2021中考数学知识点【代数式】

合集下载

人教版2021中考数学总复习 第2讲 整式与因式分解

人教版2021中考数学总复习  第2讲  整式与因式分解

=12mn+10n
11. (2019·广州)分解因式: x2y+2xy+y=____y_(__x_+_1_)__2__________________. 12. (2019·深圳)分解因式: ab2-a=________a_(__b_+_1_)__(__b_-_1_)_____________. 13.(2020·广东)分解因式: xy-x=_________x_(_y_-__1_)____________________.
14.(2020·长春)长春市净月潭国家森林公园门票的价格为成
人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童
票,则共需花费___(__3_0_m_+_12+2m=1,则4m2+8m-3的值是( D )
A.4
B.3
C.2
D.1
分层训练
变式诊断
9. (2019·深圳)下列运算正确的是( C )
A. a2+a2=a4
B. a3·a4=a12
C. (a3)4=a12
D. (ab)2=ab2
10.(2020·南通)计算:
(2m+3n)2-(2m+n)(2m-n).
解:原式=4m2+12mn+9n2-(4m2-n2)
=4m2+12mn+9n2-4m2+n2
续表 4. 因式分解的步骤(概括为“一提,二套,三检查”): (1)提公因式法:ma+mb+mc=m(a+b+c). (2)套公式:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2(乘法公式 的逆运算). (3)检查:分解因式要分解到每一个多项式都不能再分解为止.

2023中考数学复习:代数式与整式

2023中考数学复习:代数式与整式

乘法公式
(1)平方差公式:(a+b)(a-b)=a2-b2;
(2)完全平方公式:(a±b)2=a2±2ab+b2;
(3)乘法公式的常用恒等变形:a2+b2=(a+b)22ab=(a-b)2+2ab
第4讲
代数式与整式— 考点梳理
返回思维导图
返回栏目导航
续表
类别
运算法则
将系数、同底数幂分别相除作为商的一个因式,
C.a3与a·a·a
D.3(a+b)与3a+b
7
8
9
10
11
12
13
14
15
16
17
18
19
第4讲
返回命题点导航
代数式与整式— 真题试做
返回栏目导航
8.( 2020·河北2题3分)墨迹覆盖了等式“x3■x=x2(x≠0)”中的运算符
号,则覆盖的是(
A.+
D )
B.-Βιβλιοθήκη C.×D.÷9.( 2020·河北11题2分)若k为正整数,则( + + … + )k=( A )
3.( 2022·河北9题3分)若x和y互为倒数,则 +
A.1
返回栏目导航
返回命题点导航
代数式与整式— 真题试做
B.2
C.3





的值是( B )
D.4
4.( 2013·河北5题2分)若x=1,则|x-4|=( A )
A.3
B.-3
C.5
D.-5
1
5.( 2016·河北18题3分)若mn=m+3,则2mn+3m-5mn+10=

考点梳理:初中代数式务必掌握的20个考点及例题

考点梳理:初中代数式务必掌握的20个考点及例题

初中代数式务必掌握的20个考点考点1: 代数式的定义及书写(1)代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或 一个字母也是代数式.(2)代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘 号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在 那个字母前加上“-”号.例题1: (1)在下列各式中(1)3a ,(2)4+8=12,(3)2a ﹣5b >0,(4)0,(5)s =πr 2,(6)a 2﹣b 2,(7)1+2,(8)x +2y ,其中代数式的个数是( )A .3个B .4个C .5个D .6个 (2)下列各式:①114x ;②2•3;③20%x ;④a ﹣b ÷c ;⑤m−n 3;⑥x ﹣5千克:其中符合代数式书写要求的有( )A .5个B .4个C .3个D .2个【分析】(1)根据代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.依此作答即可.(2)根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案.【解析】(1)由题,属于代数式有:(1)3a ,(4)0,(6)a 2﹣b 2,(7)1+2,(8)x +2y ,共5个,选C(2)①114x 中分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x ,书写正确; ④a ﹣b ÷c ,除号应用分数线,所以书写错误;⑤m−n 3书写正确;⑥x ﹣5应该加括号,所以书写错误;符合代数式书写要求的有③⑤共2个.选:D . 【小结】(1)代数式是由运算符号把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.(2)注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式.变式1: 在以下各式中属于代数式的是( )①S =12ah ②a +b =b +a ③a ④1a ⑤0 ⑥a +b ⑦a+b ab A .①②③④⑤⑥⑦ B .②③④⑤⑥ C .③④⑤⑥⑦ D .①②【分析】根据代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式进行分析即可.【解析】③a ,④1a ,⑤0,⑥a +b ,⑦a+b ab 是代数式,选:C .【小结】此题主要考查了代数式,关键是掌握代数式的定义.变式2: 在式子0.5xy ﹣2,3÷a ,12(a +b ),a •5,﹣314abc 中,符合代数式书写要求的有( ) A .1个 B .2个 C .3个 D .4个【分析】直接利用代数式的定义,代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式,进而判断即可.【解析】0.5xy ﹣2,3÷a ,12(a +b ),a •5,﹣314abc 中,符合代数式书写要求的有0.5xy ﹣2,12(a +b )共2个.选:B .【小结】此题主要考查了代数式,正确把握定义是解题关键.变式3: 进入初中后学习数学,对于代数式书写规范,教材中指出:“在含有字母的式子中如果出现乘号“×”,通常将乘号写作“•”或者省略不写”.其实还有一些书写规范,比如,在代数式中如果出现除号“÷”,通常用分数线“﹣”来取代;数字与字母相乘时,一般数字写在前面,根据以上书写要求,将代数式(ac ×4﹣b 2)÷4简写为 .【分析】根据代数式的写法表示即可.【解析】代数式(ac ×4﹣b 2)÷4简写为:4ac−b 24,故答案为:4ac−b 24.【小结】此题主要考查了代数式,关键是掌握代数式的表示要求.考点2: 列代数式(和差倍问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范. 例题2: 学校举行国庆画展,七(1)班交m 件作品,七(2)班交的作品比七(1)班的2倍少6件,则七(2)班交的作品是 件.【分析】根据“2倍”即乘以2,“少6件”即再减去6即可得.【解析】根据题意知七(2)班交的作品数量为(2m ﹣6)件,故答案为:2m ﹣6.【小结】本题主要考查列代数式,列代数式应该注意格式.变式4: 某校报数学兴趣小组的有m 人,报书法兴趣小组的人数比数学兴趣小组的人数的一半多3人,那么报书法兴趣小组的有 人.【分析】数学兴趣小组的人数的一半是:12m ,则根据“报书法兴趣小组的人比数学兴趣小组的人数的一半多3人”列出代数式.【解析】依题意知,美术兴趣小组的人数是:12m +3.故答案是:(12m +3). 【小结】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系.变式5: 某学校七年级有m 人,八年级人数比七年级人数的23多10人,九年级人数比八年级人数的2倍少50人,用含m 的式子表示七八九三个年级的总人数为( )A .3mB .113m ﹣40C .3m ﹣40D .3m ﹣20【分析】根据题意分别表示出各年级的人数,进而利用整式的加减运算法则得出答案.【解析】由题意可得,八年级的人数为:23m +10,九年级人数为:2(23m +10)﹣50, 故七八九三个年级的总人数为:m +23m +10+2(23m +10)﹣50=3m ﹣20.选:D . 【小结】此题主要考查了列代数式,正确表示出各年级人数是解题关键.变式6: 我校甲、乙、丙三位同学给希望工程捐款,已知甲同学捐款x 元,乙同学的捐款金额比甲同学捐款金额的3倍少8元,丙同学的捐款金额是甲、乙两同学捐款总金额的34,用含x 的代数式表示甲,乙、丙三位同学的捐款总金额.【分析】分别表示出乙、丙同学捐款总数进而得出答案.【解析】由题意可得,乙同学捐款(3x ﹣8)元,丙同学的捐款金额是:34(x +3x ﹣8)=3x ﹣6(元), 故甲,乙、丙三位同学的捐款总金额为:x +3x ﹣8+3x ﹣6=7x ﹣14(元).【小结】此题主要考查了列代数式,正确表示出乙、丙同学捐款总数是解题关键.考点3: 列代数式(数字问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范. 例题3: 一个两位数,十位上的数字为a ,个位上的数字比十位上的数字少2,则这个两位数为( )A .11a ﹣20B .11a +20C .11a ﹣2D .11a +2【分析】根据一个两位数,十位上的数字为a ,个位上的数字比十位上的数字少2,可知个位数字为a ﹣2,然后即可用含a 的代数式表示出这个两位数.【解析】由题意可得,这个两位数为:10a +(a ﹣2)=11a ﹣2,选:C .【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式7: 设a 是一个三位数,b 是一个两位数,如果将这两个数顺次排成一个五位数(a 在左,b 在右),则这个五位数可以表示为 .【分析】相当于把三位数扩大了100倍,两位数的大小不变,相加即可.【解析】∵三位数扩大了100倍,两位数的大小不变,∴这个五位数可以表示为100a +b .故答案是100a +b .【小结】考查列代数式,得到新数中的a ,b 与原数中的a ,b 的关系是解决本题的关键.变式8:一个三位数为x,一个两位数为y,把这个三位数放在两位数的左边得到一个五位数M,把这个两位数放在三位数的左边又可以得到一个五位数N,则M﹣N=(结果用含x,y的式子表示).【分析】由于一个两位数为y,一个三位数为x,若把这个三位数放在两位数的左边得到一个五位数M,由此得到M=100x+y,又把这个两位数放在三位数的左边又可以得到一个五位数N,由此得到N=1000y+x,然后就可以求出M﹣N的值.【解析】依题意得,M=100x+y,N=1000y+x,∴M﹣N=(100x+y)﹣(1000y+x)=99x﹣999y.【小结】此题主要考查了列代数式,解决此类题目的关键是首先正确理解题意,然后根据题意列出代数式,同时计算时熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.变式9:用式子表示十位上的数是x,个位上的数是y的两位数,再把这个两位数的十位上的数与个位上的数交换位置.求后来所得的数与原来的数的差是多少?【分析】由十位上的数字乘10加上个位上的数字表示出两位数,再由个位与十位交换表示出新数,新数减去原来的数即可得到结果.【解析】依题意有(10y+x)﹣(10x+y)=10y+x﹣10x﹣y=9y﹣9x.【小结】本题主要考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系.考点4:列代数式(销售问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例题4:一件羽毛球拍先按成本价提高50%标价,再将标价打8折出售,若这件羽毛球拍的成本价是x元,那么售价可表示为.【分析】直接利用成本与原价以及售价与打折的关系进而得出答案.【解析】由题意可得:(1+50%)x×0.8=1.2x(元).【小结】此题主要考查了列代数式,正确理解打折与售价的关系是解题关键.变式10: 某商店有一种商品每件成本a 元,按成本价增加20%定为售价,售出80件后,由于存积压降价,打八五折出售,又售出120件.(1)求该商品减价后每件的售价为多少元?(2)售完200件这种商品共盈利多少元?【分析】(1)根据一种商品每件成本a 元,按成本价增加20%定为售价,后来由于存积压降价,打八五折出售,可以用含a 的代数式表示出该商品减价后每件的售价为多少元;(2)根据题意和(1)中的结果,可以计算出售完200件这种商品共盈利多少元.【解析】(1)由题意可得,每件商品减价后的售价是:a (1+20%)×0.85=1.02a (元),(2)20%a ×80+(1.02a ﹣a )×(200﹣80)=16a +0.02a ×120=16a +2.4a =18.4a (元),【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式11: 小明经销一种服装,进货价为每件a 元,经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( )A .比进货价便宜了0.52a 元B .比进货价高了0.2a 元C .比进货价高了0.8a 元D .与进货价相同【分析】直接利用标价以及打折之间的关系得出关系式即可.【解析】由题意可得,这件服装的实际价格是:(1+200%)a ×40%=1.2a 元.则1.2a ﹣a =0.2a (元)比进货价高了0.2a 元.选:B .【小结】此题主要考查了列代数式,正确表示出标价是解题关键.变式12: 张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a >b ).根据市场行情,他将这两种小商品都以a+b 2元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A .赚了(25a +25b )元B .亏了(20a +30b )元C .赚了(5a ﹣5b )元D .亏了(5a ﹣5b )元 【分析】应该比较他的总进价和总售价.分别表示出总进价为:20a +30b ,总售价为a+b 2×(20+30)=25a +25b ,通过作差法比较总进价和总售价的大小,判断他是赔是赚.【解析】根据题意可知:总进价为20a +30b ,总售价为a+b 2×(20+30)=25a +25b∴25a +25b ﹣(20a +30b )=5a ﹣5b ,∵a >b ,∴5a ﹣5b >0,那么售价>进价,∴他赚了.选:C .【小结】此题考查列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.本题要注意应该比较他的总进价和总售价.考点5: 列代数式(增长率问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范. 例题5: 某校去年初一招收新生a 人,今年比去年增加x %,今年该校初一学生人数用式子表示为( )A .(a +x %)人B .ax %人C .a(1+x)100人D .a (1+x %)人 【分析】根据今年招收的新生人数=去年初一招收的新生人数+x %×去年初一招收新生人数,即可得出答案.【解析】∵去年初一招收新生a 人,∴今年该校初一学生人数为:a (1+x %)人.选:D .【小结】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.注意今年比去年增加x %和今年是去年的x %的区别.变式13: 某校初一年级计划初中三年每年参加植树活动,2019年已经植树a 亩,如果以后每年比上一年植树面积增长20%,那么2021应植树的面积为( )A .a •(1+20%)B .a •(1+2×20%)C .a •(1+20%)2D .2a •(1+20%)【分析】根据题意,可以用含a 的代数式表示出2021年应植树的面积,本题得以解决.【解析】由题意可得,2021应植树的面积为:a (1+20%)2,选:C .【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式14: 某企业今年1月份产值为x 万元,2月份的产值比1月份减少了10%,则1月份和2月份的产值和是( )A .x +(1﹣10%)x 万元B .x +(1+10%)x 万元C .(1﹣10%)x 万元D .(1+10%)x 万元【分析】根据题意表示出2月份的产值,进而得出答案.【解析】∵今年1月份产值为x 万元,2月份的产值比1月份减少了10%,∴2月份的产量为:(1﹣10%)x ,故1月份和2月份的产值和是:[x +(1﹣10%)x ]万元.选:A .【小结】此题主要考查了列代数式,正确表示出2月份的产值是解题关键.变式15:裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元【分析】根据裕丰商店一月份的利润及二、三月份的利润平均增长率,即可用含m的代数式表示出二、三月份的利润,再将三个月的利润相加即可得出结论.【解析】∵裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,∴二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,∴这个商店第一季度的总利润是[50+50(1+m)+50(1+m)2]万元.选:D.【小结】本题考查了列代数式,根据前三个月利润间的关系,用含m的代数式表示出二、三月份的利润是解题的关键.考点6:列代数式(分段计费问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例题6:东西湖区域出租汽车行驶2千米以内(包括2千米)的车费是10元,以后每行驶1千米,再加0.7元.如果某人坐出租汽车行驶了m千米(m是整数,且m≥2),则车费是()A.(10﹣0.7m)元B.(11.4+0.7m)元C.(8.6+0.7m)元D.(10+0.7m)元【分析】根据题意,可以用含m的代数式表示出需要付的车费,本题得以解决.【解析】由题意可得,车费是:10+(m﹣2)×0.7=(0.7m+8.6)元,选:C.【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式16:为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如表:居民每月用电量单价(元/度)不超过50度的部分0.5超过50度但不超过200度的部分0.6超过200度的部分0.8已知小刚家上半年的用电情况如下表(以200度为标准,超出200度记为正、低于200度记为负):一月份二月份三月份四月份五月份六月份﹣50+30﹣26﹣45+36+25根据上述数据,解答下列问题:(1)小刚家用电量最多的是月份,实际用电量为度;(2)小刚家一月份应交纳电费元;(3)若小刚家七月份用电量为x度,求小刚家七月份应交纳的电费(用含x的代数式表示).【分析】(1)根据表格中的数据可以解答本题;(2)根据表格中的数据和题意,可以计算出小刚家一月份应交纳电费;(3)根据表格中的数据,可以用分类讨论的方法用相应的代数式表示出小刚家七月份应交纳的电费.【解析】(1)由表格可知,五月份用电量最多,实际用电量为:200+36=236(度),故答案为:五,236;(2)小刚家一月份用电:200+(﹣50)=150(度),小刚家一月份应交纳电费:0.5×50+(150﹣50)×0.6=25+60=85(元),故答案为:85;(3)当0<x≤50时,电费为0.5x元;当50<x≤200时,电费为0.5×50+(x﹣50)×0.6=25+0.6x﹣30=(0.6x﹣5)元;当x>200时,电费为0.5×50+0.6×150+(x﹣200)×0.8=25+90+0.8x﹣160=(0.8x﹣45)元.【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式17:为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下(注:水费按月份结算,表示立方米)价目表每月用水量单价不超过6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3请根据上表的内容解答下列问题:(1)填空:若该户居民2月份用水5m3,则应交水费元;3月份用水8m3,则应收水费元;(2)若该户居民4月份用水am3(其中a>10m3),则应交水费多少元(用含a的代数式表示,并化简)?(3)若该户居民5、6两个月共用水14m3(6月份用水量超过了5月份),设5月份用水xm3,直接写出该户居民5、6两个月共交水费多少元(用含x的代数式表示).【分析】(1)根据题意,可以计算出该居民二月份和三月份的水费;(2)根据题意,可以用a的代数式表示出4月份的水费;(3)根据题意,利用分类讨论的方法可以解答本题.【解析】(1)由表格可得,若该户居民2月份用水5m3,则应交水费:2×5=10(元),3月份用水8m3,则应收水费:2×6+4×(8﹣6)=12+4×2=12+8=20(元),故答案为:10,20;(2)由表格可得,该户居民4月份用水am3(其中a>10m3),则应交水费:2×6+4×(10﹣6)+8(a﹣10)=(8a﹣52)元,(3)由题意可得,x<14﹣x,得x<7,当6<x<7,该户居民5、6两个月共交水费:[2×6+(x﹣6)×4]+[2×6+(14﹣x﹣6)×4]=32(元),当4≤x≤6时,该户居民5、6两个月共交水费:2x+[2×6+(14﹣x)×4]=(﹣2x+68)(元),当0≤x<4时,该户居民5、6两个月共交水费:2x+[2×6+(10﹣6)×4+(14﹣x)×8]=(140﹣6x)(元).【小结】本题考查列代数式、有理数的混合运算,解答本题的关键是明确题意,列出相应的代数式、利用分类讨论的的方法解答.变式18:滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元;(用含a、b 的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,受路况情况影响,小王反而比小张乘车多用24分钟,请问谁所付车费多?【分析】(1)根据滴滴快车计算得到得到所求即可;(2)根据a的值在10公里以内还是超过10公里,分别写出小明应付费即可;(3)根据题意计算出相差的车费即可.【解析】(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、(a﹣24)分钟,1.8×9.5+0.45a﹣[1.8×14.5+0.45(a﹣24)+0.4×(14.5﹣10)]=0,因此,小王和小张付费相同.【小结】此题考查了代数式求值,以及列代数式,弄清题意是解本题的关键.考点7: 代数式求值(整体代入法)例题7: 已知代数式x ﹣2y 的值是3,则代数式4y +1﹣2x 的值是( )A .﹣5B .﹣3C .﹣1D .0【分析】直接将原式变形进而把已知代入求出答案.【解析】∵x ﹣2y =3,∴4y +1﹣2x =﹣2(x +2y )+1=﹣6+1=﹣5.选:A .【小结】此题主要考查了代数式求值,正确将原式变形是解题关键.变式19: 当x =2时,代数式px 3+qx +1的值为﹣2019,求当x =﹣2时,代数式的px 3+qx +1值是() A .2018 B .2019 C .2020 D .2021【分析】根据整体思想将已知条件用含p 和q 的代数式表示,再整体代入即可求解.【解析】当x =2时,代数式px 3+qx +1的值为﹣2019,即8p +2q =﹣2020.当x =﹣2时,代数式的px 3+qx +1=﹣8p ﹣2q +1=﹣(8p +2q )+1=2020+1=2021.选:D .【小结】本题考查了代数式求值,解决本题的关键是利用整体思想.变式20: 已知1﹣a 2+2a =0,则14a 2−12a +54的值为( )A .32B .14C .1D .5【分析】1﹣a 2+2a =0经过整理得:a 2﹣2a =1,14a 2−12a +54=14(a 2﹣2a )+54,把a 2﹣2a =1代入代数式14(a 2﹣2a )+54,计算求值即可.【解析】∵1﹣a 2+2a =0,∴a 2﹣2a =1,∴14a 2−12a +54=14(a 2﹣2a )+54=14×1+54=32,选:A .【小结】本题考查了代数式求值,正确掌握代数式变形,代入法,有理数混合运算法则是解题的关键.变式21:(1)【探究】若a2+2a=1,则代数式2a2+4a+4=2()+4=2×()+4=.【类比】若x2﹣3x=2,则x2﹣3x﹣5的值为.(2)【应用】当x=1时,代数式px3+qx+1的值是5,求当x=﹣1时,px3+qx+1的值;(3)【推广】当x=2020时,代数式ax5+bx3+cx﹣5的值为m,当x=﹣2020时,ax5+bx3+cx﹣5的值为(含m的式子表示)【分析】(1)把代数式2a2+4a+4=2(a2+2a)+4,然后利用整体代入的方法计算;利用同样方法计算x2﹣3x﹣5的值;(2)先用已知条件得到p+q=4,而当x=﹣1时,px3+qx+1=﹣p﹣q+1=﹣(p+q)+1,然后利用整体代入的方法计算;(3)利用当x=2020时,代数式ax5+bx3+cx﹣5的值为m得到20205a+20203b+2020c=m+5,而当x=﹣2020时,ax5+bx3+cx﹣5=﹣20205a﹣20203b﹣2020c﹣5,然后利用整体代入的方法计算.【解析】(1)∵a2+2a=1,∴2a2+4a+4=2(a2+2a)+4=2×(1)+4=6;【类比】若x2﹣3x=2,则x2﹣3x﹣5=2﹣5=﹣3;故答案为a2+2a,1,6;﹣3;、(2)∵当x=1时,代数式px3+qx+1的值是5,∴p+q+1=5,∴p+q=4,∴当x=﹣1时,px3+qx+1=﹣p﹣q+1=﹣(p+q)+1=﹣4+1=﹣3;(3)∵当x=2020时,代数式ax5+bx3+cx﹣5的值为m,∴20205a+20203b+2020c﹣5=m,即20205a+20203b+2020c=m+5,当x=﹣2020时,ax5+bx3+cx﹣5=(﹣2020)5a+(﹣2020)3b+(﹣2020)c﹣5=﹣20205a﹣20203b﹣2020c﹣5=﹣(20205a+20203b+2020c)﹣5=﹣(m+5)﹣5=﹣m﹣5﹣5=﹣m﹣10.故答案为﹣m﹣10.【小结】本题考查了代数式求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.也考查了整体代入的方法.考点8:代数式求值(程序框图)例题8:根据以下程序,当输入x=﹣2时,输出结果为()A.﹣5B.﹣16C.5D.16【分析】首先求出当x=﹣2时,9﹣x2的值是多少,然后把所得的结果和1比较大小,判断是否输出结果即可.【解析】当x=﹣2时,9﹣x2=9﹣(﹣2)2=9﹣4=5>1,当x=5时,9﹣x2=9﹣52=9﹣25=﹣16<1,∴当输入x=﹣2时,输出结果为﹣16.选:B.【小结】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简变式22:根据如图所示的计算程序,若输入x=﹣1,则输出结果为()A.4B.2C.1D.﹣1【分析】把x=﹣1代入程序中计算即可得到结论.【解析】当入x=﹣1时,﹣x2+3=﹣1+3=2>1,当x=2时,﹣x2+3=﹣4+3=﹣1<1,选:D.【小结】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.变式23:按如图所示的运算程序,能使运算输出的结果为6的是()A.x=5,y=﹣1B.x=2,y=2C.x=2,y=﹣1D.x=﹣2,y=3【分析】把x与y的值代入检验即可.【解析】A、当x=5,y=﹣1时,输出结果为5+1=6,符合题意;B、当x=2,y=2时,输出结果为2﹣4=﹣2,不符合题意;C、当x=2,y=﹣1时,输出结果为2+1=3,不符合题意;D、当x=﹣2,y=3时,输出结果为﹣2﹣9=﹣11,不符合题意,选:A.【小结】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.变式24:如图是一个运算程序,能使输出结果为﹣1的是()A.1,2B.﹣1,0C.﹣1,2D.0,﹣1【分析】根据筛选法将各个选项分别代入运算程序即可得结果.【解析】A.当a=1,b=2时,输出结果为3,不符合题意;B.当a=﹣1,b=0时,输出结果为1,不符合题意;C.当a=﹣1,b=2时,输出结果为﹣1,符合题意;根据筛选法C选项正确.选:C.【小结】本题考查了代数式求值、有理数的混合运算,解决本题的关键是理解运算程序.考点9: 单项式的系数与次数解题关键:①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的次数例题9: 4πx 2y 4z 9的系数是 ,次数是 .【分析】直接利用单项式的系数与次数确定方法得出答案.【解析】4πx 2y 4z 9的系数是:4π9,次数是:7【小结】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.变式25: 单项式﹣3πx a +1y 2与−102x 2y 39的次数相同,则a 的值为 . 【分析】根据单项式的次数相等,得到关于a 的一元一次方程,求解即可.【解析】因为−102x 2y 39的次数是5,又因为单项式﹣3πx a +1+y 2与−102x 2y 39的次数相同 所以a +1+2=5解得a =2【小结】本题考查了单项式次数的定义及一元一次方程的解法.通过单项式的次数相等列出关于a 的方程是解决本题的关键.注意单项式的次数不包含数字和π的次数变式26: 若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可.【解析】根据题意得:m =﹣1,3+n +5=9,解得:m =﹣1,n =1,则m +n =﹣1+1=0【小结】本题主要考查的是单项式的定义,掌握单项式的系数和次数的概念是概念是解题的关键.变式27: 已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= .【分析】直接利用单项式的次数确定方法分析得出答案.【解析】∵(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,∴3+|m |+1=7且m ﹣3≠0,解得:m =﹣3, ∴m 2﹣2m +2=9+6+2=17【小结】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.考点10: 多项式的项与次数解题关键是熟悉几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.例题10: 关于多项式5x 4y ﹣3x 2y +4xy ﹣2,下列说法正确的是( )A .三次项系数为3B .常数项是﹣2C .多项式的项是5x 4y ,3x 2y ,4xy ,﹣2D .这个多项式是四次四项式【分析】根据多项式的项、次数的定义逐个判断即可.【解析】A 、多项式5x 4y ﹣3x 2y +4xy ﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B 、多项式5x 4y ﹣3x 2y +4xy ﹣2的常数项是﹣2,正确,故本选项符合题意;C 、多项式5x 4y ﹣3x 2y +4xy ﹣2的项为5x 4y ,﹣3x 2y ,4xy ,﹣2,错误,故本选项不符合题意;D 、多项式5x 4y ﹣3x 2y +4xy ﹣2是5次四项式,错误,故本选项不符合题意;选:B .【小结】本题考查了多项式的有关概念,能熟记多项式的次数和项的定义是解此题的关键.变式28: 多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解析】由题意可得,此多项式可以为:﹣5x 3+34x 2﹣2x +4.【小结】此题主要考查了多项式,正确把握相关定义是解题关键.变式29: 已知关于x 的整式(|k |﹣3)x 3+(k ﹣3)x 2﹣k . (1)若整式是单项式,求k 的值;(2)若整式是二次多项式,求k 的值;(3)若整式是二项式,求k 的值【分析】(1)由整式为单项式,根据定义得到|k |﹣3=0且k ﹣3=0,求出k 的值;(2)由整式为二次式,根据定义得到|k |﹣3=0且k ﹣3≠0,求出k 的值;(3)由整式为二项式,得到①|k |﹣3=0且k ﹣3≠0;②k =0;依此即可求解.【解析】(1)∵关于x 的整式是单项式,∴|k |﹣3=0且k ﹣3=0,解得k =3,∴k 的值是3;(2)∵关于x 的整式是二次多项式,∴|k |﹣3=0且k ﹣3≠0,解得k =﹣3,∴k 的值是﹣3;(3)∵关于x 的整式是二项式,∴①|k |﹣3=0且k ﹣3≠0,解得k =﹣3;②k =0.∴k 的值是﹣3或0.【小结】此题考查了单项式和多项式,解题的关键是熟悉几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.。

湘教版备考2021年中考数学二轮复习代数式专题(附答案)

湘教版备考2021年中考数学二轮复习代数式专题(附答案)

湘教版备考2021年中考数学二轮复习代数式专题(附答案)一、单选题1.某服装店举办促销活动,促销的方法是将原价x元的衣服以(0.7x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A. 原价减去10元后再打7折B. 原价打7折后再减去10元C. 原价减去10元后再打3折D. 原价打3折后再减去10元2.下列式子,符合代数式书写格式的是()A. a÷3B. 2xC. a×3D.3.一个数是x的8倍与2的和,这个数的是()A. 4x+1B. x+C. 2x+4D. 4x+24.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A. (a-10%)(a+15%)万元B. (1-10%)(1+15%)a万元C. (a-10%+15%)万元D. (1-10%+15%)a万元5.下列式子符合代数式书写格式的是()A. B. C. D.6.如果,那么下面各式计算结果最大的是()A. B. C. D.7.已知4n-m=4,则(m-4n)2-3(m-4n)-10的值是( )A. -6B. 6C. 18D. -388.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A. 159B. 209C. 170D. 2529.如图:直线l:y=﹣x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O 为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3…按此作法进行去,点A2016的坐标为()A. (﹣22016,0)B. (﹣22017,0)C. (﹣21008,0)D. (﹣21007,0)10.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”()A. 32个B. 56个C. 60个D. 64个11.对于实数、,定义一种新运算“ ”为:,这里等式右边是实数运算.例如:.则方程的解是()A. B. C. D.12.对于任意的实数m,n,定义运算“⊕”,规定,例如:3⊕2= ,2⊕3= ,计算(1⊕2) ⊕(2⊕1)的结果为()A. -4B. 0C. 6D. 12二、填空题13.果商品的原价是每件元,在销售时每件加价元,再降价,则现在每件的售价是________元.14.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为________.15.若|x+2|+|y﹣3|=0,则x﹣y的值为 ________16.按一定规律排列的一列数依次为:…(a≠0),按此规律排列下去,这列数中的第n 个数是________.(n为正整数)17.如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2019的坐标是________.18.下列各式是按新定义的已知“△”运算得到的,观察下列等式:2△5=2×3+5=11,2△(﹣1)=2×3+(﹣1)=5,6△3=6×3+3=21,4△(﹣3)=4×3+(﹣3)=9……根据这个定义,计算(﹣2018)△2018的结果为________三、计算题19.当a= 时,求代数式15a2-[-4a2+(6a-a2)-3a]的值20.观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律求出图④中的数y和图⑤中的数x.21. (1)因式分解(2)对于任何实数,规定一种新运算,如.当时,按照这个运算求的值.四、解答题22.有一个长方体游泳池,它的长为4a2b,宽为ab2,高为ab若要在该游泳池的四周及底面贴上边长为b的正方形防渗漏瓷砖,共需用这样的瓷砖多少块?(用含a、b的代数式表示)23.观察下列等式:9-1=2×4,16-4=3×4,25-9=4×4,36-16=5×4,…,这些等式反映出自然数间的某种规律,设n表示自然数,请你猜想出这个规律,用含n的等式表示出来.并加以证明.24.将4个数a,b,c,d排成2行2列,两边各加一条竖线,记成,定义=ad-bc,上述记法叫做二阶行列式.那么=22表示的方程是一元二次方程吗?若是,请写出它的一般形式.五、综合题25.某商店一种水果第一天以2元/斤的价格卖出a斤,第二天以1.5元/斤的价格卖出b斤,第三天以1.2元/斤的价格卖出c斤,求:(1)这三天共卖出水果多少斤?(2)这三天共卖得多少元?(3)这三天平均售价是多少元/斤?(4)计算当,,时,平均售价是多少?26.求值(1)先化简再求值:5x2-(x-2)(3x+1)-2(x+1)(x-5),其中x=-1.(2)已知a+b=4,ab=2,求a3b+2a2b2+ab3的值.27.阅读下列一段话,并解决后面的问题观察下面一列数:1,2,4,8,我们发现,这一列数从第2项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比.(1)、等比数列5,-15,45,的第4项是________.(2)如果一列数是等比数列,且公比为,那么根据上述的规定,有,,,所以,,,________(用q和a1的代数式表示).(3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.28.对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=0.(1)代数式x2﹣2的不变值是________,A=________.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=0,求b的值.答案一、单选题1. B2. D3. A4. B5. B6. D7. C8. B9. C 10. C 11. B 12. A二、填空题13. 0.85x+17 14. (a+b)2-(a-b)2=4ab 15.-5 16. 17. (1010,1) 18. ﹣4036三、计算题19. 解:原式=15a2-(-5a2+3a)=20a2-3a当a= 时,原式=20. (1)观察图形与表格算法可得如下规律:三个角上三个数的积除以三个角上三个数的和等于三角形中的数,由此易得结论.(2)图④:5×(-8)×(-9)=360,5+(-8)+(-9)=-12,y=360÷(-12)=-30,图⑤:=-3,解得:x=-2.21. (1)解:(2)解:由已知得:=2()-1.四、解答题22. 解:由题意,得(4a2b-ab2+2×4a2b·ab+2×ab2·ab) ÷b2=(4a3b3+8a3b2+2a2b3) ÷b2=4a2b+8a3+2a2b答一共需用这样的瓷砖(4a3b+8a3+2a2b)块23. 解:将等式进行整理得:32−12=4(1+1);42−22=4(2+1);52−32=4(3+1);…所以规律为:(n+2)2−n2=4(n+1).证明:左边=n2+4n+4−n2=4n+4,右边=4n+4,左边=右边,所以规律为:(n+2)2−n2=4(n+1)。

初中数学知识点总结:代数式的相关概念

初中数学知识点总结:代数式的相关概念

初中数学知识点总结:代数式的相关概念知识点总结一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情形明白得。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。

专门地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数确实是那个多项式的次数。

四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按那个字母升(降)幂排列。

五、代数式书写要求:1.代数式中显现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一样按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中显现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,假如代数式是积或商的形式,则单位直截了当写在式子后面;假如代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。

六、系数与次数单项式的系数和次数,多项式的项数和次数。

1.单项式的系数:单项式中的数字因数叫做单项式的系数。

注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。

2021年中考数学专题复习-代数式与整式(学案)

2021年中考数学专题复习-代数式与整式(学案)

中考数学一轮专题复习学案02 代数式与整式代数式:像2(x -1),abc ,s t,a 2等式子都是代数式,单独一个数或字母也是 代数式.【例1】苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元【考点】列代数式.【分析】用单价乘数量得出,买2千克苹果和3千克香蕉的总价,再进一步相加即可.【解答】解:单价为a 元的苹果2千克用去2a 元,单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选:C .【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.代数式的值:一般地,用 数值 代替代数式里的字母,按照代数式中的运算关系,计算得出的 结果 ,叫做代数式的值.知识点1:代数式知识点梳理典型例题知识点2:代数式的值知识点梳理【例2】(2020•重庆B 卷5/26)已知a +b =4,则代数式122a b ++的值为( ) A .3B .1C .0D .-1【考点】代数式求值【分析】将a +b 的值代入原式11()2a b =++计算可得. 【解答】解:当a +b =4时,原式11()2a b =++ 1142=+⨯ 12=+3=,故选:A .【点评】本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.典型例题整式思维导图知识点3:整式的加减知识点梳理1.整式加减的实质:合并同类项2.同类项:所含字母相同,并且相同字母的指数也相同的项.如3a与a是同类项,3a与a2不是同类项;所有的常数项是同类项3.合并同类项法则:把同类项的系数相加,字母和字母的指数保持不变,如3a+a=4a,当同类项的系数互为相反数时,合并后的结果为0.4.去括号法则:a+(b+c)=a+ b+c,即括号前是“+”号时,括号内各项均不变号;a-(b+c)=a- b-c,即括号前是“-”号时,括号内各项均变号.典型例题【例3】(2020•通辽2/26)下列说法不正确的是()A.2a是2个数a的和B.2a是2和数a的积C.2a是单项式D.2a是偶数【考点】单项式;合并同类项【分析】分别根据乘法的定义,单项式的定义以及偶数的定义逐一判断即可.【解答】解:A、2a = a + a,即2a是2个数a的和,说法正确;B、2a是2和数a的积,说法正确;C、2a是单项式,说法正确;D、2a不一定是偶数,故原说法错误.故选:D.【点评】本题主要考查了单项式的定义,偶数的定义,熟记相关定义是解答本题的关键.【例4】(2020•天津13/25)计算x+7x-5x的结果等于.【考点】合并同类项【分析】根据合并同类项法则求解即可.【解答】解:x+7x-5x=(1+7-5)x=3x.故答案为:3x.【点评】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.1.同底数幂乘法:底数不变,指数相加,a m ·a n = a m +n ,如 a 3 ·a -2= a .2.同底数幂除法: 底数不变,指数相减 ,a m ÷a n = a m -n (a ≠0)3.幂的乘方: 底数不变,指数相乘 ,(a m )n = a mn4.积的乘方: 各因式乘方的积 ,(a m b n )p =____a mp b np __,如(-2a 2b )3= -8a 6b 3 ,(-ab )2= a 2b 2【例5】(2020•重庆B 卷3/26)计算a ·a 2结果正确的是( )A .aB .a 2C .a 3D .a 4【考点】同底数幂的乘法【分析】根据同底数幂的乘法法则计算即可.【解答】解:a ·a 2= a 1+2= a 3.故选:C .【点评】本题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【例6】(2020•河北11/26)若k 为正整数,则()k k kk k k ++⋯+=个( )A .2k kB .21k k +C .2k kD .2k k +【考点】幂的乘方与积的乘方【分析】根据乘方的定义及幂的运算法则即可求解.【解答】解:22()()()k k k k k kk k k k k k k ++⋯+=⋅==个,故选:A .【点评】本题考查了幂的乘方.解题的关键掌握幂的乘方的运算法则:底数不变,指数相乘.【例7】(2020•陕西5/25)计算:232()3x y -=( ) A .632x y - B .63827x y C .63827x y - D .54827x y - 【考点】幂的乘方与积的乘方知识点4:幂的运算知识点梳理典型例题【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积. 【解答】解:23323363228()()()3327x y x y x y -=-=-. 故选:C .【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【例8】(2020•吉林4/26)下列运算正确的是( )A .a 2·a 3=a 6B .(a 2)3=a 5C .(2a )2=2a 2D .a 3÷a 2=a【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方【分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【解答】解:A 、a 2·a 3=a 5,原计算错误,故此选项不符合题意;B 、(a 2)3=a 6,原计算错误,故此选项不符合题意;C 、(2a )2=4a 2,原计算错误,故此选项不符合题意;D 、a 3÷a 2=a ,原计算正确,故此选项符合题意.故选:D .【点评】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.1.单项式乘以单项式:把系数、相同字母的幂分别相乘,其余字母连同它们的指数作为积的一个因式,如:2x 3y ·3x 2=2 ·3x 3+2y =6x 5y2.单项式乘以多项式:m (a +b )= ma +mb3.多项式乘以多项式:(m +n )(a +b )= ma +mb +na +nb4.(1)乘法公式:(a +b )(a -b )= a 2-b 2 ;(a +b )2= a 2+2ab +b 2 ;(a -b )2= a 2-2ab +b 2 ;(2)常见的变形有:a 2+b 2=(a +b )2-2ab ;(a -b )2=(a +b )2-4ab ;(-a -b )2=(a +b )2;知识点5:整式的乘除知识点梳理(-a+b)2=(a-b)25.单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.如:(3x)2y÷x= 9xy典型例题【例9】(2020•山西3/23)下列运算正确的是()A.3a+2a=5a2B.-8a2÷4a=2a C.-(2a2)3=-8a6D.4a3·3a2=12a6【考点】整式的混合运算【分析】直接利用合并同类项法则以及幂的乘方和积的乘方运算法则、整式的乘除运算法则分别计算得出答案.【解答】解:A、3a+2a=5a,故此选项错误;B、-8a2÷4a=-2a,故此选项错误;C、-(2a2)3=-8a6,正确;D、4a3·3a2=12a5,故此选项错误;故选:C.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.【例10】(2020•北京19/28)已知5x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)+x(x﹣2)的值.【考点】整式的混合运算—化简求值.【答案】见试题解答内容【分析】直接利用乘法公式以及单项式乘多项式运算法则化简,进而把已知代入得出答案.【解答】解:(3x+2)(3x﹣2)+x(x﹣2)=9x2﹣4+x2﹣2x=10x2﹣2x﹣4,∵5x2﹣x﹣1=0,∴5x2﹣x=1,∴原式=2(5x2﹣x)﹣4=﹣2.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.1.(2015•云南12/23)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.2.(2020•广东12/25)如果单项式3m x y与35nx y-是同类项,那么m n+=.3.(2020•广东14/25)已知5x y=-,2xy=,计算334x y xy+-的值为.4.(2020•山西12/23)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).5.(2020•呼和浩特15/24)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,⋯⋯,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为,并可推断出5月30日应该是星期几.6.(2020•赤峰18/26)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.7.(2020•重庆A卷4/26)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()巩固训练A .10B .15C .18D .218.(2020•重庆B 卷8/26)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A .18B .19C .20D .219.(2019·天津市13/25)计算x 5•x 的结果等于 .10.(2019·安徽省2/23)计算a 3•(﹣a )的结果是( )A .a 2B .﹣a 2C .a 4D .﹣a 411.(2020•青海13/28)下面是某同学在一次测试中的计算:①22352m n mn mn -=-;②3262(2)4a b a b a b -=-;③325()a a =;④32()()a a a -÷-=.其中运算正确的个数为( )A .4个B .3个C .2个D .1个12.(2020•江西2/23)下列计算正确的是( )A .325a a a +=B .32a a a -=C .326a a a =D .32a a a ÷=13.(2020•河北2/26)墨迹覆盖了等式“3x 2(0)x x x =≠”中的运算符号,则覆盖的是( )A .+B .-C .⨯D .÷14.(2020•宁夏1/26)下列各式中正确的是( )A .326a a a =B .321ab ab -=C .261213a a a +=+D .2(3)3a a a a -=-15.(2020•新疆兵团3/23)下列运算正确的是( )A .236x x x =B .633x x x ÷=C .3362x x x +=D .33(2)6x x -=-16.(2020•新疆兵团16/23)计算:20(1)|(3)π-++--17.(2020•重庆A 卷13/26)计算:0(1)|2|π-+-= .18.(2020•上海7/25)计算:23a ab = .19.(2020•安徽2/23)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a20.(2020•海南17(2)/22)计算:(2)(2)(1)a a a a +--+.21.(2020•兴安盟•呼伦贝尔2/26)下列计算正确的是( )A .236a a a =B .222()x y x y +=+C .5226()a a a ÷=D .22(3)9xy xy -=22.(2020•通辽14/26)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形⋯,按这样的方法拼成的第(1)n +个正方形比第n 个正方形多 个小正方形.23.(2020•鄂尔多斯4/24)下列计算错误的是( )A .(﹣3ab 2)2=9a 2b 4B .﹣6a 3b ÷3ab =﹣2a 2C .(a 2)3﹣(﹣a 3)2=0D .(x +1)2=x 2+124.(2020•吉林15/26)先化简,再求值:2(1)(1)1a a a ++--,其中a25.(2020•江西7/23)计算:2(1)a -= .26.(2020•广东18/25)先化简,再求值:22()()()2x y x y x y x +++--,其中x =y =.27.(2020•重庆B 卷19(1)/26)计算:2()(3)x y y x y ++-.28.(2020•重庆A 卷19(1)/26)计算:2()(2)x y x x y ++-.1.(2015•云南12/23)一台电视机原价是2500元,现按原价的8折出售,则购买a 台这样的电视机需要 元.【考点】列代数式.【分析】本题要从“以8折出售”入手,从而知现价为2500×80%=2000(元),易得购买a 台这样的电视机的费用为a 2000元;所以解题的关键是理解打折问题在实际问题中应用.【解答】解:a a 2000%802500=⨯(元).故答案:a 2000.2.(2020•广东12/25)如果单项式3m x y 与35n x y -是同类项,那么m n += .【考点】同类项【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得3m =,1n =,再代入代数式计算即可.【解答】解:单项式3m x y 与35n x y -是同类项,3m ∴=,1n =,314m n ∴+=+=.故答案为:4.【点评】本题考查同类项的定义,正确根据同类项的定义得到m ,n 的值是解题的关键.3.(2020•广东14/25)已知5x y =-,2xy =,计算334x y xy +-的值为 .【考点】代数式求值【分析】由5x y =-得出5x y +=,再将5x y +=、2xy =代入原式3()4x y xy =+-计算可得.【解答】解:5x y =-,5x y ∴+=, 当5x y +=,2xy =时,原式3()4x y xy =+-3542=⨯-⨯ 巩固训练解析=-158=,7故答案为:7.【点评】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x y+、xy及整体代入思想的运用.4.(2020•山西12/23)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).【考点】列代数式;规律型:图形的变化类【分析】根据图形的变化发现规律,即可用含n的代数式表示.【解答】解:第1个图案有4个三角形,即4311=⨯+第2个图案有7个三角形,即7321=⨯+第3个图案有10个三角形,即10331=⨯+⋯按此规律摆下去,第n个图案有(31)n+个三角形.故答案为:(31)n+.【点评】本题考查了规律型-图形的变化类、列代数式,解决本题的关键是根据图形的变化寻找规律.5.(2020•呼和浩特15/24)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,⋯⋯,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为,并可推断出5月30日应该是星期几.【考点】规律型:数字的变化类【分析】首先得出5月1日~5月30日,包括四个完整的星期,分别分析5月30日分别为星期一到星期天时所有的可能,进而得出答案.【解答】解:5月1日~5月30日共30天,包括四个完整的星期,5∴月1日~5月28日写的张数为:7(17)41122⨯+⨯=, 若5月30日为星期一,所写张数为11271120++=,若5月30日为星期二,所写张数为11212120++<,若5月30日为星期三,所写张数为11223120++<,若5月30日为星期四,所写张数为11234120++<,若5月30日为星期五,所写张数为11245120++>,若5月30日为星期六,所写张数为11256120++>,若5月30日为星期日,所写张数为11267120++>,故5月30日可能为星期五、六、日.故答案为:112;五、六、日.【点评】此题主要考查了规律型:数字的变化类和推理与论证,根据题意分别得出5月30日时所有的可能是解题关键.6.(2020•赤峰18/26)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2,第三次从A 2点起跳,落点为OA 2的中点A 3;如此跳跃下去…最后落点为OA 2019的中点A 2020,则点A 2020表示的数为 .【考点】数轴;规律型:图形的变化类. 【答案】201912.【分析】根据题意,得第一次跳动到A 1处,离原点为1个单位,第二次跳到OA 1的中点A 2处,即在离原点12个单位处,第三次从A 2点跳动到A 3处,即距离原点(12)2处,依此即可求解.【解答】解:第一次落点为A 1处,点A 1表示的数为1;第二次落点为OA 1的中点A 2,点A 2表示的数为12;第三次落点为OA 2的中点A 3,点A 3表示的数为(12)2; …则点A 2020表示的数为(12)2019,即点A 2020表示的数为201912; 故答案为:201912.【点评】本题考查了数轴,是一道找规律的题目,本题注意根据线段中点的定义表示出各个点表示的数的规律.7.(2020•重庆A 卷4/26)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .21【考点】规律型:图形的变化类【分析】根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1234n ++++⋯⋯+,据此可得第⑤个图案中黑色三角形的个数.【解答】解:第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数312=+,第③个图案中黑色三角形的个数6123=++,⋯⋯∴第⑤个图案中黑色三角形的个数为1234515++++=,故选:B .【点评】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n 个图案中黑色三角形的个数为1234n ++++⋯⋯+.8.(2020•重庆B 卷8/26)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B.19C.20D.21【考点】规律型:图形的变化类【分析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为++,据此求解可得.n n22【解答】解:第①个图形中实心圆点的个数5213=⨯+,第②个图形中实心圆点的个数8224=⨯+,第③个图形中实心圆点的个数11235=⨯+,⋯⋯∴第⑥个图形中实心圆点的个数为26820⨯+=,故选:C.【点评】本题主要考查图形的变化规律,解题的关键是根据已知图形得出第n个图形中实心圆点的个数为22++的规律.n n9.(2019·天津市13/25)计算x5•x的结果等于.【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】解:x5•x=x6.故答案为:x6【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂相乘,底数不变,指数相加.10.(2019·安徽省2/23)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【考点】同底数幂的乘法;单项式乘单项式.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.11.(2020•青海13/28)下面是某同学在一次测试中的计算:①22352m n mn mn -=-;②3262(2)4a b a b a b -=-;③325()a a =;④32()()a a a -÷-=.其中运算正确的个数为( )A .4个B .3个C .2个D .1个【考点】同底数幂的除法;单项式乘单项式;合并同类项;幂的乘方与积的乘方【分析】根据合并同类项法则、单项式乘单项式的运算法则、幂的乘方法则、同底数幂的除法法则计算,判断即可.【解答】解:①23m n 与25mn 不是同类项,不能合并,计算错误;②32522(2)4a b a b a b -=-,计算错误;③32326()a a a ⨯==,计算错误;④3312()()()a a a a --÷-=-=,计算正确;故选:D .【点评】本题考查的是单项式乘单项式、合并同类项、幂的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.12.(2020•江西2/23)下列计算正确的是( )A .325a a a +=B .32a a a -=C .326a a a =D .32a a a ÷=【考点】同底数幂的乘法;同底数幂的除法;合并同类项【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A 、2a 与3a 不是同类项,不能合并,故本选项错误;B 、3a 与2a 不是同类项,不能合并,故本选项错误;C 、应为325a a a =,故本选项错误;D 、32a a a ÷=,正确.故选:D .【点评】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.13.(2020•河北2/26)墨迹覆盖了等式“3x 2(0)x x x =≠”中的运算符号,则覆盖的是( )A .+B .-C .⨯D .÷ 【考点】同底数幂的除法【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:3x 2(0)x x x =≠,∴覆盖的是:÷.故选:D .【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.14.(2020•宁夏1/26)下列各式中正确的是( )A .326a a a =B .321ab ab -=C .261213a a a +=+D .2(3)3a a a a -=-【考点】合并同类项;同底数幂的乘法;单项式乘多项式【分析】利用整式的计算法则对四个选项一一验证即可得出答案.【解答】解:A 、325a a a =,所以A 错误;B 、32ab ab ab -=,所以B 错误;C 、2611233a a a a+=+,所以C 错误; D 、2(3)3a a a a -=-,所以D 正确;故选:D .【点评】本题考查整式乘除法的简单计算,注意区分同底合并同类项的时候字母部分不变,系数进行计算,只有当系数计算结果为0时,整体为0.数幂相乘,底数不变,指数相加,而幂的乘方是底数不变,指数相乘,这两个要区分清楚;15.(2020•新疆兵团3/23)下列运算正确的是( )A .236x x x =B .633x x x ÷=C .3362x x x +=D .33(2)6x x -=-【考点】幂的乘方与积的乘方;同底数幂的乘法;合并同类项;同底数幂的除法【分析】根据同底数幂的乘法、除法和积的乘方以及合并同类项进行判断即可.【解答】解:A 、235x x x =,选项错误.不符合题意;B 、633x x x ÷=,选项正确,符合题意;C 、3332x x x +=,选项错误,不符合题意;D 、33(2)8x x -=-,选项错误,不符合题意;故选:B .【点评】此题考查同底数幂的乘法、除法和积的乘方以及合并同类项,关键是根据法则解答.16.(2020•新疆兵团16/23)计算:20(1)|(3)π-++-【考点】零指数幂;实数的运算;绝对值【分析】原式先计算乘方运算,再算加减运算即可得到结果.【解答】解:20(1)|(3)112π-++-+-=【点评】此题考查了实数的运算,绝对值、零指数幂、熟练掌握运算法则是解本题的关键.17.(2020•重庆A 卷13/26)计算:0(1)|2|π-+-= .【考点】绝对值;零指数幂【分析】根据零次幂和绝对值的意义,进行计算即可.【解答】解:0(1)|2|123π-+-=+=,故答案为:3.【点评】本题考查零次幂和绝对值的性质,掌握零次幂和绝对值的性质是正确计算的前提.18.(2020•上海7/25)计算:23a ab = .【考点】单项式乘单项式【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2236a ab a b =.故答案为:26a b .【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.19.(2020•安徽2/23)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a【考点】同底数幂的除法;幂的乘方与积的乘方【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:原式633a a a =÷=.故选:C .【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.20.(2020•海南17(2)/22)计算:(2)(2)(1)a a a a +--+.【考点】平方差公式;单项式乘多项式【分析】根据平方差公式、单项式乘以多项式的计算方法计算即可.【解答】解:(2)(2)(1)a a a a +--+224a a a =---4a =--.【点评】本题考查平方差公式、单项式乘以多项式的计算方法,掌握运算方法和平方差公式的结构特征是正确计算的前提.21.(2020•兴安盟•呼伦贝尔2/26)下列计算正确的是( )A .236a a a =B .222()x y x y +=+C .5226()a a a ÷=D .22(3)9xy xy -=【考点】完全平方公式;幂的乘方与积的乘方;同底数幂的乘法【分析】根据同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方法则逐项判断即可.【解答】解:A 、235a a a =,故选项错误;B 、222()2x y x y xy +=++,故选项错误;C 、5226()a a a ÷=,故选项正确;D 、22(3)9xy xy -=,故选项错误;故选:C .【点评】本题考查了同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方,掌握运算法则是解题的关键.22.(2020•通辽14/26)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形⋯,按这样的方法拼成的第(1)n +个正方形比第n 个正方形多 个小正方形.【考点】规律型:图形的变化类【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解答】解:第1个正方形需要4个小正方形,242=,第2个正方形需要9个小正方形,293=,第3个正方形需要16个小正方形,2164=,⋯,∴第1n +个正方形有2(11)n ++个小正方形,第n 个正方形有2(1)n +个小正方形,故拼成的第1n +个正方形比第n 个正方形多22(2)(1)23n n n +-+=+个小正方形. 故答案为:23n +.【点评】此题考查的知识点是图形数字的变化类问题,关键是通过图形找出规律,按规律求解.23.(2020•鄂尔多斯4/24)下列计算错误的是( )A .(﹣3ab 2)2=9a 2b 4B .﹣6a 3b ÷3ab =﹣2a 2C .(a 2)3﹣(﹣a 3)2=0D .(x +1)2=x 2+1【考点】整式的混合运算.【答案】D【分析】直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.【解答】解:A 、(﹣3ab 2)2=9a 2b 4,原式计算正确,不合题意;B 、﹣6a 3b ÷3ab =﹣2a 2,原式计算正确,不合题意;C 、(a 2)3﹣(﹣a 3)2=0,原式计算正确,不合题意;D 、(x +1)2=x 2+2x +1,原式计算错误,符合题意.故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.24.(2020•吉林15/26)先化简,再求值:2(1)(1)1a a a ++--,其中a【考点】整式的混合运算-化简求值【分析】根据整式的混合运算顺序进行化简,再代入值即可.【解答】解:原式22211a a a a =+++--3a =.当a =原式=【点评】本题考查了整式的混合运算-化简求值,解决本题的关键是先进行整式的化简,再代入值.25.(2020•江西7/23)计算:2(1)a -= .【考点】完全平方公式【分析】直接利用完全平方公式计算即可解答.【解答】解:22(1)21a a a -=-+.故答案为:221a a -+.【点评】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:222()2a b a ab b ±=±+.26.(2020•广东18/25)先化简,再求值:22()()()2x y x y x y x +++--,其中x =y =.【考点】整式的混合运算-化简求值【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:22()()()2x y x y x y x +++--2222222x xy y x y x =+++--2xy =,当x y =原式2==【点评】本题考查了整式的混合运算-化简求值,解决本题的关键是先化简,再代入值求解.27.(2020•重庆B 卷19(1)/26)计算:2()(3)x y y x y ++-.【考点】单项式乘多项式;完全平方公式【分析】利用完全平方公式和多项式的乘法,进行计算即可;【解答】解:2()(3)x y y x y ++-22223x xy y xy y =+++-,25x xy =+.【点评】本题考查整式的四则运算,掌握计算法则是正确计算的前提.28.(2020•重庆A 卷19(1)/26)计算:2()(2)x y x x y ++-.【考点】完全平方公式;单项式乘多项式【分析】根据整式的四则运算的法则进行计算即可;【解答】解:2()(2)x y x x y ++-22222x xy y x xy =+++-,222x y =+.【点评】考查整式的四则混合运算,掌握计算法则是正确计算的前提.。

2021-2022学年苏科版数学七年级上册第3章:代数式全章复习讲义



【效果验证】
1.由于受 H7N9 禽流感的影响,我市某城区今年 2 月份鸡的价格比 1 月份下降 a%,3 月份比 2 月份下降
b%,已知 1 月份鸡的价格为 24 元/千克.设 3 月份鸡的价格为 m 元/千克,则( )
A.m=24(1﹣a%﹣b%)
B.m=24(1﹣a%)b%
C.m=24﹣a%﹣b%
表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧;行程为
零,表示汽车位于零千米处.两车行程记录如表:
时间(h)
0
5
7
x
甲车位置(km)
190
﹣10
ห้องสมุดไป่ตู้
流动加油车位置(km)
170
270
由上面表格中的数据,解决下列问题:
(1)甲车开出 7 小时时的位置为
km,流动加油车出发位置为
变式: 1、如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线
又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为 3,则另一边的长为( )
a+1
a+4
A.2a+5
B.2a+8
C.2a+3
D.2a+2
2、7 张如图 1 的长为 a,宽为 b(a>b)的小长方形纸片,按图 2 的方式不重叠地放在矩形
(1)设甲用户某月用煤气 x 立方米,用含 x 的代数式表示甲用户该月的煤气费. 若 x≤60,则费用表示为____________;若 x>60,则费用表示为_____________________.
(2)若甲用户 10 月份用去煤气 90 立方米,求甲用户 10 月份应交的煤气费用.

2023中考九年级数学分类讲解 - 第二讲 代数式(含答案)(全国通用版)

第二讲代数式专项一列代数式知识清单1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或__________连接起来的式子叫做代数式.单独一个数或一个字母也是代数式.2.列代数式:(1)关键是理解并找出问题中的数量关系及公式;(2)要掌握一些常见的数量关系,如:路程=速度×时间,工作总量=工作效率×工作时间,售价=标价×折扣等;(3)要善于抓住一些关键词语,如:多、少、大、小、增长、下降等.特别地,探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数字及图形关系分析,探索规律,并能用代数式反映这个规律.3. 代数式的值:用具体数值代替代数式中的字母,按照代数式给出的运算计算出的结果,叫做代数式的值.这个过程叫做求代数式的值.考点例析例1 将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.+100%2x y⨯C.+3100%20x y⨯D.+3100%10+10x yx y⨯分析:根据题意,可知混合后糖水中糖的质量为(10%x+30%y)克,糖水的质量为(x+y)克,则混合后的糖水含糖为混合后的糖的质量除以糖水的质量再乘100%.例2将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为.分析:先根据已知图形中黑色圆点的个数得到第n个图形中黑色圆点的个数为()12n n+;然后判断其中能被3整除的数,得到每3个数中,都有2个能被3整除;再计算出第33个能被3整除的数在原数列中的序数,代入计算即可.归纳:解决数、式或图形规律探索题,通常从给出的一列数、一列式子或一组图形入手去探索研究,通过观察、分析、类比、归纳、猜想,找出其中的变化规律,从而猜想出一般性的结论,并用含字母的代数式进行表示.跟踪训练1.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%2.(2021·达州)如图是一个运算程序示意图,若开始输入x的值为3,则输出的y值为___________.第2题图3.一组按规律排列的式子:a+2b,a2-2b3,a3+2b5,a4-2b7,…,则第n个式子是___________.4.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_______.第4题图专项二整式知识清单一、整式的加减1.相关概念:表示数或字母的_________的式子叫做单项式;几个单项式的和叫做多项式;________与______统称为整式.所含字母_________,并且相同字母的_________也相同的项叫做同类项.2. 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的________,且字母连同它的指数________.3. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号_______;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号_______.4. 整式的加减:几个整式相加减,如果有括号就_______,然后再____________.二、幂的运算1. 同底数幂的乘法:a m·a n=________(m,n是整数).2. 同底数幂的除法:a m÷a n=________ (a≠0,m,n是整数).3. 幂的乘方:(a m)n=_______ (m,n是整数).4. 积的乘方:(ab)n=_______(n是整数).三、整式的乘法1. 单项式乘单项式:把它们的__________、__________分别相乘,对于只在一个单项式里含有的字母,则连同它的___________作为积的一个因式.2. 单项式乘多项式:p(a+b+c)=pa+pb+pc.3. 多项式乘多项式:(a+b)(p+q)=ap+aq+bp+bq.4. 乘法公式:①平方差公式:(a+b)(a-b)=_________ ;②完全平方公式:(a±b)2 =a2±2ab+b2.四、整式的除法1. 单项式相除,把__________与__________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的__________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的每一项除以___________,再把所得的商相加. 考点例析例1 下列运算正确的是()A.2x2 +3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x2分析:依次根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断.例2已知10a=20,100b=50,则1322a b++的值是()A.2B.52C.3D.92分析:将100b变形为102b,根据同底数幂的乘法,将已知的两个式子相乘可得a+2b=3,整体代入求值.例3已知单项式2a4b-2m+7与3a2m b n+2是同类项,则m+n=__________.分析:根据同类项的定义,分别列出关于m,n的方程,求出m,n的值,再代入代数式计算.例4(2021·金华)已知x=16,求(3x-1)2+(1+3x)(1-3x)的值.分析:直接运用完全平方公式、平方差公式将式子展开,然后合并同类项化简,再将x=16代入求值.解:归纳:整式化简求值的关键是把原式化简,然后代入题目中的已知条件求值,其大致步骤可以简记为:一化,二代,三计算.需注意:①无论题目是否指定解题步骤,都应先化简后代入求值;①代入求值时,若代入的是负数或求分数的乘方时要注意添加括号;①当条件给定字母之间的关系时,代入则需要运用整体代入法.跟踪训练1.下列单项式中,a2b3的同类项是()A.a3b2B.2a2b3C.a2b D.ab32.下列计算中,正确的是( ) A .a 5·a 3=a 15 B .a 5÷a 3=a C .()423812a b a b -=D .()222a b a b +=+3.计算:()23a b -=( )A .621a b B .62a bC .521a b D .32a b -4.下列运算正确的是( )A .3a+2b=5abB .5a 2-2b 2=3C .7a+a=7a 2D .(x -1)2=x 2+1-2x 5.计算:(x+2y )2+(x -2y)(x+2y)+x(x -4y).6.先化简,再求值:(x ﹣3)2+(x +3)(x ﹣3)+2x (2﹣x ),其中x =﹣12.专项三 因式分解知识清单1. 定义:把一个多项式化成几个整式的 的形式,像这样的式子变形叫做这个多项式的因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc = _____________.:::⎧⎪⎨⎪⎩系数取各项系数的最大公约数公因式的确定字母取各项相同的字母指数取各项相同字母的最低次数 (2)公式法:①平方差公式:a 2-b 2=_____________; ②完全平方公式:a 2±2ab+b 2 =___________.3. 因式分解的一般步骤:一提(公因式);二套(公式);三检验(是否彻底分解). 考点例析例1 因式分解:1-4y 2=( )A .(1-2y )(1+2y)B . (2-y)(2+y)C . (1-2y)(2+y)D . (2-y)(1+2y) 分析:先将4y 2化为(2y)2,然后用平方差公式分解因式. 例2 已知xy =2,x -3y =3,则2x 3y -12x 2y 2+18xy 3= ______.分析:先提取多项式中的公因式2xy ,再对余下的多项式利用完全平方公式继续分解,最后将xy =2,x -3y =3代入其中求值.归纳:若一个多项式有公因式,应先提取公因式,多项式是二项式优先考虑用平方差公式继续分解,多项式是三项式优先考虑用完全平方公式继续分解,直到不能分解为止.跟踪训练1.因式分解:x3﹣4x=()A.x(x2﹣4x)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.x(x2﹣4)2.多项式2x3-4x2+2x因式分解为()A.2x(x-1)2 B.2x(x+1) 2 C.x(2x-1) 2 D.x(2x+1) 23.因式分解:m2﹣2m=________.4.计算:20212-20202=________.5.因式分解:24ax+ax+a= ___________.6.若m+2n=1,则3m2+6mn+6n的值为___________.7.先因式分解,再计算求值:2x3-8x,其中x=3.专项四分式知识清单一、分式的相关概念1. 定义:如果A,B表示两个整式,并且B中含有_________,那么式子AB叫做分式.分式AB中,A叫做分子,B叫做分母.2. 分式有意义和值为0的条件(1)分式AB有意义⇔_________;(2)分式AB的值为0⇔_________.二、分式的基本性质1. 基本性质:分式的分子与分母乘(或除以)同一个_____________,分式的值不变.2. 约分:把一个分式的分子与分母的____________约去,叫做分式的约分. 约分的结果必须是最简分式或整式,最简分式是分子、分母没有公因式的分式.3. 通分:把几个异分母的分式分别化成与原来的分式相等的____________的分式,叫做分式的通分.通分的关键是确定各分式的____________.三、分式的运算1. 分式的加减同分母分式相加减:a bc c±=____________;异分母分式相加减:a c ad bcb d bd bd±=±=____________.2. 分式的乘除乘法法则:a c b d ⋅=___________;除法法则:a c a d b d b c÷=⋅=___________.3. 分式的乘方法则:把分子、分母分别乘方,如na b ⎛⎫ ⎪⎝⎭=___________. 4. 分式的混合运算:先算___________,再算___________,最后算加减,有括号的先算括号里面的. 考点例析例1 不论x 取何值,下列代数式的值不可能为0的是( ) A .x+1 B .x 2-1C .11x + D .(x+1)2分析:选项A ,B ,D 中都能得到代数式的值为0时x 的值,而选项C 中,分式的分子是1,所以11x +不可能为0.归纳:分式值为0要关注两个条件:(1)分子为0;(2)分母不为0.例2 化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .a +1 B .1a a+ C .-1a aD .21a a +分析:根据分式的混合运算法则,先将括号内的两项通分合并,同时将除式中多项式因式分解,再将除法转化为乘法约分化简即可.归纳:分式的化简中,应注意以下几点:(1)若分子、分母为多项式,则应先分解因式,能约分的先约分,再计算;(2)化简过程中要特别注意常见的符号变化,如x-y=-(y-x),-x-y=-(x+y)等;ꎻ (3)在分式和整式加减运算中,通常把整式看成分母为“1”的“分式”,再进行计算; (4)分式运算的最终结果应是最简分式或整式.例3 先化简,再求值:22121121x x x x x x ++⎛⎫+-÷ ⎪+++⎝⎭,其中x 满足x 2-x-2=0.分析:先把原式化简,然后求出方程x 2-x-2=0的解,根据分式有意义的条件确定x 的值,代入计算即可. 解:跟踪训练 1.要使分式12x +有意义,则x 的取值应满足( ) A .x≠0B .x≠-2C .x ≥-2D .x >-22.计算24541a a a a a --⎛⎫÷+- ⎪⎝⎭的结果是( ) A .22a a +-B .22a a -+C .()()222a a a-+ D .2a a+3.已知非零实数x ,y 满足1xy x =+,则3x y xy xy -+的值等于_________.4.已知()()261212ABx x x x x --=----,求A ,B 的值.5.先化简22111369a a a a a a ⎛⎫-+--÷ ⎪--+⎝⎭,然后从-1,0,1,3中选一个合适的数作为a 的值代入求值.专项五 二次根式知识清单一、二次根式的有关概念1. 二次根式:一般地,形如 (a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含 ;(2)被开方数中不含 的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式. 二、二次根式的性质 (1)2= (a ≥0) ;(2a=(3= (a ≥0,b ≥0); (4= (a ≥0,b >0).三、二次根式的运算1. 二次根式的加减:先将二次根式化成 ,再将被开方数相同的二次根式进行合并.2. 二次根式的乘除:(1= (a≥0,b≥0). (2= (a≥0,b >0). 考点例析 例1 函数()02y x =-的自变量x 的取值范围是( ) A .x ≥-1 B .x >2 C .x >-1且x ≠2 D .x ≠-1且x ≠2分析:根据二次根式有意义的条件、分式有意义的条件以及零指数幂的概念列不等式组求解.(a ≥0), (a <0);归纳:(1)被开方数a≥0;ꎻ(2)观察参数是否在分母位置,分母不能为0;ꎻ (3)观察参数是否有在0次幂的底数位置,底数不能为0. 例2 下列运算正确的是( )A 3B .4=C =D 4=分析:根据二次根式的加、减、乘、除运算法则逐个计算后判断.例3 计算:222122122⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+---.分析:先利用绝对值的性质去掉绝对值符号,同时将后面两个完全平方式展开或利用平方差公式计算,最后再进行加减运算. 解:归纳:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式、因式分解等来简化运算. 跟踪训练1.0x 的取值范围是( )A .x >-1B .x ≥-1且x ≠0C .x >-1且x ≠0D .x ≠02.2,5,m )A .2m-10B .10-2mC .10D .43.设6a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .4.计算=____________.5.的结果是 _____.6.这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a b =则ab=1,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++,则1210S S S +++=__________.专项六 代数式中的数学思想1.整体思想整体思想是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.本讲中求代数式的值时,将某一已知代数式的值作为整体代入计算,就运用了整体思想.例1 已知x-y=2,111x y-=,求x2y-xy2的值.11y=变形后得到y-x=xy,再将x2y-xy2因式分解后,整体代入计算.解:2.从特殊到一般的思想从特殊到一般的思想是指在解决问题时,以特殊问题为起点,抓住数学问题的特点,逐步分析、比较、讨论,层层深入,从解决特殊问题的规律中,寻找解决一般问题的方法和规律,又用以指导特殊问题的解决. 例2 观察下列树枝分杈的规律图,若第n个图树枝数用Y n表示,则Y9-Y4=()A.15×24 B.31×24 C.33×24 D.63×24分析:根据前几个图中的树枝数,可发现树枝分杈的规律为Y n=2n-1①从而可求出Y9-Y4.跟踪训练1.已知x2-3x-12=0,则代数式-3x2+9x+5的值是()A.31 B.-31 C.41 D.-412.按一定规律排列的单项式:a2①4a3①9a4①16a5①25a6①…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n3.若1136xx+=,且0<x<1,则221xx-=_______.4.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有________个交点.第4题图参考答案专项一 列代数式例1 D 例2 1275 1.B 2.2 3.()12112n nn a b +-+-⋅ 4.n 2+n -1专项二 整 式例1 D 例2 C 例3 3例4 解:原式=9x 2-6x+1+1-9x 2=-6x+2.当x=16时,原式=-6×16+2=1.1.B 2.C 3.A 4.D5.解:原式=x 2+4xy+4y 2+x 2-4y 2+x 2-4xy=3x 2.6.解:原式=x 2﹣6x +9+x 2﹣9+4x ﹣2x 2=﹣2x .当x =﹣12时,原式=﹣2×12⎛⎫- ⎪⎝⎭=1. 专项三 因式分解例1 A 例2 361.C 2.A 3.m (m-2) 4.4041 5.()224a x + 6.37. 解:原式=2x(x 2-4)=2x(x+2)(x-2). 当x=3时,原式=2×3×(3+2)(3-2)=30.专项四 分 式例1 C 例2 B例3 解:原式=2221+12121x x x x x x +-+÷+++=()()2+2+112x x x x x ⋅++=x (x +1)=x 2+x . 解方程x 2-x-2=0,得x 1=2,x 2=-1. 因为x+1≠0①所以x≠-1. 当x=2时,原式=22+2=6. 1.B 2.A 3.44.解:因为12A B x x ---=()()()()2112A x B x x x -+---=()()()212A+B x A B x x ----=()()2612x x x ---,所以22 6.A B A B +=⎧⎨--=-⎩,解得42.A B =⎧⎨=-⎩,5.原式=()()()22113331a a a a a a --+--⋅-+=()()()2113331a a a a a a +--+-⋅-+=()()221331a a a a +-⋅-+=2a ﹣6. 因为a =-1或a =3时,原式无意义,所以a 只能取1或0. 当a =1时,原式=2﹣6=﹣4.(当a =0时,原式=﹣6)专项五 二次根式例1 C 例2 C例3 解:原式112-=441.C 2.D 3.A 4.3 5.6.10专项六代数式中的数学思想例11-=,所以y-x=xy.因为x-y=2,所以y-x=xy=-2.y所以原式=xy(x-y)=-2×2=-4.例2 B1.B 2.A 3.-654.19036。

2021年中考必考数学知识点归纳

中考数学知识点总结第一章 实数考点一、实数概念及分类 (3分)1、实数分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽数,如32,7等;(2)有特定意义数,如圆周率π,或化简后具有π数,如3π+8等; (3)有特定构造数,如0.…等; (4)某些三角函数,如sin60o 等考点二、实数倒数、相反数和绝对值 (3分)1、相反数实数与它相反数时一对数(只有符号不同两个数叫做互为相反数,零相反数是零),从数轴上看,互为相反数两个数所相应点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一种数绝对值就是表达这个数点与原点距离,|a|≥0。

零绝对值时它自身,也可当作它相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数不不大于零,负数不大于零,正数不不大于一切负数,两个负数,绝对值大反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于自身数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一种数平方等于a ,那么这个数就叫做a 平方根(或二次方跟)。

一种数有两个平方根,她们互为相反数;零平方根是零;负数没有平方根。

正数a 平方根记做“a ±”。

2、算术平方根正数a 正平方根叫做a 算术平方根,记作“a ”。

正数和零算术平方根都只有一种,零算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 双重非负性:-a (a <0) a ≥03、立方根如果一种数立方等于a ,那么这个数就叫做a 立方根(或a 三次方根)。

一种正数有一种正立方根;一种负数有一种负立方根;零立方根是零。

注意:33a a -=-,这阐明三次根号内负号可以移到根号外面。

2021年中考数学复习-数式规律(解析版)

类型一数式规律1.探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它的体积小,密度大,吸引力强,任何物体到它那里都别想再“爬出来”,无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.譬如:任意找一个3的倍数的数,先把这个数的每个数位上的数字都立方,再相加,得到一个新的数,然后把这个新数每个数位上的数字再立方,求和…,重复运算下去,就能得到一个固定的数T=_________,我们称它为数字“黑洞”,T 为何具有如此魔力通过认真的观察、分析,你一定能发现它的奥秘!此短文中的T 是( )A .363B .153C .159D .456 【答案】B ;【解析】把6代入计算,第一次立方后得到216;第二次得到225;第三次得到141;第四次得到66;第五次得到432;第六次得到99;第七次得到1458;第八次得到702;第九次得到351;第十次得到153;开始重复,则T=153.故选B .【点评】此题只需根据题意,任意找一个符合条件的数进行计算,直至计算得到重复的数值,即是所求的黑洞数.可以任意找一个3的倍数,如6.第一次立方后得到216;第二次得到225;…;第十次得到153;开始重复,则可知T=153.2.(1)有一列数174,103,52,21--,…,那么依此规律,第7个数是______; (2)已知123112113114,,,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯=4a 6541⨯⨯,,24551 =+依据上述规律,则99a = . 【答案】(1) 750-; (2)1009999.【解析】(1) 符号:单数为负,双数为正,所以第7个为负.分子规律:第几个数就是几,即第7个数分子就是7,分母规律:分子的平方加1,第7个数分母就是50.所以第7个数是750-. (2)99a =.99991001001101100991=+⨯⨯【点评】(1) 规律:21)1nnn •+(-(n 为正整数); (2)规律:111(1)(2)1(2)n n n n n n n ++=++++(n 为正整数). 3.(1)先找规律,再填数:111111*********1,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则(2)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)]= . 【答案】(1)11006;(2)1; 【解析】(1)规律为:111111(1)2n n n n n +-=+++(n 为正整数). (2) [2★(﹣4)]×[(﹣4)★(﹣2)]=2-4×(-4)2=1. 4.a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2009a = .【答案】因为113a =-,,43.)31(112=--=a ,4.43113=-=a ,31.4114-=-=a ,43.)31(115=--=a ,4.43116=-=a ……..三个一循环,因此2009a =.43)31(112=--=a5.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算8×9和6×7的两个示例.(1)用法国“小九九”计算7×8,左、右手依次伸出手指的个数是多少?(2)设a、b都是大于5且小于10的整数,请你说明用题中给出的规则计算a×b的正确性?【答案】2,3【解析】(1)按照题中示例可知:要计算7×8,左手应伸出7-5=2个手指,右手应伸出8-5=3个手指;(2)按照题中示例可知:要计算a×b,左手应伸出(a-5)个手指,未伸出的手指数为5-(a-5)=10-a;右手应伸出(b-5)个手指,未伸出的手指数为5-(b-5)=10-b两手伸出的手指数的和为(a-5)+(b-5)=a+b-10,未伸出的手指数的积为(10-a)×(10-b)=100-10a-10b+a×b根据题中的规则,a×b的结果为10×(a+b-10)+(100-10a-10b+a×b)而10×(a+b-10)+(100-10a-10b+a×b)=10a+10b-100+100-10a-10b+a×b=a×b所以用题中给出的规则计算a×b是正确的.6.将正偶数按下表排列:第1列第2列第3列第4列第1行 2第2行 4 6第3行 8 10 12第4行 14 16 18 20……根据上面的规律,则2006所在行、列分别是________.【答案】第45行第13列【解析】观察数列2,4,6,8,10,...每个比前一个增大2,2006是这列数字第1003个.每行数字的个数按照1,2,3,4,5,...,n 递增,根据等差数列求和公式,第n 行(包括n 行)以前的所有数字的个数(1)2n n +. 如果2006在第n 行,那么10032)1(≥+nn设10032)1(=+n n ,解得n 约为44.5,n 取整数,因此n=45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021中考数学知识点【代数式】
2021中考数学知识点【代数式】
一、重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独
的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式
没有加减运算的整式叫做单项式。

(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,=x, =│x│等。

4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数,=│a│
②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数
⑴ ( —幂,乘方运算)
① a 0时,②a 0时, 0(n是偶数), 0(n是奇数)
⑵零指数:=1(a≠0)
负整指数:=1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质:= (m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。

8.因式分解:⑴定义;⑵方法:a.提公因式法;b.公式法;c.十字相乘法;d.分组分解法;e.求根公式法。

9.算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b 0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:a. ;b. ;c. .
11.科学记数法:(1≤a 10,n是整数
本文链接:/fanwen/xuexizongjie/2800532.htm。

相关文档
最新文档