜色 红 绿 蓝 紫 白 红外 紫外
波长(nm) 625(600~720) 517(510~530) 465(430~480) 400 色温:5500k
应用 背景为黑色的透明软板孔位定位、绿色线路 板检测、透光膜厚度测量等。 红色背景产品检测、银色背景产品检测等。
• 特殊要求,需要用到红外或紫外相机情况
镜头--如何选择镜头

定焦与变焦 变焦镜头
工作距离不变的情况下获得不同的放大倍率
镜头--如何选择镜头

远心镜头与标准工业镜头
远心镜头
• 精密测量系统
CCTV镜头
• 一般工业测量、缺陷检测,对物体成像的放大倍率没有严格要求
远心镜头
CCTV镜头
镜头--如何选择镜头
目录
1 2
机器视觉系统构成 成像系统核心器件选型方法
3 4
5
机器视觉系统设计步骤 应用案例
飞行捕捉和相机丢帧解决办法
机器视觉系统构成
机 器 (Machine)
1、机器视觉系统介绍
+
视 觉 (Vision)
机械
运动
控制
视(硬件)
觉(软件)
机器视觉是一个系统的概念,运 用现代先进的控制技术、计算机 技术及传感技术,表现为光机电 的结合。
镜头
镜头畸变
畸变是镜头放大倍率随着视场变化而变化的现象。
测量应用,畸变越小越好
畸变可以通过软件进行校正
镜头
镜头景深
对于理想的光学系统,像平面对应一个理想物平面。实际光学
系统,能清晰成像的最远物面到理想物平面的距离称为远景深 度,能清晰成像的最近物面到对准平面的距离称为近景深度, 远景深度和近景深度的和就是光学系统的景深。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器视觉构成简介及应用人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解世界,具有自主适应环境的能力。

作为一个新兴学科,同时也是一个交叉学科,机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。

目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。

一.机器视觉简介机器视觉就是用机器代替人眼来做测量和判断。

机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。

机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。

其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能高等优点,有着广泛的应用前景。

一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。

通过CCD或 CMOS摄像机将被测目标转换为图像信号,然后通过 A/D 转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。

图像系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置和长度等,进而根据判别的结果来控制现场的设备动作。

机器视觉一般都包括以下四个过程:二.机器视觉的发展历史机器视觉是在20 世纪 50 年代从统计模式识别开始,当时的工作主要集中在二维图像分析、识别和理解上。

从 20 世纪70 年代才真正开始发展,并涌现出了主动视觉理论框架、基于感知特征群岛物体识别理论框架等新的概念、方法及理论。

Marr 视觉计算机理论是视觉研究迄今较为完善的理论,其使视觉研究有了一个较为明确的体系.Marr视觉理论从计算视觉理论出发,将立体视觉分为自上而下的三个阶段,即早期的二维视觉数据获取、中期的要素处理和后期三维信息的形成和表达。

经历这单个阶段即可完成二维到三维的转换工作.早期阶段的“要素图”(primarysketch)是由二维图像中的点、直线、曲线和纹理等特征组成,早期阶段的处理是从图像中获取这些特征。

中期阶段的处理是处理特征要素的位置和相互关系,从而完成对物体的识别、运动分析和形状恢复等操作,该阶段处理的结果仅仅是对空间场景的二维半描述。

如若要完成对空间场景的真正三维描述,还需第三阶段的后期视觉处理,将物体自身坐标统一到一个世界坐标系中。

作为立体视觉的基础理论,Marr理论具有极其重要的指导作用,但Marr理论自身有缺陷,如单向性(视觉处理只能从前至后处理)、被动性(视觉处理只能是给什么图像处理什么图像)、目的单一性(视觉处理的目标一般只是恢复空间场景中的物体形状和位置)等。

经过几十年的发展,许多学者纷纷提出了Marr理论的改进框架,如在框架前增加图像拾取模块,使其能根据分析要求和分析结果自主获取图像;增加反馈环节,使视觉处理结果能反向指导图像获取环节,前后互动;增加高层指导模块和视觉目的模块,使整个视觉处理按照视觉目的的要求,在高层指导模块的指导下完成不同的视觉处理操作,实现其功能多样化.总之,改进的Marr理论框架使立体视觉趋于自动化、智能化和多功能化。

三.机器视觉相关技术1、图像采集技术——机器视觉的基础图像采集部分一般由光源、镜头、数字摄像机和图像采集卡构成。

采集过程可简单描述为在光源提供照明的条件下,数字摄像机拍摄目标物体并将其转化为图像信号,最后通过图像采集卡传输给图像处理部分。

在设计图像采集部分时,要考虑到多方面的问题,主要是关于数字摄像机、图像采集卡和光源方面的问题。

(1)光源照明照明是影响机器视觉系统输入的重要因素,其直接影响输入数据的质量和应用效果。

到目前为止,还未有哪种机器视觉照明设备能通用各种应用,因此在实际应用中,需针对应用选择相应的照明设备以满足特定需求。

在光源照明方案选择过程中,应尽可能地突出物体特征,在物体需要检测的部分与不重要部分之间尽量产生明显的区域,增加对比度,同时还应保证足够的整体亮度,而物体位置的变化不应影响成像的质量。

照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。

其中,背向照明是指将被测物放在光源和摄像机之间,以提高图像的对比度。

前向照明是光源和摄像机位于被测物的同侧,其优点是便于安装。

结构光照明是将光栅或线光源等投射到被测物上,并根据其产生的畸变,解调出被测物的三维信息。

频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。

东莞市奥普泰克光源科技有限公司(前东莞市奥普泰克光电科技有限公司)成立于2002年,是一家集研发、生产、销售为一体的高新技术产业公司,公司致力于光、机、电一体化仪器产品的研发与生产,研发生产的各款视觉光源被行业内销售商及自动化领域检测系统广泛使用,为了在机器视觉光源领域争取更大的发展同时也便于更专注于“机器视觉光源”的生产销售,2009年公司更名为“东莞市奥普泰克光源科技有限公司”。

经过多年发展,公司拥有了一支强大的机器视觉产品研发团队;本着严谨的服务态度和与时俱进的创新精神,产品远销台湾,东南亚及北美地区,在机器视觉,自动化领域享有良好声誉。

服务范围:机器视觉光源生产销售,视觉自动化检测系统的研发推广…(2)光学摄像头光学摄像头的任务就是进行光学成像,一般在测量领域都又专门的用于测量的摄像镜头,因为其对成像质量有着关键性的作用。

摄像头需要注意的一个问题是畸变。

这个就需要使用相应的畸变校正方法,目前也开发出了很多自动畸变自动校正系统。

(3)CCD 摄像机及图像采集卡CCD( Charge Coupled Device) 摄像机及图像采集卡共同完成对目标图像的采集与数字化。

目前 CCD,CMOS等固体器件的应用技术,线阵图型敏感器件,像元尺寸不断减小,阵列像元数量不断增加,像元电荷传输速率也得到大幅提高。

在基于PC机的机器视觉系统中,图像采集卡是控制摄像机拍照来完成图像的采集与数字化,并协调整个系统的重要设备。

图像采集卡直接决定了摄像头的接口为:黑白、彩色、模拟、数字等形式。

2、图像处理与分析——机器视觉的核心用于机器视觉的图像处理与分析方法的核心是,解决目标的检测识别问题。

为此,提出方法的思想中心是如何获得可正确描述目标物与非目标物的特征。

当所需要识别的目标比较复杂时,就需要通过几个环节,从不同的侧面综合来实现。

对目标进行识别提取的时候,首先是要考虑如何自动地将目标物从背景中分离出来。

目标物提取的复杂性一般就在于目标物与非目标物的特征差异不是很大,在确定了目标提取方案后,就需要对目标特征进行增强。

增强方法有颜色特征的增强、累计特征的增强等。

经过特征增强后,最后就是目标物的提取了。

这里也有很多不同的方法,比如伪目标删除方法、自适应阈值方法、逐步骤类方法、多信息融合方法等。

随着计算机技术、微电子技术以及大规模集成电路的发展,图像信息处理工作越来越多地借助硬件完成,如 DSP 芯片、专用的图像信号处理卡等。

软件部分主要用来完成算法中并不成熟又较复杂或需不断完善改进的部分。

这一方面提高了系统的实时性,同时又降低了系统的复杂度。

四.机器视觉的发展现状及应用目前,最先进的机器视觉技术仍然由欧美、日本等国家掌握,发达国家针对工业现场的应用开发出了相应的机器视觉软硬件产品。

中国目前正处于由劳动密集型向技术密集型转型的时期,对提高生成效率、降低人工成本的机器视觉方案有着旺盛的需求,中国正在成为机器视觉技术发展最为活跃的地区之一。

长三角和珠三角成为国际电子和半导体技术的转移地,同时也就成为了机器视觉技术的聚集地。

许多具有国际先进水平的机器视觉系统进入了中国,国内的机器视觉企业也在与国际机器视觉企业的良性竞争中不断茁壮成长,许多大学和研究所都在致力于机器视觉技术的研究。

在国外,机器视觉主要应用在半导体及电子行业,其中,半导体行业占40% ~ 50%。

例如,PCB 印刷电路、SMT表面贴装、电子生产加工设备等。

此外机器视觉还在质量检测的各方面及其他领域均有着广泛应用。

(1)在工业检测方面近几十年来,在工业检测中利用视觉系统的非接触、速度快、精度合适、现场抗干扰能力强等突出的优点,使机器视觉技术得到了广泛的应用,取得了巨大的经济与社会效益。

(2)自动视觉识别检测目前已经用于产品外形和表面缺陷检验,如木材加工检测、金属表面视觉检测、二极管基片检查、印刷电路板缺陷检查、焊缝缺陷自动识别等。

这些检测识别系统属于二维机器视觉,技术已经较为成熟,其基本流程是用一个摄像机获取图像,对所获取的图像进行处理及模式识别,检测出所需的内容(3)在医学上的应用在医学领域,机器视觉主要用于医学辅助诊断。

首先采集核磁共振、超声波、激光、X射线、γ射线等对人体检查记录的图像,再利用数字图像处理技术、信息融合技术对这些医学图像进行分析、描述和识别,最后得出相关信息,对辅助医生诊断人体病源大小、形状和异常,并进行有效治疗发挥了重要的作用。

不同医学影像设备得到的是不同特性的生物组织图像,如X射线反映的是骨骼组织,核磁共振影像反映的是有机组织图像,而医生往往需要考虑骨骼有机组织的关系,因而需要利用数字图像处理技术将两种图像适当地叠加起来,以便于医学分析。

(4)交通监控领域中的应用智能交通监控领域中,在重要的十字路口安放摄像头,就可以利用摄像头的快速拍照功能,实现对违章、逆行等车牌的车牌进行自动识别、存贮,以便相关的工作人员进行查看。

(5)在桥梁检测领域中的应用人工检测法和桥检车法都是依靠人工用肉眼对桥梁表面进行检测,其速度慢,效率低,漏检率高,实时性差,影响交通,存在安全隐患,很难大幅应用;无损检测包括激光检测、超声波检测以及声发射检测等多种检测技术,它们仪器昂贵,测量范围小,不能满足日益发展的桥梁检测要求;智能化检测有基于导电性材料的混凝土裂缝分布式自动检测系统和智能混凝土技术,也有最前沿的基于机器视觉的检测方法。

导电性材料技术虽然使用方便,设备简单,成本低廉,但是均需要事先在混凝土结构上涂刷或者埋设导电性材料进行检测,而且智能混凝土技术还无法确定裂缝位置、裂缝宽度等一系列问题距实用化还有较长的距离;而基于机器视觉的检测方法是利用CCD相机获取桥梁表观图片,然后运用计算机处理后自动识别出裂缝图像,并从背景中分离出来然后进行裂缝参数的计算的方法,它具有便捷、直观、精确、非接触、再现性好、适应性强、灵活性高、成本低廉的优点,能解放劳动力,排除人为干扰,具有很好的应用前景。

相关文档
最新文档