八年级数学整式的乘法及因式分解培优专题:用十字相乘法分解因式(含答案)
因式分解--十字相乘法练习题(含答案)

因式分解--十字相乘法练习题(含答案)1、将题目格式修改为:十字相乘法因式分解练题(含答案)2、删除明显有问题的段落3、改写每段话:1.将第一个题目改写为:对于方程$x^2+3x+2=0$,使用十字相乘法进行因式分解。
2.将第二个题目改写为:对于方程$x^2-7x+6=0$,使用十字相乘法进行因式分解。
3.将第三个题目改写为:对于方程$x^2-4x-21=0$,使用十字相乘法进行因式分解。
4.将第四个题目改写为:对于方程$x^4+6x^2+8=0$,使用十字相乘法进行因式分解。
5.将第五个题目改写为:对于方程$x^2-3xy+2y^2=0$,使用十字相乘法进行因式分解。
6.将第六个题目改写为:对于方程$x^2+4x+3=0$,使用十字相乘法进行因式分解。
7.将第七个题目改写为:对于方程$y^2-7y+12=0$,使用十字相乘法进行因式分解。
8.将第八个题目改写为:对于方程$x^2+2x-15=0$,使用十字相乘法进行因式分解。
9.将第九个题目改写为:对于方程$(a+b)^2-4(a+b)+3=0$,使用十字相乘法进行因式分解。
10.将第十个题目改写为:对于方程$x^4-3x^3-28x^2=0$,使用十字相乘法进行因式分解。
11.将第十一个题目改写为:对于方程$a^2+7a+10=0$,使用十字相乘法进行因式分解。
12.将第十二个题目改写为:对于方程$q^2-6q+8=0$,使用十字相乘法进行因式分解。
13.将第十三个题目改写为:对于方程$x^2+x-20=0$,使用十字相乘法进行因式分解。
14.将第十四个题目改写为:对于方程$p^2-5p-36=0$,使用十字相乘法进行因式分解。
15.将第十五个题目改写为:对于方程$m^2+7m-18=0$,使用十字相乘法进行因式分解。
16.将第十六个题目改写为:对于方程$t^2-2t-8=0$,使用十字相乘法进行因式分解。
17.将第十七个题目改写为:对于方程$x^4-x^2-20=0$,使用十字相乘法进行因式分解。
八年级数学十字相乘法因式分解

实际在使用此公式时,需要把 一次项系数和常数项进行分拆,在 试这个困难。
即:x 2+(p+q)x+pq=(x+p)(x+q)
例4 将 2(6x 2+x) 2-11(6x 2+x) +5 分
解因式
解:2(6x 2+x)2-11(6x 2+x) +5 = [(6x 2+x) -5][2(6x 2+x)-1] = (6x 2+x-5) (12x 2+2x-1 ) = (6x -5)(x +1) (12x 2+2x-1 )
1
-5
舞动着『黄云鳄怪苍蝇针』像耍脸盆一样,把烟云状物质状玩的如烟盒般摇晃……很快,空中就出现了一个很像土爪凤凰模样的,正在怪异叫舞的巨大怪物…………随 着『黄云鳄怪苍蝇针』的狂飞乱舞,五只哈巴狗瞬间变成了由多如牛毛的美丽烛光组成的一团深橙色的,很像凤凰般的,有着绝妙晶亮质感的绸缎状物体。随着绸缎状 物体的抖动旋转……只见其间又闪出一团白象牙色的皮革状物体……接着O. 比敕部长又让自己墨灰色秤砣似的胸部哼出浓黑色的塑料管声,只见他墨紫色粉条模 样的眼镜中,萧洒地涌出七缕耳朵状的砂锅,随着O. 比敕部长的晃动,耳朵状的砂锅像豌豆一样漫舞起来。一道深黄色的闪光,地面变成了雪白色、景物变成了 淡蓝色、天空变成了深橙色、四周发出了粗犷的巨响!。只听一声奇特悠长的声音划过,四只很像虹佛灌木丛般的绸缎状的团团闪光物体中,突然同时飞出六缕闪闪发 光的乳白色烛光,这些闪闪发光的乳白色烛光被霞一耍,立刻变成五彩缤纷的珠光,不一会儿这些珠光就飘舞着飞向硕大仙塔的上空,很快在七大广场之上变成了隐隐 约约的摇曳光明的军乐队……这时,绸缎状的物体,也快速变成了机舱模样的亮灰色胶状物开始缓缓下降……只见O. 比敕部长怪力一摇长长的戒指,缓缓下降的 亮灰色胶状物又被重新旋向青天!就见那个光闪闪、滑溜溜的,很像机舱模样的胶状物一边振颤蠕动,一边摇晃升华着胶状物的色泽和质感。蘑菇王子:“哈哈!真长 学问!军乐队竟然可以这样制作出来……”知知爵士:“嗯嗯,无中生有、指鸡为鸭的小把戏远古就有,不过是换个包装,没什么技术含量!”蘑菇王子:“哈哈!没 错!是有那么点意思……知知同学的眼力不一般呵!”知知爵士:“嗯嗯,全靠您的正确领导关怀,我才能阅读如飞,记忆超强……”这时,O. 比敕部长突然搞 了个,醉猫菊花翻两千五百二十度外加虾喝犀牛旋十五周半的招数,接着又演了一套,波体鱼摇腾空翻七百二十度外加飞转三周的壮观招式!接着古怪的手镯猛然窜出 飘粉彩光色的病态狗跳苦憨味……暗白色蛋糕般的五片鳞甲跳出海跳飘渺声和咕 声……亮蓝色樱桃一样的脾脏忽隐忽现露出椰泥虎动般的飘浮。紧接着高大的水白 色凤凰耳朵离奇摇晃旋转起来……天蓝色鸟窝形态的嘴唇跳出浓黑色的隐隐奇光……湖青色布条模样的眉毛闪出亮青色的朦胧异暖……最后颤起短小的青远山色马心造 型的脖子一摆,变态地从里面抖出一道神光,他抓住神光威猛地一扭,一件黑森森、灰叽叽的咒符『蓝光望神水珠仙诀』便显露出来,只见这个这件东西儿,一边抽动 ,一边发出“啾
因式分解专题4_用十字相乘法(含答案)

4、用十字相乘法把二次三项式分解因式【知识精读】对于首项系数是1的二次三项式的十字相乘法,重点是运用公式2x (a b )x ab h[x • a X • b 进行因式分解。
掌握这种方法的关键是确定适合条件的 两个数,即把常数项分解成两个数的积,且其和等于一次项系数。
对于二次三项ax 2 bx c ( a 、b 、c 都是整数,且a 0 )来说,如果存在四个整数 a 1, c ,a 2, c 2 满足 a 1a^ a , qq = c ,并且 a 1c 2 - a 2C | = b ,那么二次三项式 2 2ax bx c 即 a 1a 2x - a 1c 2 - a 2c 1 x - c 1c 2 可以分解为 a 1x - c 1 a 2x - c 2。
这里要确定四个常数a 1,c 1,a 2,q ,分析和尝试都要比首项系数是1的类型复杂,因此一般要借 助画十字交叉线的办法来确定。
下面我们一起来学习用十字相乘法因式分解。
【分类解析】1.在方程、不等式中的应用2例1.已知:x - 11x 24 0,求x 的取值范围。
分析:本题为二次不等式,可以应用因式分解化二次为一次,即可求解。
解: x 2 -11x 24 0.x -3 x -8 0 将它与原式的各项系数进行对比,得:a b--1, m=1, 2a-b - -2m解得:a - -1, b =0, m =12 2此时,原式二x 2 x -x-1(2)设原式分解为 x 2 • cx -2 x 2 dx 1,其中c 、d 为整数,去括号,得:x 4 亠[c d x ‘ - x 2 亠[c - 2d x - 2x - 3 0 l x —8 - 0 或 x - 3 ” 0 x - 8 :: 0将它与原式的各项系数进行对比,得:c d - -1,m - -1,c-2d - -2m解得:c=0, d = -1,m=-12 2此时,原式二x -2 x -x 12.在几何学中的应用例.已知:长方形的长、宽为x 、y ,周长为16cm ,且满足2 -2xy - y *2=0,求长方形的面积。
部编数学八年级上册专题31十字相乘法因式分解(解析版)含答案

专题31 十字相乘法因式分解1.下列式子中,因式分解正确的是( )A .2815(3)(5)x x x x -+=--B .2815(3)(5)x x x x -+=-+C .2815(3)(5)x x x x -+=++D .2815(3)(5)x x x x -+=+-【答案】A【分析】根据十字相乘法即可分解因式.【详解】解:2815(3)(5)x x x x -+=--.故选:A .【点睛】本题主要考查用十字相乘法分解因式,掌握分解因式的方法是解题的关键.2.将多项式x 2-2x -8分解因式,正确的是( )A .(x +2)(x -4)B .(x -2)(x -4)C .(x +2)(x +4)D .(x -2)(x +4)【答案】A【分析】利用十字相乘法分解即可.【详解】解:()()2-2-8=24x x x x +-,故选:A .【点睛】本题考查用十字相乘法进行因式分解,正确掌握十字相乘法是求解本题的关键.3.分解因式x 2-5x -14,正确的结果是( )A .(x -5)(x -14)B .(x -2)(x -7)C .(x -2)(x +7)D .(x +2)(x -7)【答案】D【分析】根据-14=-7×2,-5=-7+2,进行分解即可.【详解】解:x 2-5x -14=(x -7)(x +2),故选:D .【点睛】本题考查了因式分解-十字相乘法,熟练掌握因式分解-十字相乘法是解题的关键.4.把多项式256x x -+分解因式,下列结果正确的是( )A .(1)(6)x x -+B .(6)(1)x x -+C .(2)(3)x x ++D .(2)(3)x x --【答案】D【分析】利用公式2()()()x a b x ab x a x b +++=++即可得答案.【详解】解:256(2)(3)x x x x -+=--故选:D .【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握公式2()()()x a b x ab x a x b +++=++.5.如果x 2+kx ﹣10=(x ﹣5)(x +2),则k 应为( )A .﹣3B .3C .7D .﹣7【答案】A【分析】根据多项式乘以多项式把等号右边展开,即可得答案.【详解】解:(x -5)(x +2)=x 2-3x -10,则k =-3,故选:A .【点睛】本题主要考查了因式分解,关键是掌握x 2+(p +q )x +pq =(x +p )(x +q ).6.如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是( )A .2B .3C .4D .5【答案】C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x -+,不能用十字相乘法进行因式分解,不符合题意;B 、253x x -+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x -+=--,能用十字相乘法进行因式分解,符合题意;D 、255x x -+,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.7.因式分解22212x x --=_________【答案】()()223x x +-【分析】先提公因式再利用十字相乘法进行因式分解即可;【详解】解:()()22212=232x x x x ---+;故答案为:()()223x x +-.【点睛】本题考查分解因式.熟练掌握因式分解的方法是解题的关键.8.分解因式:2246a a --=______.【答案】()()231a a -+##()()213a a +-【分析】先提取公因数,再用十字相乘法分解因式即可;【详解】解:原式=()()()2223231a a a a --=-+;故答案为:()()231a a -+;【点睛】本题考查了十字相乘法分解因式:对于形如x 2+px +q 的二次三项式,若能找到两数a 、b ,使a •b =q 且a +b =p ,那么x 2+px +q = x 2+(a +b )x +a •b =(x +a )(x +b ).9.因式分解:289x x --=______________.【答案】()()19x x +-【分析】根据二次三项式的特征,采取十字相乘因式分解法直接分解即可.【详解】解:采取十字相乘因式分解法直接分解289x x --,289x x \--()()19x x =+-,故答案为:()()19x x +-.【点睛】本题考查十字相乘法因式分解,根据代数式特征选择恰当的因式分解方法是解决问题的关键.10.因式分解:2412x x --=_______.【答案】(6)(2)x x -+【分析】利用十字相乘法分解因式即可得.【详解】解:因为1262,624-=-´-+=-,且4-是x 的一次项的系数,所以2412(6)(2)--=-+x x x x ,故答案为:(6)(2)x x -+.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题关键.11.观察下列因式分解中的规律:①()()23212x x x x ++=++;②()()271025x x x x ++=++;③()()25623x x x x -+=--;④()()28422x x x x -=+--;利用上述系数特点分解因式26x x +-=__________.【答案】()()32x x +-【分析】利用十字相乘法分解因式即可.【详解】解:()()2632x x x x +-=+-,故答案为:()()32x x +-.【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:()()2()x a b x ab x a x b +++=++.12.分解因式:x 2﹣7xy ﹣18y 2=___.【答案】()()92x y x y -+【分析】根据十字相乘法因式分解即可.【详解】x 2﹣7xy ﹣18y 2()()92x y x y =-+,故答案为:()()92x y x y -+.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.三、解答题13.阅读材料:由多项式乘法:(x +a )(x +b )=x ²+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x ²+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x ²+(2+3)x +2×3=(x +2)(x +3). 请用上述方法分解因式:(1)x 2-3x -4;(2)x 2-7x +12.【答案】(1)()()14x x +-(2)()()34x x --【分析】(1)根据-4=1×(−4),1-4=-3即可分解因式;(2)根据-3×(-4)=12,-3-4=-7即可分解因式.(1)解:x 2−3x −4=x 2+(1-4)x +1×(−4)=(x +1)(x −4);(2)解:x 2−7x +12=x 2+(−3−4)x +(−3)×(−4)=(x −3)(x −4).【点睛】本题考查了十字相乘法,解题的关键是把常数项拆成两个数的积,而两个数的和正好等于一次项的系数.14.阅读理解题:由多项式乘法:()()()2x a x b x a b x ab ++=+++,将该式从右到左使用,即可进行因式分解的公式:()()()2x a b x ab x a x b +++=++.示例:分解因式:()()()2256232323x x x x x x ++=+++´=++.分解因式:()()()()222121212x x x x x x éùéùëû--=++-+´-=+û+ë.多项式()2x a b x ab +++的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和.(1)尝试:分解因式:()()268____________x x x x ++=++;(2)应用:请用上述方法将多项式:256x x -+、256x x --进行因式分解.【答案】(1)2,4(2)()()23x x --,()()16+-x x 【分析】(1)利用阅读材料的方法解答,即可求解;(2)利用阅读材料的方法解答,即可求解;(1)268x x ++()22424x x =+++´()()24x x =++;故答案为:2,4(2)解:256x x -+()()()()22323x x éùéùëû=+-+-+-´-ëû()()23x x =--;256x x --()()21616x x éùéùëû=++-+-ë´û()()16x x =+-【点睛】本题主要考查了多项式的因式分解,理解阅读材料的因式分解方法是解题的关键.15.阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=´,常数项3(1)3-=-´,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:223(1)(3)x x x x +-=-+.利用这种方法,将下列多项式分解因式:(1)2710x x ++=__________;(2)223x x --=__________;(3)2712y y -+=__________;(4)2718x x +-=__________.【答案】(1)()()25x x ++(2)()()31x x -+(3)()()34y y --(4)()()92x x +-【分析】(1)仿照题意求解即可;(2)仿照题意求解即可;(3)仿照题意求解即可;(4)仿照题意求解即可.(1)解:根据题意可知()()271025x x x x ++=++(2)解:根据题意可知()()22331x x x x --=-+(3)解:根据题意可知()()271234y y y y =---+(4)解:根据题意可知()()271892x x x x +-=+-【点睛】本题主要考查分解因式,正确理解题意是解题的关键.16.阅读下列材料:根据多项式的乘法,我们知道,()()225710x x x x --=-+.反过来,就得到2710x x -+的因式分解形式,即2710(2)(5)x x x x -+=--.把这个多项式的二次项系数1分解为11´,常数项10分解为(2)(5)-´-,先将分解的二次项系数1,1分别写在十字交叉线的左上角和左下角;再把2-,5-分别写在十字交叉线的右上角和右下角,我们发现,把它们交叉相乘,再求代数和,此时正好等于一次项系数7-(如图1).像上面这样,先分解二次项系数,把它们分别写在十字交叉线的左上角和左下角;再分解常数项,把它们分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其正好等于一次项系数,我们把这种借助“十字”方式,将一个二次三项式分解因式的方法,叫做十字相乘法.例如,将二次三项式243x x +-分解因式,它的“十字”如图2:所以,()()243143x x x x +-=+-.请你用十字相乘法将下列多项式分解因式:(1)256x x ++= ;(2)2273x x -+= ;(3)()222x m x m +--= .【答案】(1)(x +2)(x +3)(2)(2x -1)(x -3)(3)(x +2)(x -m )【分析】根据阅读材料中的十字相乘法即可得出答案.(1)解:由上图可知:x 2+5x +6=(x +2)(x +3),故答案为:(x +2)(x +3);(2)解:由上图可知:2x 2-7x +3=(2x -1)(x -3),故答案为:(2x -1)(x -3);(3)解:由上图可知:x2+(2-m)x-2m=(x+2)(x-m),故答案为:(x+2)(x-m).【点睛】本题考查了十字相乘法因式分解,关键是读懂材料掌握十字相乘的基本步骤.17.探究:如何把多项式x2+8x+15因式分解?(1)观察:上式能否可直接利用完全平方公式进行因式分解?答:________;(2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即:x2+(a+b)x+ab=(x+a)(x+b)此类多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和.猜想并填空:x2+8x+15=x2+[(_____)+(_____)]x+(___)×(___)=(x+____)(x+_____)(3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证.请写出验证过程.(4)请运用上述方法将下列多项式进行因式分解:x2-x-12【答案】(1)不能;(2)3;5;3;5;3;5;(3)x2+8x+15;(4)(x-4)(x+3)【分析】(1)根据完全平方公式的结构特征进行判断即可;(2)将x2+8x+15=x2+(3+5)x+(3×5)即可得出答案;(3)根据整式乘法计算(x+3)(x+5)的结果即可;(4)将x2+[3+(-4)]x+[3×(-4)]即可得出答案.【详解】解:(1)因为x2+8x+16=(x+4)2,所以x2+8x+15不是完全平方公式,故答案为:不能;(2)∵x2+8x+15=x2+(3+5)x+(3×5)∴x2+8x+15=x2+(3+5)x+(3×5)=(x+3)(x+5),故答案为:3,5,3,5,3,5;(3)∵(x+3)(x+5)=x2+5x+3x+15=x2+8x+15,∴x2+8x+15=(x+3)(x+5)因此多项式x2+8x+15的因式分解是符合题意的;(4)x2-x-12=x2+[3+(-4)]x+[3×(-4)]=(x+3)(x-4).【点睛】本题考查了十字相乘法分解因式,掌握x 2+(a +b )x +ab =(x +a )(x +b )的结构特征是正确应用的前提.18.由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3).(1)尝试:分解因式:x 2+6x +8=(x +____)(x +____);(2)应用:请用上述方法解方程:①x 2﹣3x ﹣4=0;②x 2﹣7x +12=0.【答案】(1)2,4;(2)①1x =-或4x =;②3x =或4x =【分析】(1)类比题干因式分解方法求解可得;(2)①利用十字相乘法将左边因式分解为()()41x x -´+后求解可得;②利用十字相乘法将左边因式分解()()43x x -´-后求解可得.【详解】解:(1)2268(24)24(2)(4)x x x x x x ++=+++´=++,故答案为:2,4;(2)①2340x x Q --=,2(41)(4)10x x +-++-´=,(4)(1)0x x \-+=,则10x +=或40x -=,解得:1x =-或4x =,②27120x x -+=Q ,2(34)(3)(4)0x x +--+-´-=,(3)(4)0x x \--=,则30x -=或40x -=,解得:3x =或4x =.【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法中的因式分解法.19.阅读材料:解方程22350x x +-=我们可以按下面的方法解答:(1)分解因式2235x x +-,①竖分二次项与常数项:2x x x =×,()()3557-=-´+.②交叉相乘,验一次项:57x x -+752x x x Þ-=.③横向写出两因式:()()223557x x x x +-=-+.(2)根据乘法原理:若0ab =,则0a =或0b =,则方程22350x x +-=可以这样求解22350x x +-=方程左边因式分解得()()570x x -+=所以原方程的解为15=x ,27x =-.试用上述方法和原理解下列方程:(1)2560x x ++=;(2)2670x x --=.【答案】(1)12x =-,23x =-;(2)11x =-,27x =【分析】(1)利用已知结合十字相乘法分解因式得出即可;(2)利用已知结合十字相乘法分解因式得出即可.【详解】解:(1)2560x x ++=,()()230x x ++=,20,30x x +=+=,12x =-,23x =-.(2)2670x x --=,()()170x x +-=,10,70x x +=-=,11x =-,27x =.【点睛】本题主要考查了十字相乘法分解因式的应用,解题的关键是正确利用十字相乘法分解因式.20.阅读下列材料:材料1:将一个形如x 2+px +q 的二次三项式因式分解时,如果能满足q =mn 且p =m +n ,则可以把x 2+px +q 因式分解成(x +m )(+n )的形式,如x 2+4x +3=(x +1)(x +3);x 2﹣4x ﹣12=(x ﹣6)(x +2)材料2:因式分解:(x +y )2+2(x +y )+1解:将“x +y ”看成一个整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2,再将“A ”还原,得原式=(x +y +1)2上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x 2﹣6x +8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x ﹣y )2+4(x ﹣y )+3【答案】(1)()()42x x --;(2)()()31x y x y -+-+【分析】(1)根据材料1的方法,满足()()()()842,642=-´--=-+-,进而进行因式分解即可;(2)根据材料1的方法,满足313,413=´=+,根据材料2将“x y -” 看成一个整体,进而因式分解即可【详解】(1)()()()()842,642=-´--=-+-Q \x 2﹣6x +8()()42x x =--(2)令x y A -=,313,413=´=+Q 则(x ﹣y )2+4(x ﹣y )+3(3)(1)A A =++\(x ﹣y )2+4(x ﹣y )+3=()()31x y x y -+-+【点睛】本题考查了因式分解,运用整体思想是解题的关键.。
初二下册因式分解公式法、十字相乘法

因式分解的常用方法第一部分:方法介绍提取公因式法、运用公式法、分组分解法和十字相乘法. 一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.【知识要点】1.运用公式法:如果把科法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
2.乘法公式逆变形(1)平方差公式:))((22b a b a b a -+=-(2)完全平方公式:222222)(2,)(2b a b ab a b a b ab a -=+-+=++ 3.把一个多项式分解因式,一般可按下列步骤进行: (1)如果多项式的各项有公因式,那么先提公因式;(2)如果多项式没有公因式,那么可以尝试运用公式来分解; (3)如果上述方法不能分解,那么可以尝试用。
思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9 (2)9x 2-6x+1二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5 (2)4x 3y+4x 2y 2+xy 3三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2 (2)4x 2-12xy 2+9y 4四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4 (2)16x 4-72x 2y 2+81y 4五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
因式分解(4)——十字相乘法人教版八年级数学上册

因式分解(4)——十字相乘法人教版 八年级 数学上 册
(3)a2-6a-16;
(a-8)(a+2)
(4)x2+7x+12.
(x+3)(x+4)
因式分解(4)——十字相乘法人教版 八年级 数学上 册
因式分解(4)——十字相乘法人教版 八年级 数学上 册
9. 分解因式:
(1)x2+5x+6;
(x+2)(x+3)
因式分解(4)——十字相乘法人教版 八年级 数学上 册
13. 分解因式:
(1)2x2-7x+3;
(2x-1)(x-3)
(2)x3-7x2-30x.
x(x+3)(x-10)
因式分解(4)——十字相乘法人教版 八年级 数学上 册
因式分解(4)——十字相乘法人教版 八年级 数学上 册
三级拓展延伸练
14. 分解因式:
7. 分解因式:
(1)3x2-4x+1;
(x-1)(3x-1)
(2)2x2-5x-3;
(2x+1)(x-3)
因式分解(4)——十字相乘法人教版 八年级 数学上 册
因式分解(4)——十字相乘法人教版 八年级 数学上 册
(3)4a2-16ab+15b2;
(2a-3b)(2a-5b)
(4)x2-5xy-6y2.
方法:首尾分解,交叉相乘再相加要等于中间 项,成功之后横着写. 如:
2. (例 1)分解因式:
(1)x2+7x+10;
(x+2)(x+5)
(2)x2-8x+12.
(x-6)(x-2)
因式分解(4)——十字相乘法人教版 八年级 数学上 册
人教版八上数学整式的乘法及因式分解单元培优

第1讲 整式的乘法知识点梳理:复习回顾:整式的加减:同类项,合并同类项 新课要点:(1)同底数幂的乘法:底数不变,指数相加。
nm n m a a a +=⋅(m 、n 都是正整数) 注意公式逆用。
(2)幂的乘方:底数不变,指数相乘。
mnnm a a =)((m 、n 都是正整数) 注意公式逆用。
(3)积的乘方:nnnb a ab =)((n 是正整数) 注意公式逆用。
(4)整式的乘法:①单项式和单项式相乘:把它们的系数、相同的字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式。
例如:)3(2322bc a ab -⋅=3336c b a -②单项式与多项式相乘,先用单项式去乘多项式的每一项,再把所得的积相加。
即mb ma b a m +=+)(③多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积再相加。
即nb na mb ma b a n m +++=++))((经典例题例1.(1)-x 3·x 5 (2)x m ·x 3m+1 (3)2×24×23(4)31++••m m ma a a (5)n m m m m a a a a 321⋅⋅例2.计算: ①()()()()2452232222x x x x -⋅-⋅ ②()()()32212mn m a a a a -⋅-⋅例3.计算:⑴()33x - ⑵()25ab - ⑶()22xy ⑷()4322xy z-(5)()()4234242a a a a a ⋅⋅++- (6)()()()2323337235xx xx x ⋅-+⋅例4.计算:⑴()()2353a b a -⋅- ⑵()()3225x x y ⋅-(3)()()152n a b a +-- (4)()()()232236ab a cab c --⋅(5)()()24231x x x -⋅+- (6)221232ab ab ab ⎛⎫-⋅ ⎪⎝⎭(7)()22221252a ab b a a b ab ⎛⎫-⋅+-- ⎪⎝⎭(8)()()32x y x y +-(9)()()22m n m n +- (10)2)2(b a +例5.若20x y +=,则代数式3342()x xy x y y +++的值为 。
八年级数学整式的乘法与因式分解专题练习(解析版)

八年级数学整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.2.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x + 【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.3.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.4.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.5.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( )A .120B .60C .80D .40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a ,b 的长方形周长为12,面积为10,∴a +b =6,ab =10,则a 2b +ab 2=ab (a +b )=10×6=60.故选:B .【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.6.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.7.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8 【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0, ∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.10.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -【答案】B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.12.在实数范围内因式分解:22967x y xy --=__________.【答案】11933xy xy ⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭ ,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy -- 2227=939x y xy ⎛⎫-- ⎪⎝⎭222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦11=93333xy xy ⎛⎫⎛---+ ⎪ ⎪⎝⎭⎝⎭11=933xy xy ⎛+--- ⎝⎭⎝⎭故答案为:11933xy xy ⎛+--- ⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.13.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___.【答案】13;【解析】试题解析:将a+b=-3两边平方得:(a+b )2=a 2+b 2+2ab=9,把ab=-2代入得:a 2+b 2-4=9,即a 2+b 2=13;(a-b )2=a 2+b 2-2ab=13+4=17,即.14.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为______. 【答案】-15【解析】【分析】观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.【详解】∵x 2y 5x 2y 3-=⎧+=-⎨⎩, ∴22x 4y -=(x+2y )(x-2y )=-3×5=-15,故答案为:-15.【点睛】本题考查代数式求值,涉及到二元一次方程组、平方差公式因式分解,根据代数式的结构特征选用恰当的方法进行解题是关键.15.因式分解:3222x x y xy +=﹣__________. 【答案】()2x x y -【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.16.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.18.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.20.分解因式:32363a a a -+=_____.【答案】()231a a -【解析】【分析】先提取公因式3a ,再根据完全平方公式进行二次分解即可.【详解】 ()()232236332131a a a a a a a a -+=-+=-. 故答案为:()231a a -【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用十字相乘法分解因式
【知识精读】
对于首项系数是1的二次三项式的十字相乘法,重点是运用公式
x a b x ab x a x b 2()进行因式分解。
掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个数的积,且其和等于一次项系数。
对于二次三项ax bx c 2(a 、b 、c 都是整数,且a 0)来说,如果存在四个整数
a c a c 1122,,,满足a a a c c c 12
12,,并且a c a c b 1221,那么二次三项式ax bx c 2即a a x a c a c x c c 122122112可以分解为a x c a x c 1122。
这里要确定四个常数a c a c 1122,,,,分析和尝试都要比首项系数是1的类型复杂,因此一般要借助画十字交叉线的办法来确定。
下面我们一起来学习用十字相乘法因式分解。
【分类解析】
1. 在方程、不等式中的应用
例1. 已知:x x 211240,求x 的取值范围。
分析:本题为二次不等式,可以应用因式分解化二次为一次,即可求解。
解:x x
211240x x x x
x
x x x 38
030
80308083
或或例2. 如果x x mx mx 43222能分解成两个整数系数的二次因式的积,试求m 的值,并把这个多项式分解因式。
分析:应当把x 4分成x x 22,而对于常数项-2,可能分解成12,或者分解成21,由此分为两种情况进行讨论。
解:(1)设原式分解为x ax x bx 2212,其中a 、b 为整数,去括号,得:x a b x x a b x 43222
将它与原式的各项系数进行对比,得:
a b
m a b m 1122,,解得:a b
m 101,,此时,原式x x
x 2221(2)设原式分解为x cx x dx 2221,其中c 、d 为整数,去括号,得:
x c d x x c d x 43222
将它与原式的各项系数进行对比,得:
c d
m c d m 1122,,解得:c d
m 011,,此时,原式
x x x 22212. 在几何学中的应用
例. 已知:长方形的长、宽为x 、y ,周长为16cm ,且满足
x y x xy y 22220,求长方形的面积。
分析:要求长方形的面积,需借助题目中的条件求出长方形的长和宽。
解:x
y x xy y 22220x xy y
x y x y x y
x y x y 2222202021
0()x
y 20或x
y 10又x y 8x
y x
y x y x y 208108或解得:x y 53或x y 3545
..∴长方形的面积为15cm 2或63
42
cm 3、在代数证明题中的应用
例. 证明:若4x
y 是7的倍数,其中x ,y 都是整数,则810322
x xy y 是49的倍数。
分析:要证明原式是
49的倍数,必将原式分解成49与一个整数的乘积的形式。
证明一:810323422x xy
y x y x y 2234647x
y x y x y y ∵4x
y 是7的倍数,7y 也是7的倍数(y 是整数)∴223x y 是7的倍数
而2与7互质,因此,23x y 是7的倍数,所以810322x
xy y 是49的倍数。
证明二:∵4x
y 是7的倍数,设47x y m (m 是整数)则y
x m 47又∵810323422x xy y
x y x y 21221447714214923x x m x x m m x
m m x m ∵x ,m 是整数,∴
m x m 23也是整数所以,810322x xy y 是49的倍数。
4、中考点拨
例1.把22224954y y x y x
分解因式的结果是________________。
解:22224954y y
x y x y x x y
x x y x x x 24
22222245949112323
说明:多项式有公因式,提取后又符合十字相乘法和公式法,继续分解彻底。
例2.
因式分解:6752x
x _______________ 解:6752135
2x x x x 说明:分解系数时一定要注意符号,否则由于不慎将造成错误。
5、题型展示
例1. 若
x y mx y 2256能分解为两个一次因式的积,则m 的值为()A. 1 B. -1
C. 1
D. 2
解:x y mx y
x y x y mx y 225656-6可分解成2
3或32,因此,存在两种情况:(1)x +y -2
(2)x +y -3 x-y
3 x-y 2 由(1)可得:
m 1,由(1)可得:m 1
故选择C 。
说明:对二元二次多项式分解因式时,要先观察其二次项能否分解成两个一次式乘积,再通过待定系数法确定其系数,这是一种常用的方法。
例2. 已知:a 、b 、c 为互不相等的数,且满足
a c
b a
c b 24。
求证:a
b b
c 证明:a
c b a c b 24a c
b a
c b a ac c bc ac ab b a c b a c
b a
c b
a c b
a b b c
222
2222402444404402020说明:抓住已知条件,应用因式分解使命题得证。
例3. 若x
x x a 3257有一因式x 1。
求a ,并将原式因式分解。
解:
x x x a 3257有一因式x 1∴当x 10,即x
1时,x x x a 32570a 3
x x
x x x x
x x x x x x x x x
x x x x x x 323
22222573443314131143
11313
说明:由条件知,x 1时多项式的值为零,代入求得a ,再利用原式有一个因式是。