牛顿环
牛顿环原理详解

牛顿环原理是一种力学原理,由英国科学家牛顿提出。
牛顿环原理指出,两个质点之间的相互作用力等于这两个质点的质量之积除以两个质点间距离的平方。
这个原理被称为牛顿环定律,常用来解释两个质点之间的引力关系。
牛顿环定律的数学表达式如下:
F =
G * m1 * m2 / r^2
其中,F是两个质点之间的相互作用力,G是常数,m1和m2是两个质点的质量,r是两个质点间的距离。
牛顿环原理的应用非常广泛,它可以用来解释地球与太阳之间的引力关系,也可以用来解释人体的重力感知。
牛顿环原理的概念和方法在物理学、天文学和力学等领域都有着广泛的应用。
牛顿环

引言“牛顿环”是牛顿在1675年制作天文望远镜时,偶然把一个望远镜的物镜放在平板玻璃上发现的。
因为是牛顿发现的,所以称为牛顿环。
牛顿环实际上是一种利用分振方法实现等厚干涉现象,实验原理并不复杂,但却有其研究价值和实用意义。
牛顿实验原理——光的干涉广泛应用于科学研究,工业生产和检验技术中。
如:利用光的干涉法进行薄膜等厚、微小角度、曲面的曲率半径等几何量的精密测量,也普遍应用于检测加工工件表面的光洁度和平整度及机械零件的内力分布等。
因此不管对于科学研究还是实验教学,研究牛顿环是很有意义的。
牛顿环干涉实验是大学物理实验中的一个经典实验项目,几乎所有的理科大学都开设有这样一个实验。
牛顿环实验既能够培养学生的基本实验技能,又能提高学生解决问题的能力。
学生们在做此实验的过程中往往都需要眼睛紧紧地盯着显微镜目镜仔细观察,同时还需要移动牛顿环装置和调焦手轮,寻找最清晰的干涉条纹并要移动到最佳观察位置。
学生长时间用肉眼观测数据容易出现视觉疲劳,造成干涉条纹数错和条纹位置测不准,最终导致实验结果的不准确。
还有在传统的牛顿环实验中,教师要逐一检查学生调节后的现象工程量很大,不仅影响了教师的视力,而且该过程也不能够及时反馈学生实验的情况,严重影响了教学质量。
在传统牛顿环实验装置中加入摄像头和显示器以达可到更好的教学效果,同时也可以保护教师和学生的眼睛。
1. 牛顿环实验的相关知识1.1牛顿环实验的重要性牛顿环实验是大学物理实验中的一个经典实验项目,是光学基础性实验。
它的重要性首先在于,从原理上讲,它主要是研究光的等厚干涉,这在大学物理理论课上是作为一个重点章节讲述的,通过做相应的大学物理实验,可以加深学生对物理学理论的深刻理解,从实际动手操作中帮助学生学习物理学理论。
其次,它不仅是典型的等厚干涉条纹,同时也为光的波动提供了重要的实验证据。
再者,从牛顿环实验应用的角度来说,利用牛顿环可以测平凸透镜的曲率半径,入射光的波长以及根据牛顿环的干涉花样好薄膜干涉原理可以判定光学平面的质量。
牛顿环

牛 顿 环(Newton ring )
牛顿最先详细研究过的一种等厚干涉现象。
把一个曲率半径很大的凸透镜放在一块平面玻璃板上,其间有一厚度逐渐变化的空气层。
用单色光垂直照射(图1-22-28),
从反射中可以看到一组明暗相间的圆环,这是光从空气层上下表面反射后产生的等厚干涉条纹。
这些环形的干涉条纹就叫做牛顿环。
由于有半波损失,中心O 点处(光程差δ=0)是暗点,第m 条暗环的半径是:
==m mR r m ,λ1,2,3……
式中R 是凸透镜的曲率半径,λ是光在真空中的波长。
相邻各环半径之比r 1:r 2:r 3…= 3:2:1即随着级数m 增大,干涉条纹变密。
如果测出某一暗环的半径r m 及它外面另一暗环的半径r m+k ,也可由下式求出凸透镜的曲率半径:
λ
k r r R m k m 22-=+ 从透射光中也可以看到环形的明暗条纹,但明暗条纹的位置与反射光中的相反,它的中心是亮点。
牛顿环现象可用来检查生产出的光学元件(透镜)表面的曲率是否合格,并能判断应如何进一步研磨使其符合标准。
大学牛顿环实验报告

一、实验目的1. 观察和分析牛顿环等厚干涉现象;2. 学习利用干涉现象测量透镜的曲率半径;3. 学会使用读数显微镜进行测量;4. 理解光的干涉原理及其在光学实验中的应用。
二、实验原理牛顿环实验是研究等厚干涉现象的经典实验。
实验装置主要由一块平面玻璃板和一块平凸透镜组成。
当平凸透镜的凸面与平面玻璃板接触时,在接触点附近形成一层厚度不等的空气膜。
当单色光垂直照射到空气膜上时,反射光束在上表面和下表面相遇发生干涉,形成明暗相间的同心圆环,称为牛顿环。
根据干涉原理,两束相干光的光程差为:Δ = 2d + λ/2 (明环)Δ = 2d - λ/2 (暗环)其中,d为空气膜的厚度,λ为入射光的波长。
根据上述公式,我们可以推导出牛顿环的半径与透镜曲率半径之间的关系:R = (k + 1/2)λr^2 / (kλ)其中,R为透镜的曲率半径,k为环的级数,r为环的半径。
三、实验仪器1. 平面玻璃板;2. 平凸透镜;3. 读数显微镜;4. 钠光灯;5. 三爪式透镜夹和固定滑座。
四、实验步骤1. 将平凸透镜固定在固定滑座上,使其凸面与平面玻璃板接触;2. 将钠光灯放置在实验装置的一侧,调整光源方向,使光线垂直照射到透镜上;3. 使用读数显微镜观察牛顿环,调节显微镜的焦距,使干涉条纹清晰可见;4. 测量第k级暗环的半径rk;5. 根据实验数据,计算透镜的曲率半径R。
五、实验结果与分析1. 通过观察牛顿环,我们可以清晰地看到明暗相间的同心圆环,验证了等厚干涉现象的存在;2. 根据实验数据,计算出透镜的曲率半径R,并与理论值进行比较,分析误差来源;3. 实验结果表明,牛顿环实验可以有效地测量透镜的曲率半径,为光学元件的设计和制造提供参考。
六、实验总结1. 牛顿环实验是研究等厚干涉现象的经典实验,通过观察和分析牛顿环,我们可以加深对光的干涉原理的理解;2. 实验过程中,我们需要注意调节光源方向、显微镜焦距等因素,以确保实验结果的准确性;3. 牛顿环实验可以应用于测量透镜的曲率半径、光学元件的厚度等,具有广泛的应用价值。
大学物理牛顿环实验

大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。
当一束光照射在玻璃表面时,会产生反射和透射两种现象。
反射光会在玻璃表面形成亮斑,而透射光则会继续传播。
当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。
这些反射和透射光会相互干涉,形成明暗相间的条纹,这就是牛顿环。
三、实验步骤1、调整分光仪,使一束光通过玻璃棱镜,分成两束相干光,并在空间叠加。
2、调整分光仪的望远镜,观察到清晰的牛顿环。
3、使用读数显微镜测量牛顿环的直径,并记录下来。
4、改变分光仪的棱镜角度,观察干涉条纹的变化,并记录下来。
5、分析实验数据,得出结论。
四、实验结果与分析1、实验结果在实验中,我们观察到了清晰的牛顿环干涉现象,并且使用读数显微镜测量了牛顿环的直径。
随着分光仪棱镜角度的变化,干涉条纹也会发生变化。
2、结果分析通过实验数据,我们可以得出以下(1)牛顿环是由两束相干光在空间叠加而形成的干涉现象。
(2)干涉条纹的明暗交替是由于两束光的相位差引起的。
(3)通过测量牛顿环的直径,我们可以计算出光波的波长。
(4)随着分光仪棱镜角度的变化,干涉条纹会发生变化,这是因为光的波长和入射角发生了变化。
五、结论通过本次实验,我们深入了解了干涉现象与光波的波动性质,学习了使用分光仪、读数显微镜的方法。
这对于我们今后在光学领域的研究具有重要意义。
大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。
当一束光照射在玻璃表面时,会产生反射和透射两种现象。
反射光会在玻璃表面形成亮斑,而透射光则会继续传播。
当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。
实验十七 等厚干涉—牛顿环

6. 计算透镜的曲率半径 R ,并计算绝对不确定度ΔR,最 后结果表示成:
19.08.2021
RRR
7
ห้องสมุดไป่ตู้
实验十七 等厚干涉—牛顿环
【预习思考题】
1.为何用 而不用
R Dm2 Dn2
4(m n)
R
r
2 k
k
测量透镜的曲率半径 R ? 2.逐差法处理数据的优点何在? 3.测量中应注意什么问题?
19.08.2021
4
实验十七 等厚干涉—牛顿环
【实验内容】 1.如图所示,将牛顿环装置放在显微镜工作台上,
单色光源(钠光灯,其波长为 589nm) 放在45°透光半反 射镜 前方且与其等高。考虑到其背景亮度,可不使用下方 反射境。首先仅凭眼睛沿镜筒方向观察牛顿环(彩色的小 园环),若找到,再移动牛顿环装置,并调整显微镜筒位 置,使牛顿环处在镜筒正下方。
实验十七 等厚干涉—牛顿环
实验十七 等厚干涉—牛顿环
【实验装置】
读数 显微 镜
钠光 灯
牛顿 环
19.08.2021
2
实验十七 等厚干涉—牛顿环
【实验原理】
牛顿环的结构如图所示,上部为一曲率半径为 R 的平凸透 镜,下部为一平板玻璃,中间形成一空气层。当用单色平 行光垂直照射时,空气层上表面反射的光与空气层下表面 反射的光满足相干条件,将产生光的干涉。由于各处空气 层厚度 e 不同,将产生不同的光程差。由等厚干涉原理可 知,凡厚度相同的地方将形成同一级次的条纹。显然,这 里产生的干涉图样将是以透镜与平板玻璃的接触点为圆心 的明暗相间的同心圆。我们称这些同心圆为牛顿环,如图 所示。
2.调节目镜,使十字刻度线清晰。
读数显微镜
大学物理实验牛顿环

牛顿环和劈尖干涉实验【实验目的】1、观察光的等厚干涉现象,熟悉光的等厚干涉的特点;2、用牛顿环干涉测定平凸透镜的曲率半径;3、用劈尖干涉法测定细丝直径或微小薄片厚度。
【实验仪器及装置】牛顿环仪、读数显微镜、钠光灯、劈尖、数显游标卡尺。
【实验原理】 一、牛顿环干涉牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,以其凸面放在一块光学玻璃平板(平晶)上构成的,如图1所示。
平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。
从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示),称为牛顿环。
由于同一干涉环上各处的空气层厚度是相同的,因此它属于等厚干涉。
图1 实验装置简化图 图2 干涉光路及牛顿环图(a)(b )由图2 (a)可见,如设透镜的曲率半径为R ,与接触点O相距为r 处空气层的厚度为d ,其几何关系式为:()2222222r d Rd R r d R R ++-=+-=由于R>>d ,可以略去d 2得22r d R= (1)光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从而带来/2λ的附加程差,所以光程差δ为:22λδ+=d (2)产生暗环的条件是:(21)2k λδ=+ (3)其中k =0,1,2,3,...为干涉暗条纹的级数。
综合(1)、(2)和(3)式可得第k级暗环的半径为:2r kR λ= (4)由(4)式可知,如果单色光源的波长λ已知,测出第m 级的暗环半径m r ,即可得出平凸透镜的曲率半径R ;反之,如果R 已知,测出m r 后,就可计算出入射单色光波的波长λ。
但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。
牛顿环形成的原理是什么_牛顿环原理和分析

牛顿环形成的原理是什么_牛顿环原理和分析一、牛顿环的概念牛顿环,又称“牛顿圈”。
在光学上,牛顿环是一个薄膜干涉现象。
光的一种干涉图样,是一些明暗相间的同心圆环。
例如用一个曲率半径很大的凸透镜的凸面和一平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环;而用单色光照射时,则表现为一些明暗相间的单色圆圈。
这些圆圈的距离不等,随离中心点的距离的增加而逐渐变窄。
它们是由球面上和平面上反射的光线相互干涉而形成的干涉条纹。
在牛顿环的示意图上,下部为平面玻璃(平晶),A为平凸透镜,其曲率中心为O,在二者中部接触点的四周则是平面玻璃与凸透镜所夹的空气气隙。
当平行单色光垂直入射于凸透镜的平表面时。
在空气气隙的上下两表面所引起的反射光线形成相干光。
光线在气隙上下表面反射(一是在光疏媒质面上反射,一是在光密媒质面上反射)。
二、牛顿环的产生机理我们知道,不管是电阻式触摸屏,还是液晶显示器,支撑主体都是两块ITO玻璃或一块ITO玻璃,一块ITOFILM,如果有一面材料产生形变,材料ITO内表面产生一个曲率半径的曲面,跟平常物理光学里讲的产生牛顿环的凸透镜与平面镜内表面的效果是一样的,牛顿环同样是体现了光线在相对的两个表面因反射光线与入射光线光程差与波长间的关系。
它同样的,会因为光程差的增大,也就是两表面间的距离增加,牛顿环的间距也会增大。
5FI》T=QF在实际生产过程中,不管电阻式触摸屏也好,液晶显示器也好,都会把外框支撑处的间隙距离做得比中间的稍微大一些,如果工艺中参数稍有差离,那么这种距离差就没法消除,这样就让两个表面的产生一定的中间向内凹陷,这样光线在两个表面间的光程差就会产生不一样,在入射光与反射光的互相干涉过程中,就会按不同的光程差区域选择出不同的波长出来,显现出对应波长的颜色。
三、实际生产中牛顿环产生的地方与原因在液晶显示器模块中,有三种地方最容易产生牛顿环:1、液晶显示器内部产生的彩虹液晶显示器的盒厚一般都在10微米以下,如果里面的空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 光学
§9-6 牛顿环
教学目的:1、了解牛顿环等候干涉的原理
2、理解用牛顿环测量透镜曲率半径的原理及方法
教学重点:牛顿环形成明暗条纹得到原理
教学难点:牛顿环测量透镜曲率半径的原理
教学方法:讲授法,ppt 演示
教学安排:
(一)引入:
17世纪初,物理学家牛顿在考察肥皂泡及其他薄膜干涉现象时,
把一个玻璃三棱镜压在一个曲率已知的透镜上,偶然发现 干涉圆
环,并对此进行了实验观测和研究。
他发现,用一个曲率半径大的
凸透镜和一个平面玻璃相接触,用白光照射时,其接触点出现明暗
相间的同心彩色圆环,用单色光照射,则出现明暗相间的单色圆环。
这是由于光的干涉造成的,这种光学现象被称为“牛顿环”。
(二)新课讲授:
观察牛顿环的实验装置如图所示,在一块平玻璃B 上放一曲率
半径R
很大的平凸透镜A,在A 、B 之间便形成环状的空气劈形膜。
当单色平行光正入射时,在空气劈形膜的上、下表面发生反射形成
两束相干光,它们在平凸透镜下表面处相遇而发生干涉。
在显微镜下观察,可以看到一组干涉条纹,这些条纹是以接触点O
点为中心的同心圆环,称为牛顿环。
在空气层上下表面反射的两束相干光,它们之间的光程差为
22d λ
δ=+
d 为空气薄层的厚度,
2
λ是光在空气层的下表面(空气—平玻璃分界面)反射时产生的半波损失。
牛顿环形成明环的条件为
2,(1,2,3)2d k k λ
λ+==
形成暗条纹的条件为
2(21),(0,1,2,)22d k k λλ
+=+= 在中心O 处,0d =,两反射光的光程差为
2
λ,所以形成暗斑。
由图可以得知 2222()2r R R d Rd d =--=-
由于2,R d d >>可以略去,所以2
2r Rd ≈
由形成明环及暗环的条件公式解出d ,分别代入上式,可得明环半径为
1,2,3r k ==
暗环半径为0,1,2,3,r k =
=
在实验室里,常用牛顿环测定光波的波长或平凸透镜的曲率半径,在工业生产中则常利用牛顿环来检测透镜的质量。
例1 用钠光灯(黄光589.3nm λ=)做牛顿环实验,测得暗斑左边第16环的位置是23.61mm,测得暗斑左边第10环的位置是23.02mm,测得暗斑右边第10环的位置是17.48mm,测得暗斑右边第16环的位置是16.90mm 。
求所用平凸透镜的曲率半径R ?
解:第16环的直径为161623.6116.90 6.71r r --=-=
第10环的直径为101023.0217.48 5.54r r --=-=
利用2
r kR λ=(暗环)
2261610614.331010274(1610)589.31024589.3D D R mm --==⨯=⨯-⨯⨯⨯ 例2 已知:用紫光照射。
借助于低倍测量显微镜测得由中心往外数第k 级明环的半径 33.010k r m -=⨯,k 级往上数第16个明环半径316 5.010k r m -+=⨯,平凸透镜的曲率半径2.50R m =。
求:紫光的波长?
解:根据明环半径公式:16k k r r +⎧=⎪⎪⎨⎪=⎪⎩
221616k k r r R λ+-=
2222
7(5.010)(3.010) 4.01016 2.50m λ---⨯-⨯==⨯⨯。