物理训练题有详细答案(圆周运动至机械能守恒)
高三物理机械能守恒试题答案及解析

高三物理机械能守恒试题答案及解析1.如图所示,竖直平面内的3/4圆弧形光滑管道半径略大于小球半径,管道中心到圆心距离为R,A端与圆心O等高,AD为水平面,B点在O点的正下方,一小球自A点正上方由静止释放,自由下落至A点进入管道,当小球到达B点时,管壁对小球的弹力大小为小球重力的9倍.求:(1)小球到B点时的速度;(2)释放点距A的竖直高度;(3)落点C与A的水平距离。
【答案】(1)2(2)(3)【解析】(1)设小球到达B点的速度为,因为到达B点时管壁对小球的弹力大小为小球重力=2大小的9倍,所以有:解得:v1(2)由机械能守恒定律得∴(3)设小球到达最高点的速度为,落点C与A的水平距离为由机械能守恒定律得由平抛运动规律得,由此可解得【考点】考查了圆周运动,机械能守恒,平抛运动2.特战队员在进行素质训练时,抓住一端固定在同一水平高度的不同位置的绳索,从高度一定的平台由水平状态无初速开始下摆,如图所示,在到达竖直状态时放开绳索,特战队员水平抛出直到落地。
不计绳索质量和空气阻力,特战队员可看成质点。
下列说法正确的是A.绳索越长,特战队员落地时的水平位移越大B.绳索越长,特战队员在到达竖直状态时绳索拉力越大C.绳索越长,特战队员落地时的水平速度越大D.绳索越长,特战队员落地时的速度越大【答案】C【解析】据题意,特战队员随绳摆动到最低点后做平抛运动,设绳子长度为,平抛运动的高度为,起点到地面总高度为,且有;当下摆到最低点时速度由机械能守恒定律得:,平抛后运动时间为:,特战队员落地时水平位移为:,由此可知,特战队员的水平位移有绳长和平抛高度决定,如果绳越长,虽然平抛速度越大,但高度就越低,平抛运动的时间久越短,则水平位移不一定就越大,故选项A错误;据可知,不管绳有多长,摆到最低点时绳子拉力均不变,故选项B错误;由于落地水平速度等于摆到最低点的速度,即,则绳越长,水平速度越大,选项C正确;由机械能守恒定律可知,由于总高度不变,特战队员落地速度不变,故选项D错误。
机械能守恒定律习题及答案

机械能守恒定律习题及答案机械能守恒定律习题及答案机械能守恒定律是物理学中的重要概念,它指出在没有外力做功的情况下,一个物体的机械能保持不变。
这个定律在解决各种物理问题时非常有用,下面将介绍一些与机械能守恒定律相关的习题及答案。
习题一:一个小球从高度为h的位置自由落下,落地后以速度v反弹,反弹高度为h/2。
求小球的初始速度。
解答:根据机械能守恒定律,小球在自由落体过程中的机械能等于反弹过程中的机械能。
自由落体过程中,小球的机械能只有动能,反弹过程中,小球的机械能有动能和势能。
在自由落体过程中,小球的动能为mgh,势能为0。
在反弹过程中,小球的动能为mv^2/2,势能为mgh/2。
根据机械能守恒定律,可以得到以下等式:mgh = mv^2/2 + mgh/2化简后可得:gh = v^2/2 + gh/2再次化简可得:gh/2 = v^2/2代入反弹高度为h/2,可得:gh/2 = v^2/2解得:v = sqrt(gh)所以小球的初始速度为sqrt(gh)。
习题二:一个弹簧恢复力常数为k的弹簧,一个质量为m的物体以速度v撞向弹簧,撞击后弹簧被压缩到最大距离x。
求物体的初始动能和弹簧的势能。
解答:在撞击前,物体的动能为mv^2/2,弹簧的势能为0。
在撞击后,物体的动能为0,弹簧的势能为kx^2/2。
根据机械能守恒定律,可以得到以下等式:mv^2/2 = kx^2/2化简后可得:mv^2 = kx^2解得:v = sqrt(k/m) * x所以物体的初始动能为mv^2/2 = kx^2/2,弹簧的势能为kx^2/2。
习题三:一个质量为m的物体以速度v从高度为h的位置滑下,滑到底部后撞击一个质量为M的物体,撞击后两个物体一起向上弹起,达到最高点时的高度为H。
求M与m的比值。
解答:在滑下过程中,物体的机械能只有动能,滑到底部后的动能为mv^2/2。
在弹起过程中,物体的机械能有动能和势能,两个物体的总机械能为(M+m)gH。
高中物理机械能守恒定律100题(带答案)

一、选择题1.有一质量m=2kg 的带电小球沿光滑绝缘的水平面只在电场力的作用下,以初速度v 0=2m/s 在x 0=7m 处开始向x 轴负方向运动。
电势能E P 随位置x 的变化关系如图所示,则小球的运动范围和最大速度分别为( )A. 运动范围x≥0B. 运动范围x≥1mC. 最大速度v m =2m/sD. 最大速度v m =3m/s 【答案】BC 【解析】试题分析:根据动能定理可得W 电=0−12mv 02=−4J ,故电势能增大4J ,因在开始时电势能为零,故电势能最大增大4J ,故运动范围在x≥1m ,故A 错误,B 正确;由图可知,电势能最大减小4J ,故动能最大增大4J ,根据动能定理可得W =12mv 2−12mv 02;解得v=2√2m/s ,故C 正确,D 错误;故选:BC 考点:动能定理;电势能.2.如图所示,竖直平面内光滑圆弧轨道半径为R ,等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷.现把质量为m 带电荷量为+Q 的小球由圆弧的最高点M 处静止释放,到最低点C 时速度为v 0.不计+Q 对原电场的影响,取无穷远处为零电势,静电力常量为k ,则( )A. 小球在圆弧轨道上运动过程机械能守恒B. C 点电势比D 点电势高C. M 点电势为(mv 02﹣2mgR )D. 小球对轨道最低点C 处的压力大小为mg+m +2k【答案】C 【解析】试题分析:此题属于电场力与重力场的复合场,根据机械能守恒和功能关系即可进行判断.解:A、小球在圆弧轨道上运动重力做功,电场力也做功,不满足机械能守恒适用条件,故A错误;B、CD处于AB两电荷的等势能面上,且两点的电势都为零,故B错误;C、M点的电势等于==,故C正确;D、小球对轨道最低点C处时,电场力为k,故对轨道的压力为mg+m+k,故D错误;故选:C【点评】此题的难度在于计算小球到最低点时的电场力的大小,难度不大.3.如图,平行板电容器两极板的间距为d,极板与水平面成45°角,上极板带正电。
初中物理械能守恒定律练习题带答案

尚学堂教育尚学堂教育机械能守恒定律练习题一.不定项选择题1. 关于机械能是否守恒的叙述,正确的是(关于机械能是否守恒的叙述,正确的是( BD BD )A.A.做匀速直线运动的物体机械能一定守恒做匀速直线运动的物体机械能一定守恒做匀速直线运动的物体机械能一定守恒B.B.做变速运动的物体机械能可能守恒做变速运动的物体机械能可能守恒做变速运动的物体机械能可能守恒C.C.外力对物体做功为零时,机械能一定守恒外力对物体做功为零时,机械能一定守恒外力对物体做功为零时,机械能一定守恒D.D.若只有重力对物体做功,物体的机械能一定守恒若只有重力对物体做功,物体的机械能一定守恒若只有重力对物体做功,物体的机械能一定守恒2.2.关于机械能守恒定律的适用条件,下列说法中正确的是(关于机械能守恒定律的适用条件,下列说法中正确的是(关于机械能守恒定律的适用条件,下列说法中正确的是( C C )A.A.只有重力和弹力作用时,机械能守恒只有重力和弹力作用时,机械能守恒只有重力和弹力作用时,机械能守恒B.B.当有其他外力作用时,只要合外力为零,机械能守恒当有其他外力作用时,只要合外力为零,机械能守恒当有其他外力作用时,只要合外力为零,机械能守恒C.C.当有其他外力作用时,只要合外力的功为零,机械能不一定守恒当有其他外力作用时,只要合外力的功为零,机械能不一定守恒当有其他外力作用时,只要合外力的功为零,机械能不一定守恒D.D.炮弹在空中飞行不计阻力时,仅受重力作用,所以爆炸前后机械能守恒炮弹在空中飞行不计阻力时,仅受重力作用,所以爆炸前后机械能守恒炮弹在空中飞行不计阻力时,仅受重力作用,所以爆炸前后机械能守恒3.若不计空气的阻力,以下实例中运动物体机械能守恒的是.若不计空气的阻力,以下实例中运动物体机械能守恒的是 ( BCD ) A .物体沿斜面匀速下滑.物体沿斜面匀速下滑 B B .物体做竖直上抛运动.物体做竖直上抛运动C .物体做自由落体运动.物体做自由落体运动D .用细绳拴着小球,一端为圆心,使小球在竖直平面内做圆周运动.用细绳拴着小球,一端为圆心,使小球在竖直平面内做圆周运动4.4.绳子拉着物体沿竖直方向减速上升,下面关于物体上升过程中的叙述正确的是绳子拉着物体沿竖直方向减速上升,下面关于物体上升过程中的叙述正确的是(AC ) A.A.动能减小,重力势能增加动能减小,重力势能增加动能减小,重力势能增加 B. B.机械能不变机械能不变C.C.机械能一定增加机械能一定增加机械能一定增加D. D.机械能一定减小机械能一定减小5.5.物体在平衡力作用下的运动中(物体在平衡力作用下的运动中(物体在平衡力作用下的运动中( B B )A.A.物体的机械能一定不变物体的机械能一定不变物体的机械能一定不变B.B.如果物体的重力势能有变化,则它的机械能一定有变化如果物体的重力势能有变化,则它的机械能一定有变化如果物体的重力势能有变化,则它的机械能一定有变化C.C.物体的动能一定不变,但重力势能一定变化物体的动能一定不变,但重力势能一定变化物体的动能一定不变,但重力势能一定变化D.D.物体的重力势能可能变化,但它的机械能一定不变物体的重力势能可能变化,但它的机械能一定不变物体的重力势能可能变化,但它的机械能一定不变6.6.质量为质量为m 的小球,从桌面上竖直抛出,桌面离地面高为h ,小球能达到的最大高度离地面为H 若以桌面作为重力势能的参考面,不计空气阻力,则小球落地时的机械能为(械能为( D D )A.mgHB.mghC.mg (H +h )D.mg (H -h )7.设质量m=1.0kg 的物体从倾角为300,高2.0m 的光滑斜面由静止开始下滑,那么当它滑到斜面中点时刻所具有的机械能是(取地面为参考平面)当它滑到斜面中点时刻所具有的机械能是(取地面为参考平面) ( b )A 、零、零B B 、20焦耳焦耳C C 、40焦耳焦耳D D 、10焦耳焦耳 8.如图右所示,物体在斜面上受到平行于斜面向下拉力F 作用,沿斜面向下运动,已知拉力F 大小恰好等于物体所受的摩擦力,则物体在运动过程中过程中( bc ) ( bc ) F尚学堂教育尚学堂教育A 、作匀速运动;、作匀速运动;B B 、作匀加速运动;、作匀加速运动;C 、机械能保持不变;、机械能保持不变;D D 、机械能减小。
高三物理机械能守恒试题答案及解析

高三物理机械能守恒试题答案及解析1.如图,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N。
一质量为m的带电小球从y轴上(y>0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g)。
(1)判断小球的带电性质并求出其所带电荷量;(2)P点距坐标原点O至少多高;(3)若该小球以满足(2)中OP最小值的位置和对应速度进入第一象限,通过N点开始计时,经时间小球距坐标原点O的距离s为多远?【答案】(1),小球带正电;(2)PO的最小距离为:;(3)。
【解析】(1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,①得②小球带正电。
(2)小球在洛伦兹力作用下做匀速圆周运动,设匀速圆周运动的速度为v,轨道半径为r。
有:③小球恰能通过半圆轨道的最高点并沿轨道运动,有:④由③④得:⑤PO的最小距离为:⑥(3)小球由O运动到N的过程中机械能守恒:⑦由④⑦得:⑧根据运动的独立性可知,小球从N点进入电场区域后,在x轴方向以速度做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动,则沿x轴方向有:⑨沿电场方向有⑩⑪t时刻小球距O点:2.如图所示,离水平地面h处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,弹簧处于自然长度。
现将一小球从地面上某一点P处,以某一初速度斜向上抛出,小球恰好能水平进入圆筒中,不计空气阻力。
则下列说法中正确的是A.小球抛出点P离圆筒的水平距离越远,抛出的初速度越大B.小球从抛出点P运动到圆筒口的时间与小球抛出时的初速度方向有关C.弹簧获得的最大弹性势能与小球抛出点位置无关D.小球从抛出到将弹簧压缩到最短的过程中,小球的机械能不守恒【答案】AD【解析】小球竖直方向做匀减速直线运动直至减速到零,逆向考虑有:,时间,由此可知小球运动时间与初速度无关,B错误;设抛出时速度的竖直、水平分量分别是、,,,联立可得:,由此可见,小球抛出点P离圆筒的水平距离越远,抛出的初速度越大,A正确;小球从抛出到将弹簧压缩到最短的过程中,弹簧弹性势能和小球的机械能总和不变,抛出点越远,小球抛出时动能越大,最终弹性势能越大,但小球的机械能不守恒,C错误,D正确。
物理圆周运动经典习题(含详细答案)

1.在观看双人花式溜冰表演时,观众有时会看到女运动员被男运动员拉着走开冰面在空中做水平方向的匀速圆周运动.已知经过目测预计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加快度为g= 10 m/s2,若已知女运动员的体重为35 k g,据此可估量该女运动员()A .遇到的拉力约为350 2 NB .遇到的拉力约为350 NC.向心加快度约为10 m/s2 D .向心加快度约为10 2 m/s2图 4-2-111.分析:此题考察了匀速圆周运动的动力学剖析.以女运动员为研究对象,受力剖析如图.依据题意有 G=mg= 350 N;则由图易得女运动员遇到的拉力约为350 2 N,A 正确;向心加快度约为10 m/s2,C 正确.答案:AC2.中央电视台《今天说法》栏目近来报导了一同发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭受了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲入李先生家,造成三死一伤和房子严重损毁的血腥惨案.经公安部门和交通部门合力调查,画出的现场表示图如图4-2- 12 所示.交警依据图示作出以下判断,你以为正确的选项是()A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内 (东 )高外 (西 )低D.公路在设计上可能外 (西) 高内 (东 )低图 4-2-12 2分析:由题图可知发惹祸故时,卡车在做圆周运动,从图能够看出卡车冲入民宅时做离心运动,故选项 A 正确,选项 B 错误;假如外侧高,卡车所受重力和支持力供给向心力,则卡车不会做离心运动,也不会发惹祸故,应选项 C 正确.答案: AC3. (2010 湖·北部分要点中学联考)如图 4- 2- 13 所示,质量为m 的小球置于正方体的圆滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加快度为 g,空气阻力不计,要使在最高点时盒子与小球之间恰巧无作使劲,则()A .该盒子做匀速圆周运动的周期必定小于2πR gB.该盒子做匀速圆周运动的周期必定等于2πR gC.盒子在最低点时盒子与小球之间的作使劲大小可能小于2mgD.盒子在最低点时盒子与小球之间的作使劲大小可能大于2mg图 4-2-133 分析: 要使在最高点时盒子与小球之间恰巧无作使劲,则有mg = mv 2R ,解得该盒子做匀速圆周运动的速2πR R度 v = gR ,该盒子做匀速圆周运动的周期为T = v= 2πg .选项 A 错误, B 正确;在最低点时,盒子mv2与小球之间的作使劲和小球重力的合力供给小球运动的向心力,由F - mg = R ,解得 F = 2mg ,选项 C 、D 错误. 答案: B4.图示所示 , 为某一皮带传动装置.主动轮的半径为r 1 ,从动轮的半径为 r 2.已知主动轮做顺时针转动,转速为 n ,转动过程中皮带不打滑.以下说法正确的选项是()A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r1 D .从动轮的转速为 r 2nnr2r 14 分析: 此题考察的知识点是圆周运动.因为主动轮顺时针转动,从动轮经过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;因为经过皮带传动,皮带与轮边沿接触处的速度相等,n 为频次, 2πn 为角速度,得从动轮的转速为nr 1所以由 2πnr 1= 2πn 2r 2 n 2= r 2 ,选项 C 正确D 错误. 答案: BC5.质量为 m 的石块从半径为 R 的半球形的碗口下滑到碗的最低点的过程中,假如摩擦力的作用使得石块的速度大小不变,如图 4- 2-17 所示,那么 ()A .因为速率不变,所以石块的加快度为零B .石块下滑过程中受的合外力愈来愈大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加快度大小不变,方向一直指向球心图 4-2-175 分析:因为石块做匀速圆周运动, 只存在向心加快度, 大小不变, 方向一直指向球心, D 对,A 错.由 F 合=F向 =ma向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不停减小,所以摩擦力不停减小,答案: DC 错.6.2008 年 4 月 28 日清晨,山东境内发生两列列车相撞事故,造成了大批人员伤亡和财富损失.引起事 故的主要原由是此中一列列车转弯时超速行驶.如图 4- 2- 18 所示,是一种新式高速列车,当它转弯 时,车厢会自动倾斜, 供给转弯需要的向心力; 假定这类新式列车以 360 km/h 的速度在水平面内转弯, 弯道半径为 1.5 km ,则质量为 75 kg 的乘客在列车转弯过程中所遇到的合外力为 ()A . 500 NB .1 000 NC .500 2 ND .0图 4-2- 186 分析:360 km/h = 100 m/s ,乘客在列车转弯过程中所受的合外力供给向心力 F =mv 21002r = 75×1.5× 103 N= 500 N.答案: A7.如图 4- 2- 19 甲所示,一根细线上端固定在 S 点,下端连一小铁球 A ,让小铁球在水平面内做匀速圆周运动,此装置组成一圆锥摆 (不计空气阻力 ).以下说法中正确的选项是 ( )A .小球做匀速圆周运动时,遇到重力、绳索的拉力和向心力作用gB .小球做匀速圆周运动时的角速度必定大于 l (l 为摆长 )C .还有一个圆锥摆,摆长更大一点,二者悬点相同,如图 4- 2- 19 乙所示,假如改变两小球的角速 度,使二者恰幸亏同一水平面内做匀速圆周运动,则 B 球的角速度大于 A 球的角速度D .假如两个小球的质量相等,则在图乙中两条细线遇到的拉力相等图 4- 2-197 分析: 以以下图所示,小铁球做匀速圆周运动时,只遇到重力和绳索的拉力,而向心力是由重力和拉力的合力供给,故 A 项错误.依据牛顿第二定律和向心力公式可得: mgtan θ=ml ω2sin θ,即 ω= g/lcos θ.当小铁球做匀速圆周运动时, θ必定大于零,即 cos θ必定小于 1,所以,当小铁球做匀速圆周运动时角速度必定大于g/l ,故 B 项正确.设点 S 到点 O 的距离为 h ,则 mgtan θ=mh ω2tan θ,即 ω= g/h ,若两圆锥摆的悬点相同,且二者恰幸亏同一水平面内做匀速圆周运动时,它们的角速度 大小必定相等,即C 项错误.如右上图所示,细线遇到的拉力大小为F T =mg,当两个小球的质量相cos θ等时,因为 θABABB 球遇到的拉力,从而能够判断两条< θ,即 cos θ> cos θ,所示 A 球遇到的拉力小于细线遇到的拉力大小不相等,故 D 项错误. 答案: B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿 半径方向遇到的摩擦力分别为 Ff 甲 和 Ff 乙. 以下说法正确的选项是 ( )A . Ff 甲 小于 Ff 乙B .Ff 甲 等于 Ff 乙C . Ff 甲大于 Ff 乙D . Ff 甲和 Ff 乙 大小均与汽车速率没关8 分析: 此题要点考察的是匀速圆周运动中向心力的知识.依据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来供给其做圆周运动的向心力,则F 向= f ,又有向心力的表达式F mv 2向= ,因为两车的质量相同, r两车运转的速率相同, 所以轨道半径大的车的向心力小,即摩擦力小,A 正确.答案: A9. 在高速公路的拐弯处,往常路面都是外高内低.如图 4- 2- 20 所示,在某路段汽车向左拐弯,司机左侧的路面比右边的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为 h ,路 基的水平宽度为 d ,路面的宽度为 L.已知重力加快度为g.要使车轮与路面之间的横向摩擦力(即垂直于行进方向 )等于零,则汽车转弯时的车速应等于 ()A.gRhB.gRh C.gRL D.gRdLdhh图 4-2- 209 分析: 考察向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力供给,且向心力的方向水平,向心力大小F 向= mgtan θ,依据牛顿第二定律:F 向=m v2hv =gRh R , tan θ= ,解得汽车转弯时的车速d,B 对.d答案: B 10.如图 4- 2- 24 所示,一个竖直搁置的圆锥筒可绕此中心 OO ′转动,筒内壁粗拙,筒口半径和筒高分别为 R 和 H ,筒内壁 A 点的高度为筒高的一半. 内壁上有一质量为m 的小物块随圆锥筒一同做匀速转动,则以下说法正确的选项是 ( ) A .小物块所受合外力指向 O 点B .当转动角速度ω= 2gH时,小物块不受摩擦力作用RC .当转动角速度ω>2gH 时,小物块受摩擦力沿AO 方向RD .当转动角速度ω<2gH 时,小物块受摩擦力沿AO 方向R图 4-2-2410 分析: 匀速圆周运动物体所受合外力供给向心力,指向物体圆周运动轨迹的圆心, A 项错;当小物块在 A 点随圆锥筒做匀速转动,且其所遇到的摩擦力为零时,小物块在筒壁 A 点时遇到重力和支持力的作用,它们的合力供给向心力,设筒转动的角速度为2R,由几何关系得: tan θω,有: mgtan θ= m ω ·2= H R ,联立以上各式解得 ω= 2gH R , B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿 AO 方向,其水平方向分力供给部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿 OA 方向,抵消部分支持力的水均分力, D 项错.答案: BC11. 如图 4- 2- 25 所示,一水平圆滑、距地面高为h 、边长为 a 的正方形 MNPQ 桌面上,用长为 L 的不行伸长的轻绳连结质量分别为m A 、m B 的 A 、B 两小球,两小球在绳索拉力的作用下,绕绳索上的某点 O 以不一样的线速度做匀速圆周运动, 圆心 O 与桌面中心重合, 已知 m A = 0.5 kg ,L = 1.2 m ,L AO = 0.8 m ,a = 2.1 m , h = 1.25 m , A 球的速度大小 v A = 0.4 m/s ,重力加快度 g 取 10 m/s 2,求:(1) 绳索上的拉力 F 以及 B 球的质量 m B ;(2) 若当绳索与 MN 平行时忽然断开,则经过 1.5 s 两球的水平距离; (与地面撞击后。
(完整版)机械能守恒定律练习题及其答案

机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。
例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。
人教版高中物理必修二 8.4 机械能守恒定律 练习(含答案)

机械能守恒定律练习一、单选题1.下列所述的物体在运动过程中满足机械能守恒的是( )A. 跳伞运动员张开伞后,在空中匀速下降B. 忽略空气阻力,物体竖直上抛C. 火箭升空过程D. 拉着物体沿光滑斜面匀速上升【答案】B【解析】解:A、跳伞运动员在空中匀速下降,动能不变,重力势能减小,因机械能等于动能和势能之和,则机械能减小。
故A错误。
B、忽略空气阻力,物体竖直上抛,只有重力做功,机械能守恒,故B正确。
C、火箭升空,动力做功,机械能增加。
故C错误。
D、物体沿光滑斜面匀速上升,动能不变,重力势能在增加,所以机械能在增大。
故D错误。
故选:B。
物体机械能守恒的条件是只有重力或者是弹簧弹力做功,或看物体的动能和势能之和是否保持不变,即采用总量的方法进行判断。
解决本题的关键掌握判断机械能是否守恒的方法,1、看是否只有重力做功。
2、看动能和势能之和是否不变。
2.安徽芜湖方特水上乐园是华东地区最大的水上主题公园。
如图为彩虹滑道,游客先要从一个极陡的斜坡落下,接着经过一个拱形水道,最后达到末端。
下列说法正确的是( )A. 斜坡的高度和拱形水道的高度差要设计合理,否则游客经过拱形水道的最高点时可能飞起来B. 游客从斜坡的最高点运动到拱形水道最高点的过程中,重力一直做正功C. 游客从斜坡下滑到最低点时,游客对滑道的压力最小D. 游客从最高点直至滑到最终停下来过程中,游客的机械能消失了【答案】A【解析】解:A、斜坡的高度和拱形水道的高度差要设计合理,不能让游客经过拱形水A正确;B、游客从斜坡的最高点运动到拱形水道最高点的过程中,游客的位置是先降低后升高,所以重力先做正功后做负功,故B错误;C、游客从斜坡上下滑到最低点时,加速度向上,处于超重状态,游客对滑道的压力最大,故C错误;D、游客从最高点直至滑到最终停下来过程中,游客的机械能没有消失,而是转化为其他形式的能(内能),故D错误。
故选:A。
高点运动到拱形水道最高点的过程中,游客是先降低后升高的;游客在最低点时,其加速度向上,游客处于超重状态;整个过程是符合能量守恒的,机械能不是消失,而是转化为其它形式的能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理周训练题八
满分:120分 时间:60分钟 范围:第五章至第七章
一、选择题:
⒈“神舟八号”飞船在发射和返回的过程中,哪些阶段中返回舱的机械能是守恒的?
A 飞船升空的阶段。
B 飞船在椭圆轨道上绕地球运行的阶段
C 进入大气层并运动一段时间后,降落伞张开,返回舱下降。
D 在太空中返回舱与轨道舱分离,然后在大气层以外向着地球做无动力飞行。
2.关于质点做匀速圆周运动的说法,以下正确的是
A 、因为2
v
a r
=
,所以向心加速度与转动半径成反比
B 、因为2a r ω=,所以向心加速度与转动半径成正比
C 、因为v r
ω=
,所以角速度与转动半径成反比
D 、因为2n ωπ=(n 为转速),所以角速度与转速成正比
3.以一定的初速度竖直向上抛出一个小球,上升的最大高度为h ,运动中空气阻力的大小恒为f,则小球从抛出点到再回到原抛出点的过程中,空气阻力对小球做的功为 A 0 B -fh C -2fh D -4fh
4.我国正在建立的北斗导航系统建成后,将有助于减少我国对GPS 导航系统的依赖。
北斗导航系统中有几颗卫星是地球同步卫星,GPS 导航系统是由周期约为12h 的卫星群组成。
则北斗导航系统的同步卫星与GPS 导航卫星相比( ) A .北斗导航系统的同步卫星的角速度小 B .北斗导航系统的同步卫星的轨道半径小 C .GPS 导航卫星的线速度大 D .GPS 导航卫星的向心加速度小
5.从地面竖直上抛一个质量为m 的小球,小球上升的最大高度为H ,设上升过程中空气阻力F f 大小恒定,则在上升过程中下列说法中错误..
的是( ) A .小球的加速度大于重力加速度g B .小球的机械能减小了FfH C .小球的重力势能增加了mgH
D .小球的动能减小了mgH
6.小明和小强在操场上一起踢足球,足球质量为m .如图所示,小明将足球以速度v
从地面上的A 点踢起,当足球到达离地面高度为h 的B 点位置时,取B 处为零势能参考面,不计空气阻力.则下列说法中正确的是 ( )
A .小明对足球做的功等于12m v 2
+mgh
B .小明对足球做的功等于12
m v 2
C .足球在A 点处的机械能为12m v 2
D .足球在B 点处的动能为12
m v 2
-mgh
7.如下图所示,用轻弹簧和不能伸长的轻细线分别吊质量相同的小球A 、B ,将两球拉开使细线与弹簧都在水平方向上,且高度相同,而后由静止放开A 、B 两球,两球在运动中空气阻力不计,关于两球在最低点时速度的大小是( )
A.A 球的速度大
B.B 球的速度大
C.A 、B 球的速度大小相等
D.无法判定
8.宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t
后落到月球表面。
设月球半径为R ,根据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为( )
A 、
B 、
C 、
D 、
10所示,O 、A 之间有几个点未画出.已知相邻两点时间间隔为0.02 s ,长度单位是 cm ,g 取9.8 m/s 2.则打点计时器打下点B 时,重物的速度v B =________m/s ;从起点O 到打下点B 的过程中,重物重力势能的减少量ΔE p =________J ,动能的增加量ΔE k =________J(结果保留三位有效数字)
10.如图所示,让摆球从图中的A位置由静止开始下摆,正好摆到最低点B位置时线被拉断.设摆线长l=1.6 m,悬点到地面的竖直高度为H=6.6 m,不计空气阻力,求:摆球落地时的速度。
(g=10 m/s2)
11、如图所示,A物体放在旋转平台上,已知A的质量为m=1Kg,A离轴距离为R=1m,
A与平台间的最大静摩擦因数为μ=0.4。
求:1)当平台旋转的角速度为1rad/s时,物体所受的摩擦力f
2) 当平台旋转的角速度w在什么范围时物体与平台发生相对滑
动?
12.如图所示,以速度v0=12m/s沿光滑地面滑行的小球,上升到顶部水平的跳板上后由跳板飞出,当跳板高度h多大时,小球飞行的
水平距离s最大?这个距离是多少?(g=10m/s2)
13.右端连有光滑弧形槽的水平桌面AB长L=1.5 m,如图9所示.将一个质量为m
=0.5 kg的木块在F=1.5 N的水平拉力作用下,从桌面上的A端由静止开始向右运动,木块到达B端时撤去拉力F,木块与水平
桌面间的动摩擦因数μ=0.2,取g=10 m/s2.求:
(1)木块沿弧形槽上升的最大高度;
(2)木块沿弧形槽滑回B端后,在水平桌面上滑动的最大距离.
高一物理周训练题八答案
1、BD 正确。
飞船在升空时,有火箭动力和空气做功;返回时降落伞张开,有阻力做功,所以都不守恒。
当飞船绕地球运动时,仅受万有引力,所以机械能守恒,同理在大气层外无动力运动时也只受万有引力,所以机械能守恒。
2、D 正确。
ABC 中均有三个是变量,所以这样的说法不成立。
3、C 正确。
对小球从抛出到落回原点,由W=FS 知W f =-f(2h) 注意当F 为特殊变力时(大小不变,方向改变)S 为路程。
4、AD 正确。
卫星绕地球转,半径越大,周期越大。
地球同步卫星(北斗导航系统)周期是24小时,大于GPS 的周期,所以北斗导航系统同步卫星的半径大于GPS 卫星,由2
2
2
ωmr r
v
m
ma r
GMm ===可得r 越大,a 、v 、w 均越小。
5、D 正确。
受力分析知,ma mg F f =-- 所a 大于g ;向上运动重力做负功,重力势能增加等于mgH E p =∆。
由动能定理得10k f E mgH H F -=--所动能减少了mgH+F f H ,机械能的变化量=势能的变化量+动能的变化量,所以
H F H F mgH mgH E E f f k p -=--=∆+∆
6、BD 正确。
对足球被踢的过程,由动能定理知02
12
-=mv
W 所能A 错误,因力B
处为零势面,所以球在A 点时的机械能为
mgh mv
-2
21,球从A 到B 机械能守恒。
7、A 正确。
两球从最高点到最低点只有重力或弹力做功机械能守恒。
但B 球的重力势能除转化成动能外还转化成弹簧的弹性势能,在最低点A 的动能大于B 的动能。
8、B 正确。
由自由落体实验得2
2t
h g =,当飞船在月球表面圆周运动时根据
R
v
m
R
m
GM 2
2
=月 再由
g m R
m GM 12
1
=月 联立解得V 。
9、由纸带法公式知s m T
S S T
S V
V A
C AC AC
B /972.002
.021089.3222
00=⨯⨯=
-=
=
=-;从
o 到B ,减少的E p =mgh oB =0.238J ;增加的动能J mv
E B
k 236.02
12
==
10、对小球从A 点到落地由动能定理知021)60cos (2
-=-mv
L H mg 解得V=6
3m/s
11、对A 物体受力所图所示知f 提供向心力所以
N mR f 12
==ω
当A 与平台即将发生相对滑动时,A 受到的摩擦力达到最大值 即21max mRw f = 而f max =umg 联立解得W 1=2rad/s
所以w 大于等于2rad/s 时物体与平台发生相对滑动。
12、设当跳板高为h 时,小球飞行的水平距离s 最远, 对小球从地面到跳板由机械能守恒得
)1(2
1212
2
0mgh mv
mv +=
再由平抛知识得
)
3()2(2
12
vt
s gt
h ==
联立以上方程解得:h g
v h s 2
02
24+
-=
由数学知识知当最大时,s a
b h g
v h )2(42
-
==
即
m a
b a
c s g
v s 2.7)44(22
2
=-=
=
13、解析:(1)由动能定理得:
FL -F f L -mgh =0
其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =
FL -F f L mg =1.5×(1.5-1.0)
0.5×10
m =0.15 m (2)由动能定理得:
mgh -F f x =0 所以x =
mgh F f =0.5×10×0.15
1.0
m =0.75 m。