帧中继2

合集下载

fr 帧中继协议基本原理

fr 帧中继协议基本原理

fr 帧中继协议基本原理
帧中继协议(Frame Relay)是一种基于帧的数据通信协议,
用于在广域网(Wide Area Network,WAN)中传输数据。


基于网络层的服务,提供了高效的数据传输和带宽管理。

帧中继协议的基本原理如下:
1. 数据帧:数据在发送端被分割为帧,在网络中以帧的形式进行传输。

每个帧包含了目的地地址和源地址、差错校验、帧类型等信息。

2. 虚拟连接:帧中继协议使用虚拟连接(Virtual Circuit,VC)来进行数据的传输。

每个VC都有唯一的标识符,用于区分不
同的连接。

3. 逻辑通道:每个VC可以包含多个逻辑通道(Logical Data Channel,LDC),不同的LDC可以使用不同的带宽,实现带
宽的共享和优先级调整。

4. 带宽管理:帧中继协议采用了交换方式,可以根据网络的负载情况动态分配带宽,提高了传输效率。

它还支持压缩和丢弃无效帧等技术,进一步提高了带宽利用率。

5. 连接管理:帧中继协议使用了逻辑控制字(Logical Control Word,LCW)来管理连接的建立、维护和释放。

LCW包含了各种控制信息,如确认、连接状态等。

总结起来,帧中继协议通过将数据分割为帧,使用虚拟连接和逻辑通道来管理数据传输和带宽分配,实现高效的数据通信。

它在广域网中被广泛应用,例如在公司的分支机构之间建立连接,或者连接不同的云服务提供商。

计算机网络应用 帧中继交换网组成

计算机网络应用  帧中继交换网组成

计算机网络应用帧中继交换网组成
帧中继交换网有帧中继接入设备(Frame Relay Access Device,FRAD)、帧中继交换设备(Frame Relay Switching Device,FRSD)和公用帧中继业务3部分组成。

一个典型的帧中继网络是由用户设备与网络交换设备组成,如图6-18所示。

图6-18 帧中继交换网络
1.帧中继接入设备(FRAD)
帧中继接入设备(FRAD)可以是具有帧中继接口的任何类型的接入设备,包括标准的帧中继终端、帧中继装/拆设备,及提供LAN接入的网桥或路由器等。

通常采用56Kb/s或64Kb/s链路入网,在电路两端设备的传输速率可以是不同的。

2.帧中继交换设备(FRSD)
帧中继交换设备有帧中继交换机以及具有帧中继接口的分组交换机和其它复用设备等类型。

这些设备的共同点是为用户提供标准帧中继接口。

3.公用帧中继业务
该业务提供者将通过公用帧中继网络提供帧中继业务。

帧中继接入设备与专用帧中继设备之间可通过标准帧中继接口实现与公用帧中继网的互连。

作为帧中继网络核心设备的帧中继交换机的作用类似于以太网交换机,都是在数据链路层完成对帧的传送工作,但帧中继交换机处理的是FR帧而不是以太网帧。

帧中继网络中的用户设备负责把数据帧送到帧中继网络,用户设备分为帧中继终端和非帧中继终端两种,其中非帧中继终端必须通过帧中继装/拆设备FRAD才能够接入帧中继网络。

帧中继——点到点子接口(point-to-point)配置

帧中继——点到点子接口(point-to-point)配置

帧中继概述:•是由国际电信联盟通信标准化组和美国国家标准化协会制定的一种标准。

•它定义在公共数据网络上发送数据的过程。

•它是一种面向连接的数据链路技术,为提供高性能和高效率数据传输进行了技术简化,它靠高层协议进行差错校正,并充分利用了当今光纤和数字网络技术。

帧中继的作用:•帧使用DLCI进行标识,它工作在第二层;帧中继的优点在于它的低开销。

•帧中继在带宽方面没有限制,它可以提供较高的带宽。

•典型速率56K-2M/s内选择 Frame Relay 拓扑结构:•全网结构:提供最大限度的相互容错能力;物理连接费用最为昂贵。

•部分网格结构:对重要结点采取多链路互连方式,有一定的互备份能力。

•星型结构:最常用的帧中继拓扑结构,由中心节点来提供主要服务与应用,工程费最省帧中继的前景:•一种高性能,高效率的数据链路技术。

•它工作在OSI参考模型的物理层和数据链路层,但依赖TCP上层协议来进行纠错控制。

•提供帧中继接口的网络可以是一个ISP服务商;也可能是一个企业的专有企业网络。

•目前,它是世界上最为流行的WAN协议之一,它是优秀的思科专家必备的技术之一。

子接口的配置:•点到点子接口–子接口看作是专线–每一个点到点连接的子接口要求有自己的子网–适用于星型拓扑结构•多点子接口(和其父物理接口一样的性质)–一个单独的子接口用来建立多条PVC,这些PVC连接到远端路由器的多点子接口或物理接口–所有加入的接口都处于同一的子网中–适用于 partial-mesh 和 full-mesh 拓扑结构中帧中继术语:•DTE:客户端设备(CPE),数据终端设备•DCE:数据通信设备或数据电路端接设备•虚电路(VC):通过为每一对DTE设备分配一个连接标识符,实现多个逻辑数据会话在同一条物理链路上进行多路复用。

•数字连接识别号(DLCI):用以识别在DTE和FR之间的逻辑虚拟电路。

•本地管理接口(LMI):是在DTE设备和FR之间的一种信令标准,它负责管理链路连接和保持设备间的状态。

帧中继协议

帧中继协议

帧中继协议什么是帧中继协议?帧中继协议是一种网络通信协议,用于在数据链路层转发数据帧。

它允许多个网络设备通过共享同一物理链路进行通信,并支持广播和组播功能。

帧中继协议通过转发数据帧,将信息从一个物理接口传输到另一个物理接口,从而实现数据的传输。

帧中继协议的工作原理帧中继协议基于点对点的拓扑结构,其中每个网络设备都直接连接到中央交换机。

中央交换机充当帧中继网的核心设备,负责转发数据帧。

当一个设备发送数据帧时,中央交换机会将该帧转发到目标设备,同时还可以将数据帧广播到所有设备或者组播给特定设备组。

帧中继协议主要使用MAC地址来标识设备,并通过MAC地址表来确定数据帧的转发路径。

当一个设备发送数据帧时,中央交换机会查找MAC地址表,找到目标设备所在的物理接口,并将数据帧转发到该接口。

如果目标设备的MAC地址不在MAC地址表中,交换机会将数据帧广播到所有的物理接口上,以便找到目标设备。

帧中继协议的优点1.高效性:帧中继协议可以在物理链路上同时传输多个数据帧,提高了网络的传输效率。

2.可靠性:帧中继协议通过交换机转发数据帧,可以减少数据传输过程中的丢包和错误。

3.灵活性:帧中继协议支持广播和组播功能,可以方便地进行网络广播和多播通信。

4.可扩展性:帧中继协议可以通过增加交换机和物理链路来扩展网络规模,满足不同规模网络的需求。

帧中继协议的应用场景1.局域网接入:帧中继协议常用于将多个局域网连接到一个中央交换机上,实现不同网络之间的通信。

例如,一个公司的多个部门可以通过帧中继协议连接到同一个交换机上,方便员工之间的信息交流和资源共享。

2.广域网扩展:帧中继协议可以将多个广域网连接到一个中央交换机上,实现不同地理位置之间的通信。

例如,一个跨国公司可以通过帧中继协议将位于不同国家的办公室连接起来,方便跨国团队的协作和沟通。

3.数据中心互联:帧中继协议可以用于连接不同数据中心之间的网络,实现数据的备份和共享。

例如,一个云服务提供商可以通过帧中继协议将不同数据中心的服务器连接起来,提供高可用性和高性能的云服务。

思科路由器帧中继配置

思科路由器帧中继配置

帧中继(FR)帧中继(FrameRelay,FR)技术是在OSI第二层(数据链路层)上用简化的方法传送和交数换据单元的一种技术。

它是一种面向连接的数据链路技术,为提供高性能和高效率数据传输进行了技术简化,它靠高层协议进行差错校正,并充分利用了当今光纤和数字网络技术。

总之,FR是一种用于构建中等高速报文交换式广域网的技术。

同时它也是是由国际电信联盟通信标准化组和美国国家标准化协会制定的一种标准。

帧中继的作用和应用:①帧使用DLCI进行标识,它工作在第二层;帧中继的优点在于它的低开销。

②帧中继在带宽方面没有限制,它可以提供较高的带宽。

典型速率56K-2M/s内,最大速度可达到T3(45Mb/s)。

③采用虚电路技术,对分组交换技术进行简化,具有吞吐量大、时延小,适合突发性业务等特点,能充分利用网络资源。

④可以组建虚拟专用网,即将网络上的几个节点,划分为一个分区,并设置相对独立的网络管理机构,对分区内数据流量及各种资源进行管理;分区内各节点共享分区内网络资源,相互间的数据处理和传送相对独立,对帧中继网络中的其他用户不造成影响。

采用虚拟专用网所需要费用比组建一个实际的专用网经济合算,因此对大企业用户十分有利。

帧中继和ATM的比较:目前,计算机局域网(LAN)之间或主机间的互连主要使用两种技术:帧中继和ATM。

国内很多地方都已经开始将这两种技术应用到企业网、校园网等部门网络中。

目前大多数帧中继应用的运行速率为56Kbit/s/64Kbit/s或512Kbit/s,而ATM可达155Mbit/s、622Mbit/,和2.5Gbit/s,但ATM技术复杂,ATM 设备比帧中继设备昂贵得多,一般用户难以接受。

从未来发展看,ATM适宜承担B—ISDN(宽带综合业务数字网)的骨干网部分,用户接入网可以是时分多路复用(TDM)、帧中继、语音、图像、LAN、多媒体等,帧中继将作为用户接入网发挥其作用。

帧中继的前景:①一种高性能,高效率的数据链路技术。

帧中继概念 帧中继配置命令有哪些

帧中继概念 帧中继配置命令有哪些

帧中继概念帧中继配置命令有哪些1.帧中继概念1、帧中继(FRAME RELAY)是在用户--网络接口之间提供用户信息流的双向传送,并保持顺序不变的一种承载业务,它是以帧为单位,在网络上传输,并将流量控制、纠错等功能,全部交由智能终端设备处理的一种新型高速网络接口技术。

2、帧中继是综合业务数字网标准化过程中产生的一种重要技术,它是在数字光纤传输线路逐渐代替原有的模拟线路,用户终端日益智能化的情况下,由X25分组交换技术发展起来的一种传输技术。

2.帧中继配置命令有哪些帧中继交换机在实际工程环境中一般不需要我们配置,由运营商设置完成,但在实验环境中,要求掌握帧中继交换机的基本配置配置示例:frame-relay switchinginterface s0/1encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 102 interface s0/2 201// 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号frame-relay route 103 interface s0/3 301no shutdown主接口运行帧中继(Invers-arp)FRswitch(帧中继交换机)的配置:frame-relay switchinginterface s0/1 // 连接到R1的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 102 interface s0/2 201// 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号no shutdowninterface s0/2 // 连接到R2的接口encapsulation frame-relayframe-relay intf-type dceclock rate 64000frame-relay route 201 interface s0/1 102no shutdownR1的配置如下:interface serial 0/0ip address 192.168.12.1 255.255.255.252encapsulation frame-relay// 接口封装FR,通过invers-arp发现DLCI,并建立对端IP到本地DLCI的映射(帧中继映射表)no shutdownR2的配置如下:interface serial 0/0ip address 192.168.12.2 255.255.255.252encapsulation frame-relayno shutdown在FRswitch上查看PVI(验证配置):FRswitch#show frame-relay routeInput Intf Input Dlci Output Intf Output Dlci StatusSerial0/1 102 Serial0/2 201 activeSerial0/2 201 Serial0/1 102 active在R1上查看帧中继映射R1#show frame-relay mapSerial0/0 (up): ip 192.168.12.2 dlci 102(0x66,0x1860), dynamic,broadcast,, status defined, activeR1#ping 192.168.12.2Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 192.168.12.2, timeout is 2 seconds:环境2 主接口运行帧中继(静态映射)FRswitch的配置同上,这里不再赘述上述案例是终端路由器采用动态invers-arp获取帧中继相关映射信息,本例采用静态建立映射的方式进行配置。

帧中继(FR)

帧中继(FR)
计算机网络互联技术
帧中继(FR)
主讲:罗海波
情景描述


A公司总部在北京,并且分别在深圳和上海 设立了分公司。由于业务的需要,要求实 现公司内部之间的计算机联网。 考虑成本因素,公司选择租用帧中继线路。
任务学习引导


一、什么是帧中继 二、帧中继特点 三、帧中继术语 四、帧中继的常用命令
一、什么是帧中继<2>

电路交换:


1)、采用的是静态分配策略,经面向连接建立连接。 2)、通信双方建立的通路中任何一点出现故障,就会中断通话,必须重 新拨号建立连接,方可继续。 3)、线路的传输效率往往很低,造成通信线路资源的极大浪费。 4)、由于各异的计算机和终端的传输数据的速率个不相同,采用电路交 换就很难相互通信。
四、帧中继的常用命令<1>

(1)指定帧中继封装格式

encapsulation frame-relay cisco|ietf
frame-relay interface-dlci dlci DLCI号取值16~991,由服务商提供。 Frame-relay map protocol-type protocol-address dlci [broadcast] [ietf][cisco] frame-relay lmi-type cisco|ansi|q933a Show interface serial-number
一、什么是帧中继<1>


帧中继(Frame Relay, FR)是一种用于连接计算机 系统的面向分组的通信方法,也是面向连接的第二 层传输协议,帧中继是典型的分组交换技术。 用户经常需要租用线路把分散在各地的网络连接起 来,如果采用点到点的专用线路(例如 DDN), ISP 需要给每个地方的路由器拉 4对物理线路,同时 每个路由器需要有 4 个串口。而使用帧中继每个路 由器只通过一条线路连接到帧中继云上,线路的代 价大大减低,每个路由器也只需要一个串行接口而 且允许用户在帧中继交换网络比较空闲的时候以高 于 ISP 所承诺的速率进行传输。

帧中继实验配置

帧中继实验配置

实验七:帧中继配置实验目的:掌握帧中继基本概念、DLCI含义、LMI作用、静态和动态映射区别掌握帧中继基本配置:如接口封装、DLCI配置、LMI配置等能够对帧中继进行基本故障排除实验要求:1)帧中继拓扑与地址规划;2)帧中继基本配置和帧中继网云配置(如帧中继交换表配置)3)ospf配置4)验证帧中继配置并给出配置清单实验拓扑如下:实验设备(环境、软件)本部分主要是阐述本实验用的实验设备、软件及其数量和要求。

实验设计到的基本概念和理论:帧中继概述:是由国际电信联盟通信标准化组和美国国家标准化协会制定的一种标准。

它定义在公共数据网络上发送数据的过程。

它是一种面向连接的数据链路技术,为提供高性能和高效率数据传输进行了技术简化,它靠高层协议进行差错校正,并充分利用了当今光纤和数字网络技术。

帧中继的作用:帧使用DLCI进行标识,它工作在第二层;帧中继的优点在于它的低开销。

帧中继在带宽方面没有限制,它可以提供较高的带宽。

典型速率56K-2M/s内。

DLCI含义:DLCI即数据链路连接标识,帧中继协议是一种统计复用的协议,它在单一物理传输线路上能够提供多条虚电路。

每条虚电路都是用DLCI(Data Link Connection Identifier)来标识。

虚电路是面向连接的,它将用户数据帧按顺序传送至目的地。

从建立虚电路的方式的不同,将帧中继虚电路分为两种类型:永久虚电路(PVC)和交换虚电路(SVC)。

永久虚电路是指给用户提供固定的虚电路。

这种虚电路是通过人工设定产生的,如果没有人为取消它,它是一直存在的。

交换虚电路是指通过协议自动分配的虚电路,当本地设备需要与远端设备建立连接时,它首先向帧中继交换机发出“建立虚电路请求”报文,帧中继交换机如果接受该请求,就为他分配一虚电路。

在通信结束后,该虚电路可以被本地设备或交换机取消。

这种虚电路的创建/删除不需要人工操作。

LMI的作用:LMI即本地管理接口,它是一种存活机制,他提供路由器和帧中继交换机之间的帧中继连接的状态信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

帧中继(FRAME-RELAY)是一种广域网技术,最初是为了解决全国性或跨国性的帧中继大公司在地理上分散的局域网络实现通信而产生的。

随着局域网与局域网之间进行互联的要求日益高涨,帧中继技术也迅速发展起来的。

它是一种先进的包交换技术,是一种快速分组通信方式。

它采用虚电路技术,能充分利用网络资源。

帧中继为多区域间,全国范围内以及国际间实现通信提供了一个灵活高效的广域网解决方案。

帧中继帧中继是八十年代初发展起来的一种数据通信技术,其英文名为FrameRelay,简称FR。

它是从X.25分组通信技术演变而来的。

数据通信的目的就是要完成计算机之间、计算机与各种数据终端之间的信息传递。

为了实现数据通信,必须进行数据传输,即将位于一地的数据源发出的数据信息通过数据通信网络送到另一地的数据接收设备。

被传递的数据信息的类型是多种多样的,其典型的应用有文件传送、电子信箱、可视图文、文件检索、远程医疗诊断等。

数据通信网交换技术历经了电路方式、分组方式、帧方式、信元方式等阶段。

电路方式是从一点到另一点传送信息且固定占用电路带宽资源的方式,例如专线DDN数据通信。

由于预先的固定资源分配,不管在这条电路上实际有无数据传输,电路一直被占着。

分组方式是将传送的信息划分为一定长度的包,称为帧中继分组,以分组为单位进行存储转发。

在分组交换网中,一条实际的电路上能够传输许多对用户终端间的数据而不互相混淆,因为每个分组中含有区分不同起点、终点的编号,称为逻辑信道号。

分组方式对电路带宽采用了动态复用技术,效率明显提高。

为了保证分组的可靠传输,防止分组在传输和交换过程中的丢失、错发、漏发、出错,分组通信制定了一套严密的,较为繁琐的通信协议,例如:在分组网与用户设备间的X.25规程就起到了上述作用,因此人们又称分组网为“X.25网”。

帧方式实质上也是分组通信的一种形式,只不过它将X.25分组网中分组交换机之间的恢复差错,防止拥塞的处理过程进行了简化。

帧方式的典型技术就是帧中继。

由于传输技术的发展,数据传输误码率大大降低,分组通信的差错恢复机制显得过于繁琐,帧中继将分组通信的三层协议简化为两层,大大缩短了处理时间,提高了效率。

帧中继网内部的纠错功能很大一部分都交由用户终端设备来完成。

帧中继帧中继是一种局域网互联的WAN协议,它工作在OSI参考模型的物理层和数据链路层。

它为跨越多个交换机和路由器的用户设备间的信息传输提供了快速和有效的方法。

帧中继是一种数据包交换技术,与X.25类似。

它可以使终端站动态共享网络介质和可用带宽。

帧中继采用以下两种数据包技术:1)可变长数据包;2)统计多元技术。

它不能确保数据完整性,所以当出现网络拥塞现象时就会丢弃数据包。

但在实际应用中,它仍然具有可靠的数据传输性能。

帧中继是在分组交换技术的基础上发展起来的一种电信业务,简称FR。

它是对原来的分组交换协议作了简化的数据传输新技术。

又称“快速分组交换”技术。

“帧”在数据通信中是指一个包括开始和结束标志的一个连续的二进制比特序列,是数据通信中传输链路传送时所用的基本单位。

“帧中继”就是在传输链路中以“帧”为单位进行的中继传送。

帧中继(FrameRelay)是一种网络与数据终端设备(DTE)接口标准。

由于光纤网比早期的电话网误码率低得多,因此,可以减少X.25的某些差错控制过程。

从而可以减少结点的处理时间,提高网络的吞吐量。

帧中继就是在这种环境下产生的。

帧中继提供的是数据链路层和物理层的协议规范,任何高层协议都独立于帧中继协议,因此,大大地简化了帧中继的实现。

目前帧中继的主要应用之一是局域网互联,特别是在局域网通过广域网进行互联时,使用帧中继更能体现它的低网络时延、低设备费用、高带宽利用率等优点。

帧中继表1帧中继分组的帧结构。

帧两末端的标志域用特殊的位序列定界帧。

开始标志域后面是帧中继头部,它包含地址和拥塞控制信息。

在它后面的是信息(载体)和帧检验序列(FCS)。

在接受方,帧将重新计算,得到一个新的FCS值并与FCS域的值比较,FCS域的值是由发送方计算并填写的。

如果它们不匹配,分组就被丢弃,而端站必须解决分组丢失的问题。

这种简单的检错就是帧中继交换器所做的全部工作。

帧中继头部包含下列信息:数据链路连接标识符(DLCI)这个信息包含标识号,它标识多路复用到通道的逻辑连结。

可以丢弃(DE)这个信息为帧设置了一个种级别指示,指示当拥塞发生时一个帧能否被丢弃。

前行显示拥塞通告(FECN)这个信息告诉路由器接收的帧在所经通路上发生过拥塞。

倒行显示拥塞通告(BECN)这个信息设置在遇到拥塞的帧上,而这些帧将沿着与拥塞帧相反的方向发送。

这个信息用于帮助高层协议在提供流控时采取适当的操作。

帧中继帧中继的帧格式:表1帧中继的帧格式:标志字段(F):它是一个特殊的八比特组011111 10,作用是标志一帧的开始和结束。

地址字段(Address):地址字段的主要用途是区分同一通路上多个数据链路连接,以便实现帧的复用/分路。

地址字段的长度为2个~4个字节。

1)地址字段扩展比特EA:EA=0表示下一字节仍是地址字段,EA=1表示本字节是地址字段的最终字节。

2)命令/响应比特(C/R):不使用。

在数据链路层帧方式接入协议(LAPF)中作为标识该帧是命令帧还是响应帧。

3)可丢失指示比特(DE):DE置“1”说明当网络发生拥塞时,可考虑丢弃,以便网络进行带宽管理。

4)前向显式拥塞通知(FECN):该比特由发生拥塞的网络来设置,用于通知用户启动拥塞避免程序,它说明与载有FECN批示的帧同方向的信息量情况。

5)后向显式拥塞通知(BECN):该比特由发生拥塞的网络来设置,用于通知用户启动拥塞避免程序,它说明与载有BECN指示的帧反方向上的信息量情况。

6)DLCI扩展/ DL-CORE控制控制指示比特(D/C):D/C比特置“1”表示最后一个字节包含数据链路核心协议(DL-CORE)控制信息;D/C比特置“0”表示最后个字节包含DLCE信息。

7)数据链路连接标识符(DLCI):它用来标识用户网络接口或网络接口上承载通路连接。

帧中继信息字段(Information):信息字段包含的是用户数据,可以是任意的比特序列,它的长度必须是整个字节,帧中继信息字节最大默契长度为262个字节。

帧校验序列字段(FCS):帧校验序列字段FCS是一个16比特的序列。

它具有很强的检错能力,它能检测出在任何位置上的3个以内的错误、所有的奇数个错误、16个比特之内的连续错误以及大部分的大量帧中继帧中继技术:1)帧中继技术主要用于传递数据业务,它使用一组规程将数据信息以帧的形式(简称帧中继协议)有效地进行传送。

它是广域网通信的一种方式。

2)帧中继所使用的是逻辑连接,而不是物理连接,在一个物理连接上可复用多个逻辑连接(即可建立多条逻辑信道),可实现带宽的复用和动态分配。

3)帧中继协议是对X.25协议的简化,因此处理效率很高,网络吞吐量高,通信时延低,帧中继用户的接入速率在64kbit/s至2Mbit/s,甚至可达到34Mbit/s。

4)帧中继的帧信息长度远比X.25分组长度要长,最大帧长度可达1600字节/帧,适合于封装局域网的数据单元,适合传送突发业务(如压缩视频业务、WWW业务等)。

帧中继测试技术:当前主要的数据通信技术都基于分组交换技术,如分组交换、帧中继(F R)、交换型多兆比特数据业务(SMDS)、异步转移模式(ATM)。

起先中国不愿意发展“已落后”的帧中继技术,而是大力发展ATM技术,但随着时间的推移,帧中继技术才显示出它强大的生命力。

因为,首先帧中继技术的接入技术比较成熟,实现较为简单,适于满足64k bit/s~2Mbit/s速率范围内的数据业务。

而ATM的接入技术较为复杂,实现起来比较困难。

其次,ATM设备与帧中继设备相比,价格昂贵,普通用户难以接受。

所以,帧中继与ATM相辅相成,成为用户接入ATM的最佳机制。

帧中继网络是由许多帧中继交换机通过中继电路连接组成。

目前,加拿大北电、新桥,美国朗讯、FORE等公司都能提供各种容量的帧中继交换机。

一般来说,FR路由器(或FRAD)是放在离局域网相近的地方,路由器可以通过专线电路接到电信局的交换机。

用户只要购买一个带帧中继封装功能的路由器(一般的路由器都支持),再申请一条接到电信局帧中继交换机的DDN专线电路或HDSL专线电路,就具备开通长途帧中继电路的条件。

帧中继帧中继技术特点:1.复用与寻址:帧中继在数据链路层采用统计复用方式,采用虚电路机制为每一个帧提供地址信息。

通过不同编号的DLCI(DataLineConnection Identifier数据链路连接识别符)建立逻辑电路。

一般来讲,同一条物理链路层可以承载多条逻辑虚电路,而且网络可以根据实际流量动态调配虚电路的可用带宽,帧中继的每一个帧沿着各自的虚电路在网络内传送。

2.带宽控制技术:帧中继的带宽控制技术既是帧中继技术的特点,更是帧中继技术的优点。

帧中继的带宽控制通过CIR(承诺的信息速率)、Bc(承诺的突发大小)和Be(超过的突发大小)3个参数设定完成。

Tc(承诺时间间隔)和EIR(超过的信息速率)与此3个参数的关系是:Tc=Bc/CIR;EIR=Be/Tc。

在传统的数据通信业务中,用户申请了一条64K的电路,那么他只能以64kbit/s的速率来传送数据;而在帧中继技术中,用户向帧中继业务运营商申请的是承诺的信息速率(CIR),而实际使用过程中用户可以以高于CIR的速率发送数据,却不必承担额外的费用。

举例来说,某用户申请了CIR为64kbit/s的帧中继电路,并且与电信运营商签定了另外两个指标,Bc(承诺突发量)、Be(超过的突发量),当用户以等于或低于64kbit/s的速率发送数据时,网络将确保此速率传送,当用户以大于64kbit/s的速率发送数据时,只要网络不拥塞,且用户在承诺时间间隔(Tc)内发送的突发量小于Bc+Be 时,网络还会传送,当突发量大于Bc+Be时,网络将丢弃帧。

所以帧中继用户虽然支付了6 4kbit/s的信息速率费(收费依CIR来定),却可以传送高于64kbit/s的数据,这是帧中继吸引用户的主要原因之一。

帧中继随着帧中继技术、信元中继和ATM技术的发展,帧中继交换机的内部结构也在逐步改变,业务性能进一步完善,并向ATM过渡。

目前市场上的帧中继交换产品大致有三类:a)改装型X25分组交换机。

b)以全新的帧中继结构设计为基础的新型交换机。

c)采用信元中继、ATM 技术、支持帧中继接口的ATM交换机。

a)型交换机在帧中继发展初期比较普遍。

主要是通过改装X25交换机、增加软件使交换机具有接收和发送帧中继的能力,但仍然保留分组层的一些功能,时延较大。

相关文档
最新文档