单级低频放大电路
单级放大电路知识点

一、三种常见共射放大电路静态分析见下表所示上表是常见共射电路的静态工作点。
对于实际电路不一定完全跟表中电路相同。
求解时遵循以下几点可以求出。
1.思路:①画出该电路的直流通路图。
②从电源经过基极绕到地列出电压方程(有些电路需经过电工知识进行简化,像分压式可用戴维南定理对R b1、R b2部分等效)求出I BQ 。
③根据电流放大作用求出I CQ 。
④从电源经过集电极到发射极到地列电压方程求出U CEQ 。
2.静态工作点的稳定 (1)固定偏置电路没有稳定静态工作点作用,只能用在要求不高的电路中。
(2)分压式偏置电路 ①静态工作点稳定过程②工作点稳定对电路元件参数要求A .要稳定效果好:V BQ 要一定,就要求I 1≈I 2I BQ 。
这样才能保证V BQ ≈R b2R b1+R b2V G 。
一般情况下⎩⎪⎨⎪⎧I 1≈I 2=(5~10)I BQ 硅管I 1≈I 2=(10~20)I BQ 锗管B .稳定静态工作点效果:V EQ =I EQ R E 的上升使U BEQ 下降。
当R e 越大,U BEQ 下降越快,调整灵敏度越高,这样就有V EQU BEQ ,一般有⎩⎪⎨⎪⎧V BQ =(3~5)U BEQ 或(3~5)V 硅管V BQ =(5~10)U BEQ 或(1~3)V 锗管。
(3)集—基反馈式静态工作点稳定过程:V CQ =V G -(I CQ +I BQ )R c二、三种常见共射放大电路动态分析见下表所示几点说明:1.r be 是三极管的输入电阻,属动态电阻,即交流阻抗,但其大小跟晶体管的静态电流大小有关,一般的估算公式为r be =r ′bb +(1+β)26mV I E mA =r ′bb +26mVI BQ mA 单位为欧姆(Ω)。
(2)r′bb 为三极管基极的等效电阻,小功率一般约为300Ω,近似计算时,按给出值代入,不给出值时取300Ω代替。
2.输入电阻r i 和输出电阻r o 的物理意义。
单级低频放大电路

表2-2
测试项目
电压放大倍数的测试
Ui
U0
电压增益AU
输出波形
RL
RL=∞
RL=5.1KΩ
电子技术实验室
实验内容及步骤:
三、测量电路最大不失真的电压放大倍数和输出电 压幅度。(选做) 在电路输入端输入一个有效值为Ui=10mv,频率 f=1kHz的正弦信号,并逐渐增大Vi的有效值,同 时观察输出波形有无失真,再调节RP1,使输出波 形的上、下峰同时出现削顶失真,此时,则须减 小输入信号Ui并反复调节RP,直至输出电压波形 刚好同时退出削顶失真为止。此时电路的工作点 已位于交流负载线中点,测出这是对应的输入电 压Ui即为放大器的最大允许输入电压幅值,同的 UO即为最大不失真输出电压幅值。
电子技术实验室
实验二 单级低频放大电路
一、实验目的 1.进一步熟悉几种常用电子仪器的使用方法; 2.掌握单级放大器静态工作点的调测方法; 3.观察静态工作点的变化对输出波形的影响; 4.学习电压放大倍数及最大不失真输出电压幅 度的测试方法。
图2-1
VBQ VCC
低频电路原理

低频电路原理低频电路是指工作频率较低的电路,通常在几十赫兹到几千赫兹之间。
在现代电子设备中,低频电路被广泛应用于音频放大、信号处理、电源管理等领域。
了解低频电路的原理对于电子工程师和电子爱好者来说是非常重要的,因此本文将从基本原理入手,介绍低频电路的相关知识。
首先,我们来了解一下低频电路的基本元件。
在低频电路中,常见的元件包括电阻、电容和电感。
电阻用于限制电流的流动,电容用于存储电荷和滤波,电感则用于储存能量和产生感应电动势。
这些基本元件在低频电路中起着至关重要的作用,它们的相互组合和连接方式决定了电路的性能和特性。
其次,我们需要了解低频电路中常用的电路拓扑结构。
常见的低频电路包括放大电路、滤波电路、振荡电路等。
放大电路用于增大信号的幅度,滤波电路用于去除信号中的杂散成分,振荡电路则用于产生稳定的振荡信号。
这些电路在电子设备中起着至关重要的作用,它们的设计和应用需要深入的电路原理知识和丰富的实践经验。
此外,低频电路的设计和分析需要掌握一定的数学知识。
在电路分析中,常常会涉及到电压、电流、功率等参数的计算和分析。
此外,对于放大电路还需要了解增益、带宽、失真等指标,对于滤波电路还需要了解通频带、阻尼比等指标。
这些数学知识对于理解低频电路的工作原理和性能评估非常重要。
最后,我们需要了解低频电路的实际应用。
低频电路广泛应用于各种电子设备中,比如手机、音响、电视等。
在这些设备中,低频电路起着信号处理、功率放大、能量转换等重要作用。
同时,低频电路也应用于各种测控仪器中,比如示波器、信号发生器等。
这些仪器对于电子工程师来说是必不可少的工具,而低频电路则是这些仪器的核心部分。
综上所述,低频电路是电子工程领域中的重要内容,它涉及到电路原理、电路分析、电子器件等多个方面的知识。
对于电子工程师和电子爱好者来说,深入了解低频电路的原理和应用是非常重要的。
希望本文能够帮助读者更好地理解低频电路,并在实际应用中发挥作用。
第12章 共射极放大电路

iC iB ( I BQ ib ) I BQ iB I CQ ic uCE U CEQ uce
uBE U BEQ ui
四、静点工作点的选择与波形 失真 当放大电路静态工作点设置不得当时,会造成放大电路的波
形失真,本节通过实验来观察波形失真的现象。 (一)操作 1.框图:
3.现象:
(1)由于静态工作点已经调整适当,此时观察到的波形图 并无失真。
(2)通过两个信号输入调节旋钮 YA 和 YB 上标示的电压刻 度(V / 格)以及荧光屏上的波形幅度可以测出输入电压和输出 电压的幅值,并可以算出放大器的电压放大倍数。 (3)两波形的相位相差为 180,这是单管发射极放大电 路的倒相作用。
结论 (1)共发射极单管放大电路的输出波形的正半周(波形上 半周)出现平顶,是截止失真;若输出波形的负半周(即波形 下半部)出现平顶,是饱和失真。
(2)出现失真的原因:
Q 点设置不当,应调整放大管基极偏置电阻,使静态工作 点处于适当的位置。
3.双向失真 (1)现象 Rb适中,输出波形无失真,增大信号源 的电压幅度,使放大器的输入信号增大,这 时输出电压信号波形的上、下部分都出现平 顶,同时产生了饱和失真和截止失真——称 为双向失真,如图所示。 (2)原因
由晶体管的放大原理有:
再根据直流通路可得
二、共发射极放大电路
[例1] 在下图中,设 UE = 12 V,Rb = 200 k,Rc = 2.4 k, = 50,试计算静态工作点。 解:根据静态工作点计算公式
Ib
U E U BEQ Rb
UE 12 A 60 μA 3 Rb 20010
输入信号的电压幅度太大,在信号的正半造成饱和失真, 负半周造成截止失真。
《单级放大器》课件

共栅放大器
适用于宽带、低噪声、高速应 用,具有较高的增益和带宽。
差分放大器
适用于抑制共模干扰和消除零 点漂移,具有较高的线性度和
较低的失真。
06
CATALOGUE
单级放大器的调试与维护
单级放大器的调试方法
静态工作点的调试
通过调节偏置电阻,观察放大器的输 入和输出波形,确保工作点设置在合 适的区域。
03
CATALOGUE
单级放大器的电路分析
电压放大倍数
电压放大倍数是指输出电压与输入电压的比值,用于衡量放大器对信号的放大能力 。
电压放大倍数的大小取决于电路元件的参数和连接方式,可以通过计算和测量来确 定。
电压放大倍数的计算公式为:A = (Rc / Re) * (1 + β),其中Rc是集电极电阻,Re是 发射极电阻,β是晶体管的电流放大倍数。
失真
表示放大器输出信号与输入信 号相比产生的畸变程度。
02
CATALOGUE
单级放大器的基本结构和工作 原理
单级放大器的基本结构
输入级
偏置电路
接收微弱信号并将其放大,是放大器 的第一级。
为放大器提供合适的工作点,使放大 器正常工作。
输出级
输出放大的信号,是放大器的最后一 级。
单级放大器的工作原理
设计反馈网络
为了稳定放大器的性能,需要设 计合适的反馈网络。
确定放大倍数
根据需求确定放大器的放大倍数 。
考虑散热和封装
对于大功率放大器,需要考虑散 热和封装问题。
单级放大器的设计实例
01
02
03
04
共射放大器
适用于低频、大功率应用,具 有较高的输入阻抗和较低的输
放大电路的频率特性

(3)因各级均为共射放大电路,所以在中频段输出电压与输入 电压相位相反。则整个三级放大增益80dB,即放大倍数为 10000。
电压放大倍数
13 104
Au
1
10 jf
1
j
f 2 105
3
*2.7 电路仿真实例
【例2.8】分析共发射极放大电路
解:利用 Multisim 软件仿真如图2.61所示电路。
(3)高频段
耦合电容和旁路电容的容量较大,视为短路;
极间分布电容(含PN结结电容)容抗减小,不能视为开路。
高频源电压放大倍数为:
1
Aush
Uo Us
U
' s
Ub'e
Uo
Us
U
' s
Ub'e
Ri rb'e jRC'
Rs Ri
rbe
1
1 j RC'
gm RL'
Байду номын сангаас
Ausm
1
1 jRC
Ausm 1 1 j
f
fH
在高频段,电压放大倍数随频率升高而减小,相移也发生
变化。其幅频特性基本与低通电路幅频特性相同。
源电压放大倍数的全频率范围表达式为:
jf
Aus
Ausm 1
j
f fL
fL 1
j
f fL
Ausm 1
j
fL f
1
1
j
f fH
单管放大电路的波特图
综上所述,单管放大电路在低频段主要受耦合电容的影 响,表现在放大倍数随频率降低而降低,相移也增大;中频 段可认为其放大倍数和相移都基本为常数(这是放大电路工 作的频段)。在高频段其特性主要受极间电容的影响,表 现在放大倍数随频率升高而下降,相移也随之增大。
实验1-单级放大电路

实验1 单级放大电路1.实验目的1)学习使用电子仪器测量电路参数的方法。
2)学习共射放大电路静态工作点的调整方法。
3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。
2.实验仪器示波器、信号发生器、交流毫伏表、数字万用表。
3.预习内容1)三极管及共射放大器的工作原理。
2)阅读实验内容。
4.实验内容实验电路为共射极放大器,常用于放大电压。
由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。
1)联接电路(1)用万用表判断实验箱上的三极管的极性和好坏。
由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。
改用万用表测量二极管档测量。
对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。
这说明该三极管是好的。
用万用表判断实验箱上电解电容的极性和好坏。
对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。
这说明该电解电容是好的。
⑵按图1.1联接电路。
⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。
若正常,则将12V 电源接至图1.1的Vcc。
图1.1 共射极放大电路⑷ 测量电阻R C 的阻值。
将V i 端接地。
改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。
建议使用以下方法。
bB cc2b B B R V V R V I -=+p 1b b R R R += B C I I=β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。
第09章放大电路基础及分析

168169新授课 )传感器(麦克风),将声音转换成相应的电压信号。
)放大器,将麦克风输出的微弱电压信号放大到所需要的值。
)再生器(扬声器),将放大后的电信号还原成声音。
)电源,提供放大器工作所需要的直流电压。
.什么是放大电路同时满足以下两个条件的电路:)输出信号的功率大于输入信号的功率。
)输出信号波形与输入信号波形相同(不失真)。
用框图表示:输入端:加入需要放大的信号。
输出端:得到放大的输出信号。
组成:一个放大电路必须含有晶体管(或电子管)这样的器件,同时还包含电阻、电感、变压器等元器件。
.放大器的分类)按放大器的频率高低分⎪⎩⎪⎨⎧高频放大器低频放大器直流放大器)按被放大信号的类型分⎪⎩⎪⎨⎧功率放大器电压放大器电流放大器170(a )双电源供电;(b )单电源供电;(c )是(b )图的习惯画法(不画出集电极电源)。
各元器件的作用: ① 晶体管V :工作在放大状态,起电流、电压放大作用。
② 基极偏置电阻b R :它使电源U E 给晶体管提供一个合适的基极电流B I (又称偏流),保证晶体管工作在合适的状态。
取值范围在几十千欧到几百千欧。
③ 集电极负载电阻c R :作用是把晶体管的电流放大转换为电压放大。
它的取值范围一般在几千到几十千欧。
④ 耦合电容1C 和2C :起隔直流通交流的作用。
交流信号从1C 输入经过放大从2C 输出,同时1C 把晶体管的输入端与信号源之间,2C 把输出端和负载之间的直流通路隔断。
一般选用电解电容,使用时注意极性的区分。
⑤ 集电极电源U E :作用一是给晶体管一个合适的工作状态(保证发射结正偏,集电结反偏),二是为放大电路提供能源。
2.静态工作点的建立171这时晶体管的直流电压:CE BE U U 、和对应的直流电流B I 、C I 统称为静态工作点CEQ Q BE U U 、、BQ I 、CQ I 。
如上图(b )所示是放大电路的直流通路,由于耦合电容的作用,直流只在直流通路内流动,所以将耦合电容1C 、2C 看作断路的部分去掉,剩下的即为直流通路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三单级低频放大电路1.实验目的(1)研究单管低频小信号放大电路静态工作点的意义。
(2)掌握放大电路静态工作点的调整与测量方法。
(3)掌握放大电路主要性能指标的测试方法。
2.实验涉及的理论知识和实验知识本实验体现了三极管的工作原理、放大电路的静态工作点调试方法以及放大器性能指标的基本测试方法。
3.实验仪器信号发生器、示波器、直流稳压电源、电压表4.实验电路实验电路如图3.1.1所示。
图中电位器R W是为调节晶体管静态工作点而设置的。
O图3.1.1单级共发射极放大电路5. 实验原理在电子系统中,放大电路是信号处理的基本电路。
其作用是将微弱信号增强到所需要的数值,单级低频放大电路是放大电路中最基本的结构形式,是组成各种复杂电路的单元和基础。
因此它的分析方法、电路调整技术以及参数的测量方法等具有普遍意义。
实验电路采用由NPN型硅材料三极管以及若干电阻、电容组成的共发射极放大电路,以图3.1.1所示电路为例进行研究。
(1)电路组成原则放大是最基本的模拟信号处理功能,它是通过放大电路实现的,电子技术里的“放大”有两方面的含义。
一是能将微弱的电信号增强到所需要的数值,即放大电信号,以便于测量和使用。
二是要求放大后的信号波形与放大前的波形的形状相同,即信号不能失真,否则就会丢失要传送的信息,失去了放大的意义。
因此,电路组成原则是首先要给电路中的晶体管施加合适的直流偏置,即发射结正偏、集电结反偏,使其工作在放大状态,而且还要有一个合适的工作电压和电流,即合适的静态工作点。
其次要保证信号发生器、放大电路和负载之间信号能够正常传输,即有u i时,应该有输出响应u o。
1)直流偏置原则图3.1.1所示电路采用的是电阻分压式偏置方法,通过基极偏置电阻R B1和R B2对U CC分压,获得晶体管的基极电压U BQ ,保证晶体管的发射结正偏。
U CC 是集电极电源,它通过R C 加至晶体管的集电极,保证晶体管的集电结加反向电压。
在此基础上,基极偏置电阻R B1、R B2以及集电极电阻R C 取值得当,与电源U CC 配合,为晶体管设置合适的静态工作点,使之工作于放大区。
2) 对耦合电路的要求第一,信号发生器和负载接入放大电路时,不能影响晶体管的直流偏置。
第二,在交流信号的频率范围内,耦合电路应能使信号正常地传输。
在电子电路中,起连接作用的电容器称为耦合电容,图3.1.1所示电路中的电容器C 1和C 2起耦合作用,只要电容器的容量足够大,在信号频率范围内的容抗足够小,就可以保证信号几乎毫无损失地传输。
同时电容器对直流量的容抗无穷大,使信号发生器和负载不会影响放大电路的直流偏置。
可见,耦合电容具有“隔直通交”的作用,利用电容这种特点连接电路的方式称为阻容耦合。
(2)负反馈电阻R E 的作用图3.1.1所示电路是一个典型的静态工作点稳定电路,为了稳定静态工作点,晶体管发射极接有电流取样电阻R E ,发射极电流I EQ 通过R E 转换成发射极电压U EQ 。
而基极电位几乎取决于R B1和R B2对U CC 的分压,与环境温度无关,即当温度变化时,U BQ 基本不变。
当温度升高时,集电极电流I C 增大,发射极电流I E 必然相应增大,因此发射极电压U EQ 随之增大,因为U BQ 不变,U BE =U B —U E ,所以U BE 势必减小,导致基极电流I B 减小,I C 随之相应减小。
结果I C 随温度升高而增大的部分几乎被由于I B 减小而减小的部分相抵消,I C 将基本不变,实现了稳定静态工作点的目的。
这种将输出量(I C )通过一定的方式(利用R E 将I C 的变化转化成电压的变化)引回到输入回路来影响输入量(U BE )的措施称为反馈。
由于反馈的结果使输出量变小,因此称之为负反馈。
又由于反馈出现在直流通路之中,故称为直流负反馈。
R E 为负反馈电阻。
从理论上讲,R E 越大,反馈越强,Q 点越稳定。
但实际上,对于一定的集电极电流I C ,由于U CC 的限制,R E 太大会使晶体管进入饱和区,电路将不能正常工作。
(3)参数计算 1)静态工作点B2B CC B1B2R U U R R =+B BEE C EU U I I R -=≈ CE CC C C E ()U U I R R =-+2)电压放大倍数beLC U //r R R A β-= 3)输入电阻R i =R B1∥R B2∥r be4)输出电阻C O R R =(4)放大电路的两种工作状态由图3.1.1可知,交流信号叠加在直流工作点上,交流量与直流量共存,这是放大电路的一个重要特点。
分析时一般可以将直流(静态)和交流(动态)分开处理。
1) 静态当放大电路输入信号为零时,晶体管的基极电流I BQ 、集电极电流I CQ 、b-e 间电压U BEQ和管压降U CEQ 称为放大电路的静态工作点。
放大器的静态工作点是由晶体管的参数和放大器的偏置电路共同决定的。
它的选取十分重要,影响到放大器的增益、失真及其它各个方面。
①调整静态工作点调整的方法是在不加输入信号的情况下,测量放大器的静态工作点,并进行必要的调整,使之工作于合适的工作点上。
三极管的输出特性曲线中有放大区、截止区和饱和区三个工作区。
当三极管做为开关管来使用时,应使静态工作点在截止区和饱和区之间快速转换,以实现开关的功能。
当把它用在放大电路中时,静态工作点应处于放大区,并选取在放大区中交流负载线的中间位置,这样才能使放大电路实现无失真的放大功能,并且输出动态范围最大。
如果静态工作点选取得过低或过高,都会使输出产生失真。
如果放大器的静态工作点偏低,会使输入信号电压负半周的某部分进入了晶体管的截止区,使输出电压波形的“顶部被切掉”,这种现象称为截止失真。
如图3.1.2所示。
如果放大器的静态工作点偏高,会使输入信号电压正半周的某部分进入了晶体管的饱和区,使输出电压波形的“底部被切掉”,这种现象称为饱和失真。
如图3.1.2所示。
如果调试中发现输出电压波形的顶部和底部都被切掉,说明既有截止失真,又有饱和失真。
这是由于输入信号幅度太大引起的,只要适当减小输入信号的幅度即可消除。
如果不允许减小输入信号的幅度,就应适当增大电源图3.1.2 饱和、截止失真波形电压U CC,并重新调整静态工作点,以扩大放大器的动态范围,消除波形失真。
②电路参数对静态工作点的影响静态工作点的位置十分重要,而静态工作点与电路参数有关。
下面将分析电路参数R b、R c、U CC对静态工作点的影响。
I. R b对Q点的影响R b的增减对Q点的影响如图3.1.3(a)所示。
CECECE(a)R b变化对Q点的影响(b) R c变化对Q点的影响(c) U CC变化对Q点的影响图3.1.3电路参数对Q点的影响R b↑→I BQ↓→工作点沿直流负载线下移R b↓→I BQ↑→工作点沿直流负载线上移II.R C对Q点的影响R C的变化,仅改变直流负载线的N点,即仅改变直流负载线的斜率。
如图3.1.3(b)所示。
R C↓→N点上升→直流负载线变陡→工作点沿i b=I BQ这一条特性曲线右移。
R C↑→N点下降→直流负载线变平坦→工作点沿i b=I BQ这一条特性曲线左移。
I I I.U CC对Q点的影响U CC的变化不仅影响I BQ,还影响直流负载线,因此,U CC对Q点的影响较复杂。
如图3.1.3(c)所示。
U CC↑→I BQ↑→M↑→N↑→直流负载线平行上移→工作点向右上方移动。
U CC↓→I BQ↓→M↓→N↓→直流负载线平行下移→工作点向左下方移动。
实际调试中,主要通过改变电阻R b来改变静态工作点,而很少通过改变U CC来改变静态工作点。
2)动态放大电路输入信号不为零时的工作状态称为动态。
动态时,电路中的直流电源和交流信号源同时存在,晶体管的u BE、u CE、i B和i C都是直流和交流分量叠加后的总量。
放大电路的目的是放大交流信号,静态工作点是电路能正常工作的基础。
三极管放大器的主要性能指标有电压放大倍数A u、最大输出动态范围U o,max、输入电阻R i、输出电阻R o及通频带BW等。
①电压放大倍数A u放大电路电压放大倍数A u 是指在输出电压波形不失真时,输出电压与输入电压之比,A u =u o /u i 。
它是直接衡量放大电路电压放大能力的重要指标。
电压放大倍数的测量实质上是测量放大电路的输入电压与输出电压,应当指出,在实测电压放大倍数时,应该用示波器观察输出端的电压波形,只有在不失真的情况下,测试数据才有意义。
实验中,可以用双踪示波器分别测量放大电路输入端和输出端的电压峰峰值,然后再进行计算。
②最大输出动态范围U o,max最大输出动态范围U o,max 是指在调整好静态工作点的条件下,当输入电压再增大,就会使输出波形产生非线性失真时的输出电压。
测量方法如下。
给放大电路输入1kHz 的正弦信号,慢慢增大输入信号幅度,使之出现明显失真,根据失真波形调整静态工作点,使失真消失。
继续增大输入信号幅度,再调整静态工作点,直到增大到输入信号幅度出现截止和饱和失真。
再减小输入信号,使之刚好不失真,用示波器测量这时输出电压U oP-P ,即放大电路输出的最大线性动态范围U o,max 。
③输入电阻R i放大电路与信号源相连就成为信号源的负载,必然从信号源索取电流,电流的大小表明放大电路对信号源的影响程度。
输入电阻R i 是指从放大电路输入端看进去的等效电阻。
R i 越大,表明放大电路从信号源索取的电流越小,放大电路所得到的输入电压u i 越接近信号源电压u s ,换句话说放大电路能从信号源获取较大电压;反之若R i <<R s ,放大电路从信号源吸收较大电流,放大电路从信号源得到的输入电压u i 越小;若R i =R s ,则放大器从信号源获取最大功率。
输入电阻的测量可用输入换算法方法来进行。
需要注意在实际测量中,输入端接的电阻R 不宜过大,否则容易引入干扰。
但也不宜过小,会使测量误差较大,最好取R 与R i 在同一个数量级。
测试输入电阻R i 的接线如图3.1.4所示。
u Su O+ -图3.1.4 输入电阻测量原理图 图3.1.5 输出电阻测量原理图在被测放大电路前加一个电阻R ,输入正弦信号,用示波器分别测量R 两端对地的电压u s 和u i 。
则R u u u R is ii -=为了减小测量误差,一般取R 接近R i 或将R 换成一个可变电阻R W ,调R W 使s i 21u u =,这时,R i = R W 。
④输出电阻R o任何放大电路的输出都可以等效成一个有内阻的电压源,从放大电路输出端看进去的等效内阻称为输出电阻R o 。
输出电阻的大小反映了放大器带负载的能力。