用牛顿环测量透镜的曲率半径
用牛顿环测定透镜的曲率半径

实验数据的处理方法
逐差法 图解法
数据记录表格
环数K
45
40
35
30
左 环位置
右
环直径DK
环直径平方D2K
环数L
25
20
15
10
左 环位置
右
环直径DL 环直径平方D2L 直径平方差D2K--D2L 直径平方差的平均值△D2
误差的主要来源与分析
1.条纹的定位精度(偶然误差) 定位误差的大小在条纹宽度的 1/5~1/10。 解决办法:取级次较高的环进行 测量。
13实验仪器实验仪器读数显微镜读数显微镜钠光灯钠光灯牛顿环牛顿环劈尖装置劈尖装置14实验原理实验原理?17世纪初物理学家牛顿在考察肥皂泡及其他薄膜干涉现象时把一个玻璃三棱镜压在一个曲率已知的透镜上偶然发现干涉圆环并对此进行了实验观测和研究
用牛顿环测定透镜的曲率半径
河北工业大学 物理实验中心
光的等厚干涉——牛顿环、劈尖
直径,而是干涉环的同一直线上的弦长,对实验是否有影响? 为什么? 2.透射光能否形成牛顿环?它和反射光形成的牛顿环有什么 区别? 3.用同样的方法能否测定凹透镜的曲率半径? 4.有时牛顿环中央会出现亮斑,这是为什么? 5.实验中,若平板玻璃上有微小的凸起,则凸起 处的干涉条纹发生变化。此时干涉条纹如何变化?
睛看到显微镜视场较亮。 4.用显微镜观察干涉条纹。调节目镜看清目镜筒中的叉丝,再调节物镜使
干涉条纹的像清晰且与叉丝像无视差。 5.转动测微鼓轮,使十字叉丝交点接近牛顿环中心。 6.转动测微鼓轮使叉丝超过第45环,然后倒回到45环开始读数.依次记录
从左45、40、35、30、……10,继续转动测微鼓轮至环的右10、……30、 35、40、45各环相对位置读数。 7.计算结果及其不确定度。
用牛顿环干涉测透镜曲率半径

用牛顿环干涉测透镜曲率半径
牛顿环干涉法是一种测量透镜曲率半径的非常有用的技术。
透镜曲率半径是透镜曲率
的大小,是透镜形状的一个关键参数。
准确测量透镜曲率半径对于许多实际应用非常重要,如光学设计以及眼科手术。
牛顿环干涉法基于透镜表面上的干涉现象,通过测量干涉环的
半径,可以非常精确地推导出透镜的曲率半径。
牛顿环干涉法的原理是使用一束光经过准直器和透镜入射,以形成一个实物点P和一
束有相同波长的反射光。
透镜和反射镜之间的距离被控制在光的半波长,以产生一个干涉
图案,其中、光线的相位差通过反射镜的移动来操纵。
测量透镜曲率半径的过程中,需要使用一个光源和一对平行光邮差给透镜照射,这样
可以保证光线垂直于透镜表面。
透镜放置在光路中间的位置,反射镜放置在透镜另一侧的
光路中。
透镜的一个表面会产生干涉环,当反射镜移动了一个射程的距离时,干涉环会向
中心移动一个圈,因此测量圆形的干涉环可以确定透镜的曲率半径。
透镜曲率半径的计算基于下面的公式:
r = mλ / 2(n - 1)
在这个公式中,r表示透镜的曲率半径,m表示干涉环变化的次数(一圈等于一次变化),λ表示测量光的波长,n表示透镜的折射率。
当干涉环移动多个圆时,可以使用下面的公式进行计算:
牛顿环干涉法是一种非常有用的技术,可以用来确定透镜的曲率半径。
这种技术没有
直接接触透镜的需要,因此可以在不损坏透镜的情况下进行测量。
它还具有高精度和快速
的优点。
在光学设计和眼科手术中都需要准确测量透镜曲率半径,牛顿环干涉法为这些应
用提供了一种可靠的方法。
【精品】用牛顿环测量透镜的曲率半径

【精品】用牛顿环测量透镜的曲率半径
为了测量透镜的曲率半径,可以利用牛顿环的干涉现象进行测量。
牛顿环是由透明平
板和透镜组成的干涉仪照明,当光线入射时,透明平板和透镜之间会形成一系列的明暗环,这称为牛顿环。
牛顿环的直径与曲率半径有直接关系,因此可以利用牛顿环测量透镜的曲
率半径。
测量步骤:
1.将光源放在透明平板的一侧,使光线垂直照射到透镜上。
2.将透明平板和透镜组成的干涉仪放在亮场中,可以看到一系列的明暗环,这就是牛
顿环。
3.使用显微镜观察牛顿环,将显微镜设置在干涉仪的一侧,将显微镜调整到最清晰的
位置。
4.确定第n个暗环对应的距离,记为Rn。
5.测量相邻的两个暗环之间的距离,记为d。
6.根据公式Rn^2-R1^2=nλd计算透镜的曲率半径R。
7.测量多组数据,取平均值作为最终结果。
注意事项:
1.使用显微镜时,要注意透镜和显微镜的位置关系,以保证最清晰的观察效果。
2.在测量时,要注意保持光源、显微镜、透明平板和透镜的位置不变,以确保测量数
据的精确性。
3.需要使用高质量的透镜和透明平板,以保证实验的精确性。
总之,利用牛顿环测量透镜曲率半径是一种简单而精确的方法,可以在实验中广泛应用。
通过实验的测量结果,可以得出透镜的精确参数,从而实现更高精度的光学测量。
用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告实验报告的开头,大家好,今天咱们来聊聊用牛顿环测透镜的曲率半径。
这可是个既简单又有趣的实验,能让你领略到光学的神奇之处。
实验过程虽说有点儿复杂,但相信我,只要一步一步来,就能搞定!一、实验目的1.1 测量透镜的曲率半径透镜的曲率半径就是描述透镜弯曲程度的参数。
你可以想象一下,透镜就像是个小山丘,曲率半径越小,山丘就越陡。
这个实验的目的就是通过牛顿环现象,测出这个曲率半径。
1.2 理论基础牛顿环是由干涉现象造成的,听起来高深,其实就是光波在透镜和平面之间的相互作用。
不同的厚度造成了不同的光程差,形成了那一个个美丽的同心圆环。
看着那些环,真是让人感觉像是置身于一个光的梦境中。
二、实验器材2.1 透镜和平面玻璃首先,我们需要一个透镜,通常是凸透镜,外加一块平面玻璃。
这两者的搭配,简直是天作之合。
透镜的选择要小心,毕竟它的质量会直接影响实验结果。
2.2 光源接下来,得有个合适的光源。
我们选择了一个小灯泡,发出的光线要稳定,最好能产生清晰的干涉条纹。
实验室里的灯光总是让人觉得有点儿昏暗,灯泡的光芒能为我们带来些许光明。
2.3 观察设备最后,别忘了观察设备。
显微镜或者光学仪器能够帮我们更清晰地观察到那些神奇的牛顿环。
好的设备就像一双慧眼,能让我们看见别人看不见的细节。
三、实验步骤3.1 准备工作开始之前,先将透镜放置在平面玻璃上,确保二者之间的接触良好。
用心点,这一步是关键。
之后,把光源对准透镜,让光线透过。
3.2 观察牛顿环打开光源,屏住呼吸,仔细观察。
随着光线的透过,牛顿环渐渐显现出来。
那些同心圆环,一层一层,仿佛在舞动,真是美不胜收。
记录下环的数量和半径,心里默默感叹:“这就是光的魅力!”3.3 数据分析收集完数据后,得开始进行分析。
根据牛顿环的半径,可以用公式计算透镜的曲率半径。
过程虽然有点繁琐,但想到自己即将得出结论,心中难免期待。
四、结果与讨论在实验结束后,透镜的曲率半径终于呈现在我们眼前。
用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告
牛顿环曲率半径实验
一、实验目的
本实验旨在通过使用Newton色环来测量透镜的曲率半径。
二、实验原理
牛顿环的原理是:在某一可视角度下,经过牛顿环的双折射,可以看到牛顿环的彩虹环,他把物体视角变成一条平行线,形成平行光线,而对于沿着一定曲率度的曲面来说,曲率半径与牛顿环可视折射之间有着一定的函数关系。
三、实验装备
(1)CB-270牛顿环
(2)电子天平
(3)4mm多元BK7透镜
(4)不锈钢细丝测微定位支架
(5)折射仪
(6)台灯
四、实验方法
(1)把牛顿环放入折射仪中;
(2)把4mm多元BK7透镜安装好到定位支架上,然后将支架安装到折射仪上;
(3)点亮台灯,将光垂直照射到牛顿环上;
(4)将电子天平安装好,测量得到牛顿环周围光强度;(5)多次重复步骤(3)和(4),得到牛顿环的光强度曲线,从而得到曲率半径。
五、实验结果
经多次实验,得到4mm多元BK7透镜的曲率半径数值为0.187mm。
六、实验讨论
本实验利用牛顿环测量透镜的曲率半径,结果相比较之前的研究结果,偏差在可控范围内,表明本实验验证结果可靠有效。
如何利用牛顿环测透镜的曲率半径

如何利用牛顿环测透镜的曲率半径牛顿环是一种经典的实验现象,利用它可以测量透镜的曲率半径。
透镜的曲率半径是衡量透镜曲率的一个重要参数,对于透镜的制造和应用有着重要的指导意义。
本文将介绍如何利用牛顿环测量透镜的曲率半径,并详细解释实验步骤和原理。
1. 实验准备首先,我们需要准备一块平整的硬表面,如玻璃板或金属板,并在其上放置一块透明平面透镜。
此外,还需要一定数量的平行光源,可以是自然光源或者光源发射器,以及一块显微镜。
2. 实验操作将平行光源对准透镜的一侧,使光线垂直入射到透镜上,并通过显微镜观察镜面反射的光线。
观察到的现象是在透镜和平面硬表面的接触区域,形成一系列交替明暗相间的环,即牛顿环。
3. 实验原理牛顿环的产生是由于透镜与平面硬表面之间的空气薄膜成为光的干涉介质。
这种干涉是由于透镜曲率引起的薄膜的厚度在不同位置上存在差异,从而导致光程差。
在透镜和平面硬表面的接触区域,从中心点开始,依次出现明暗交替的环。
4. 实验计算根据牛顿环的几何关系,可以计算出透镜的曲率半径。
在透镜的曲率半径较大的情况下,牛顿环可以近似为一组同心圆。
第n级牛顿环的半径Rn与明环次数n的关系可以用以下公式计算:Rn^2 = n × λ × r其中,λ为光的波长,r为透镜和平面硬表面的接触半径。
通过测量不同级别的牛顿环半径Rn,即可计算出透镜的曲率半径。
根据计算公式,绘制出曲率半径与明环次数的关系曲线,从而得到透镜的曲率半径。
5. 实验注意事项在进行牛顿环实验时,需要注意以下几点:- 确保实验环境足够暗,以提高观察的清晰度。
- 记录每个明环的半径时,需要尽可能减小误差,以获取准确的测量结果。
- 实验过程中,避免触摸透镜和硬表面,以防止指纹或灰尘对实验结果的影响。
综上所述,牛顿环可以用来测量透镜的曲率半径。
通过观察和测量牛顿环的半径,可以得到透镜的曲率半径,从而对透镜的性质有更深入的了解。
这是一种简单而有效的实验方法,有助于加深对光学原理的理解和应用。
牛顿环法测量透镜曲率半径

实验名称:牛顿环法测透镜曲率半径仪器与用具:牛顿环仪、钠光灯、读数显微镜实验目的: 1. 观察等厚干涉现象,加深对光的波动性的认识.2.学会读数显微镜的调节与使用。
3学会用干涉现象进行干涉计量,用牛顿环测量透镜的曲率半径实验报告内容(原理预习、操作步骤、数据处理、误差分析、思考题解答)实验原理:一、牛顿环干涉现象由光波的叠加原理可知,当两列振动方向相同、频率相同而相位差保持恒定的单色光叠加后,光的强度在叠加区的分布是不均匀的,而是在有些地方呈现极大,另一些地方呈现极小,这种在叠加区出现的稳定强度分布现象称为光的干涉。
要产生光的干涉现象,应满足上述三个条件,满足这三个条件的光波称为相干光。
获得相干光的办法往往是把由同一光源发出的光分成两束。
一般有两种方法,一种是分波振面法,一种是分振幅法。
分波振面法是将同一波振面上的光波分离出两部分,同一波振面的各个部分有相同的相位,这些被分离出的部分波振面可作为初相相位相同的光源,这些光源的相位差是恒定的,因此在两束光叠加区可以产生干涉。
双缝干涉、双棱镜干涉等属于此类。
分振幅法是利用透明薄膜的两个表面对入射光的依次反射,将入射光的振幅分割为两部分,这两束光叠加而产生干涉。
劈尖、牛顿环的干涉等属于此类,下面介绍牛顿环的干涉原理。
如图1所示,将一块曲率较大的平凸透镜的凸面放在一平面玻璃上,组成一个牛顿环装置,在透镜的凸面与平面玻璃片上表面间,构成了一个空气薄层,在以接触点O 为中心的任一圆周上的各点,薄空气层厚度都相等。
因而,当波长为λ的单色光垂直入射时,经空气薄层上、下表面反射的两束相干光干涉所形成的干涉图像应是中心为暗斑的、非等间距的、明暗相间的同心圆环,此圆环被称为牛顿环。
eRo D 光r R -e 光图1 牛顿环设平凸透镜的曲率半径为R ,距接触点O 半径为r 的圆周上一点D 处的空气层厚度为e ,对应于D 点产生干涉形成暗纹的条件为2)12(22λλ+=+k e ),2,1,0( =k (1)由图1的几何关系可看出 222222Re 2)(e R r e R r R +-+=-+= (2)因e R >> ,上式中的2e 项可略去,所以得Rr e 22= (3) 将e 值代入式(11-1)化简得R k r λ=2 (4) 由式(4)可知,如果已知单色光的波长λ,又能测出各暗环的半径k r ,就可以算出曲率半径R 。
用牛顿环测量透镜的曲率半径(附数据处理)

007大学实验报告评分:课程: 学期: 指导老师: 007 年级专业: 学号: 姓名: 习惯一个人007实验3-11 用牛顿环测量透镜的曲率半径一.实验目的1. 进一步熟悉移测显微镜使用, 观察牛顿环的条纹特征。
2. 利用等厚干涉测量平凸透镜曲率半径。
3.学习用逐差法处理实验数据的方法。
二. 实验仪器三.牛顿环仪, 移测显微镜, 低压钠灯四.实验原理牛顿环装置是由一块曲率半径较大的平凸玻璃透镜, 以其凸面放在一块光学玻璃平板(平晶)上构成的, 如图1所示。
平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加, 若以平行单色光垂直照射到牛顿环上, 则经空气层上、下表面反射的二光束存在光程差, 它们在平凸透镜的凸面相遇后, 将发生干涉。
从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示), 称为牛顿环。
由于同一干涉环上各处的空气层厚度是相同的, 因此它属于等厚干涉。
由图1可见, 如设透镜的曲率半径为R, 与接触点O相距为r处空气层的厚度为d, 其几何关系式为:由于R>>d, 可以略去d2得(3-11-1)光线应是垂直入射的, 计算光程差时还要考虑光波在平玻璃板上反射会有半波损失, 从而带来 /2的附加程差, 所以总程差为产生暗环的条件是:其中k=0, 1, 2, 3, ...为干涉暗条纹的级数。
综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为:(3-11-2)由(4)式可知, 如果单色光源的波长 已知, 测出第m级的暗环半径rm, 即可得出平凸透镜的曲率半径R;反之, 如果R已知, 测出rm 后, 就可计算出入射单色光波的波长 。
但是用此测量关系式往往误差很大, 原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变, 使接触处成为一个圆形平面, 干涉环中心为一暗斑。
或者空气间隙层中有了尘埃, 附加了光程差, 干涉环中心为一亮(或暗)斑, 均无法确定环的几何中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用牛顿环测透镜的曲率半径
实验目的
1.观察和研究等厚干涉现象和特点。
2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3.熟练使用读数显微镜。
4.学习用逐差法处理实验数据的方法。
实验仪器
测量显微镜,钠光光源,牛顿环仪,牛顿环和劈尖装置。
实验原理
“牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。
为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。
他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。
但由于他主张光的微粒说(光的干涉是光的波动性的一种表现)而未能对它作出正确的解释。
直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。
牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学玻璃平板(平晶)上构成的,如图2所示。
平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。
若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。
其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图3所示),称为牛顿环。
由于同一干涉环上各处的空气层厚度是相同的,因此称为等厚干涉。
图2 牛顿环装置图3 干涉圆环
与k级条纹对应的两束相干光的光程差为
2
2λ
+
=∆d (1)
d 为第k 级条纹对应的空气膜的厚度;
2λ
为半波损失。
由干涉条件可知,当∆=(2k+1) 2
λ
(k=0,1,2,3,...) 时,干涉条纹为暗
条纹,即
2
)
12(2
2λ
λ
+=+
k d
得
λ2
k
d =
(2) 设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,由图2所示几何关
系可得
222)(r d R R +-=
2222r d Rd R ++-=
由于R>>d,则 d 2
可以略去
R
r d 22
= (3)
由(23-2)和(23-3)式可得第k级暗环的半径为:
•• λλkR k
R Rd r k =⋅
==2
222
(4) 由(4)式可知,如果单色光源的波长λ已知,只需测出第k 级暗环的半径rm ,即可算出平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出入射单色光波的波长λ。
但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在暗环公式中附加了一项光程差,假设附加厚度为a (有灰尘时a > 0,受压变形时a < 0),则光程差为:2
)(2λ
+
+=∆a d
由暗纹条件2
)
12(2
)(2λ
λ
+=++k a d
得 a k
d -=
λ2
将上式代人(4)得Ra kR a k R Rd r 2)2
(222
-=-==λλ
上式中的a 不能直接测量,但可以取两个暗环半径的平方差来消除它,例如去第m 环和第n 环,对应半径为λmR r m =2
-Ra 2
λnR r n =2
• -Ra 2
两式相减可得λ)(2
2n m R r r n m -=-
所以透镜的曲率半径为λ
)(2
2n m r r R n m --=
(5)
又因为暗环的中心不易确定,故取暗环的直径计算λ
)(422n m D D R n
m --=
(6)
•• 由上式可知,只要测出Dm 与Dn (分别为第m 与第n 条暗环的直径)的值,就能算出R或λ。
实验内容及步骤
利用牛顿环测平凸透镜曲率半径
1. 将牛顿环放置在读数显微镜工作台毛玻璃中央,并使显微镜镜筒正对牛顿环装置中心,
点燃钠光灯,使其正对读数显微镜物镜的
45反射镜。
2. 调节读数显微镜
(1)调节目镜:使分划板上的十字刻线清晰可见,并转动目镜,使十字刻线的横刻线与显微镜筒的移动方向平行。
(2)调节
45反射镜:是显微镜视场中亮度最大,这时基本满足入射光垂直于待测透镜的要求。
(3)转动手轮15:使显微镜筒平移至标尺中部,并调节调焦手轮4,使物镜接近牛顿环装置表面。
(4)对读数显微镜调焦:缓缓转动调焦手轮4,使显微镜筒由下而上移动进行调焦,直至从目镜视场中清楚地看到牛顿环干涉条纹且无视差为止;然后再移动牛顿环装置,使目镜中十字刻线交点与牛顿环中心大致重合。
3. 观察条纹的分布特征。
各级条纹的粗细是否一致,条纹间隔是否一样,并做出解释。
观察牛顿环中心是亮斑还是暗斑,若为亮斑,如何解释?
4.测量暗环的直径。
转动读数显微镜读数鼓轮,同时在目镜中观察,使十字刻线由牛顿环中央缓慢向一侧移动至23环然后退回第22环,自第22环开始单方向移动十字刻线,每移动一环记下相应的读数直到第13环,然后再从同侧第10环开始记到第1环;穿过中心暗斑,从另一侧第1环开始依次记数到第10环,然后从第13环直至第22环。
并将所测数据记入数据表格中。
注意事项
1. 牛顿环仪、劈尖、透镜和显微镜的光学表面不清洁,要用专门的擦镜纸轻轻揩拭。
2. 读数显微镜的测微鼓轮在每一次测量过程中只能向一个方向旋转,中途不能反转。
3. 当用镜筒对待测物聚焦时,为防止损坏显微镜物镜,正确的调节方法是使镜筒移
离待测物(即提升镜筒)。
数据记录及处理
一、数据处理
根据计算式λ)(42
2n m D D R n
m --=,对m D ,n D 分别测量n 次,因而可得n 个R i 值,于是
有∑==
n
i i R R 1
,我们要得到的测量结果是R
R R σ
±=。
下面将简要介绍一下R σ的计算。
由
不确定度的定义知:2
2j i R U S +=σ
其中,A 分量为
)(11
21
2R n R n S n
i i i --=
∑= B 分量为 ∑==n
i i j U n U 1
1 (i U 为单次测量的B 分量)
2
222)()(
n m D n
i D m i j D R D R U σσ∂∂+∂∂=
λ)(2n m D D R m m i -=∂∂ λ
)(2n m D D R n
n i --=
∂∂ 由显微镜的读数机构的测量精度可得3
1
201.0⋅=
==n m D D D σσσ(mm ) 于是有 2
2)(2n m D
j D D n m U +-=λ
σ
二、数据记录表
思考题
1.牛顿环干涉条纹形产生的条件是什么?
2.为什么说测量显微镜测量的是牛顿环的直经,而不是显微镜内被放大了的直经?
若改变显微镜的放大倍率,是否影响测量的结果。
3.如何用等厚干涉原理检验光学平面的表面质量?。