八年级分式化简50道计算题

合集下载

最新八年级下册分式化简求值练习50题(精选)

最新八年级下册分式化简求值练习50题(精选)

分式的化简求值练习50题1、先化简,再求值:(1﹣)÷,其中12x =.2、先化简,再求值:2121(1)1a a a a++-+,其中1a =.3、先化简,再求值:22(1)2()11x x x x x+÷---,其中x =4、先化简,再求值:211(1)x x x -+÷,其中12x =5先化简,再求值22122()121x x x x x x x x ----÷+++,其中x 满足x 2﹣x ﹣1=0.6、先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.7、先化简,再求值:2222211221a a a a a a a a -+--÷+++,其中2a =a .8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:2(1)11x x x x +÷--,其中x =2.10、先化简,再求值:231839x x ---,其中3x =。

11、先化简242()222x x x x x++÷--,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:21(2)1x x x x---,其中x =2.13、先化简,再求值:211()1211x x x x x x++÷--+-,其中x =14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x xx x x--÷+--,其中x =.17、先化简。

分式的化简练习题

分式的化简练习题

分式的化简练习题以“分式的化简练习题”为题,本文将提供一系列关于分式化简的练习题,并提供详尽的解答。

请注意,文中不会再次重复标题或其他任何内容。

一、练习题1. 将分式 $\frac{20}{30}$ 化简为最简形式。

2. 将分式 $\frac{72}{108}$ 化简为最简形式。

3. 将分式 $\frac{24}{60}$ 化简为最简形式。

4. 将分式 $\frac{36}{48}$ 化简为最简形式。

5. 将分式 $\frac{9}{15}$ 化简为最简形式。

6. 将分式 $\frac{63}{105}$ 化简为最简形式。

7. 将分式 $\frac{16}{64}$ 化简为最简形式。

8. 将分式 $\frac{8}{12}$ 化简为最简形式。

9. 将分式 $\frac{48}{72}$ 化简为最简形式。

10. 将分式 $\frac{15}{20}$ 化简为最简形式。

二、解答1. $\frac{20}{30}$ 的最大公约数是10,将分子和分母同时除以10,得到最简形式 $\frac{2}{3}$。

2. $\frac{72}{108}$ 的最大公约数是 36,将分子和分母同时除以 36,得到最简形式 $\frac{2}{3}$。

3. $\frac{24}{60}$ 的最大公约数是12,将分子和分母同时除以12,得到最简形式 $\frac{2}{5}$。

4. $\frac{36}{48}$ 的最大公约数是12,将分子和分母同时除以12,得到最简形式 $\frac{3}{4}$。

5. $\frac{9}{15}$ 的最大公约数是 3,将分子和分母同时除以 3,得到最简形式 $\frac{3}{5}$。

6. $\frac{63}{105}$ 的最大公约数是 21,将分子和分母同时除以 21,得到最简形式 $\frac{3}{5}$。

7. $\frac{16}{64}$ 的最大公约数是16,将分子和分母同时除以16,得到最简形式 $\frac{1}{4}$。

分式化简练习题精选及答案

分式化简练习题精选及答案

分式化简练习题精选及答案分式是数学中的基本概念,它在数学中起到了非常重要的作用。

在分式化简练习中,我们需要掌握基本的分式化简原理,并且需要广泛练习各种类型的分式化简题目。

下面是一些常见的分式化简练习题目以及解答方法,希望对大家的学习有所帮助。

一、简单的分式化简题目1. 将 $\frac{2x+4}{x+2}$ 化简为最简分式。

解:这个分式可以化简为 $\frac{2(x+2)}{x+2}$,然后可以简化为 $2$。

2. 将 $\frac{x^2-4}{x+2}$ 化简为最简分式。

解:这个分式可以化简为 $\frac{(x-2)(x+2)}{x+2}$,然后可以简化为 $x-2$。

3. 将 $\frac{x^2+4x+4}{x^2-4x+3}$ 化简为最简分式。

解:这个分式可以化简为 $\frac{(x+2)^2}{(x-1)(x-3)}$,然后可以简化为 $\frac{(x+2)^2}{(x-1)(x-3)}$。

二、含有多项式的分式化简题目1. 将 $\frac{x^3+8}{x^2-2x-24}$ 化简为最简分式。

解:这个分式可以化简为$\frac{(x+2)(x^2-2x+4)}{(x-6)(x+4)}$,然后可以简化为 $\frac{x^2-2x+4}{x-6}$。

2. 将 $\frac{x^3-4x^2-7x+10}{x^2+4x+4}$ 化简为最简分式。

解:这个分式可以化简为 $\frac{(x-2)(x+1)^2}{(x+2)^2}$,然后可以简化为 $\frac{x-2}{x+2}$。

三、复杂的分式化简题目1. 将$\frac{1}{x^2+4x+3}+\frac{1}{x^2+2x}$ 化简为最简分式。

解:首先找到这两个分式的公共分母,它是$(x+1)(x+3)x(x+2)$。

然后将每个分式乘以合适的因数得到通分式,最后将通分式加起来得到最简分式。

2. 将 $\frac{x+1}{x^3-1}-\frac{1}{x^2-x}$ 化简为最简分式。

13 初二数学必考题 80道经典考题 分式的化简求值(原卷版)

13  初二数学必考题 80道经典考题 分式的化简求值(原卷版)

微 信:letaotao999666分式的化简求值1.先化简,再求值 22214()2442x x x x x x x x −−−−÷++++,从-2,-1,0中选取一个你喜欢的数作为x 的值2.先化简,再求值:22169(1)24a a a a −+−÷−−,其中a =﹣3. 3.先化简,再求值:2344111x x x x x −+⎛⎫−−÷ ⎪−−⎝⎭,其中4x =.4.先化简,再求值:222()111a aa a a ++÷+−−,其中,其中02(a =−. 5.先化简2443111m m m m m −+⎛⎫÷−− ⎪−−⎝⎭,然后在523(2)523m m m m −<+⎧⎪+⎨⎪⎩…的解集中选择一个合适的整数代入求值.6.计算:22321124−+⎛⎫−÷⎪+−⎝⎭a a a a ; 7.先化简,再求值:211122a a a −⎛⎫−÷⎪++⎝⎭,其中2000a =. 8.计算:2225111x x x x x ⎛⎫+−÷+− ⎪−−⎝⎭9.先化简,再求值:2692x x x −+−÷(x +2﹣52x −),其中x =12−.10.计算21()22a aa a a −+÷−− 11.先化简22221(1)121a a a a a a +−÷++−−+,然后a 在-1,1,2三个数中任选一个合适的数代入求值.12.计算:2454(1)11m m m m m +−−+÷++.13.先化简分式:2222221211x x x x xx x x x ⎛⎫+−−÷ ⎪−−++⎝⎭,然后在0,1,1−,2中选一个你认为合适的x 值,代入求值. 14.先化简,再求值:21(1)211aa a a ÷−+++,其中a =-2.15.先化简,再求值:222131111x x x x x x x ⎛⎫⎛⎫++−÷− ⎪ ⎪−−−⎝⎭⎝⎭,其中x 的值从不等式组23230x x −≤⎧⎨−<⎩的整数解中选取.16.如果2230m m +−=,求22442m m m m m+++÷的值.17.已知:269a a −+与|1|b −互为相反数.求代数式211122a a a a a a a a −⎛⎫−÷− ⎪+++⎝⎭的值.18.先化简再求值:22221(1)11x x x x x x −−÷−−−+,其中x 是不等式组10233x x x +>⎧⎪−⎨≤+⎪⎩的最大整数解.19.计算 22121121x x x x x x −−⎛⎫−+÷ ⎪+++⎝⎭20.已知a 2-6a +9与|b -1|互为相反数,求式子(1a b ++1a b −)÷2222a a ab b −+的值.21.先化简,再求值:2224124421x x xx x x x ⎛⎫−−−⋅⎪−+−+⎝⎭,其中5x =.22.计算22169122y y y y y ⎛⎫−+−÷⎪−−⎝⎭23.先化简,再求值:2232214()2442x x x x x x x x x +−−−÷−−+− , 其中x =324.先化简,再求值:2211()1121x x x x x x x +++÷−−−+,其中x =2.25.先化简,再求值:2111111x x x ⎛⎫−÷ ⎪+−⎝−⎭,其中12x =.26.先化简:2311144x x x x −⎛⎫+⋅ ⎪−−+⎝⎭,再从1,2,3中选取一个适当的数代入求值.27.先化简,再求值:2336m m m −−÷(1﹣12m −),其中m =4.微 信:letaotao99966628.先化简2344111a a a a a −+⎛⎫−+÷ ⎪++⎝⎭,然后从22a −<≤的范围内选择一个合适的整数作为a 的值代入求值29.计算:24816455x x x x x x +−+⎛⎫++÷ ⎪−−⎝⎭.30.化简:224114422a a a a a a ⎛⎫−+−÷⎪−+−+⎝⎭31.化简:2121122a a a a −+⎛⎫−÷ ⎪−⎝⎭,并选择一个你喜欢的a 值代入求值.32.计算 524223m m m m −⎛⎫++⋅⎪−−⎝⎭;33.计算22214244x x x x x x x x +−−⎛⎫−÷⎪−−+⎝⎭.34.先化简,再求值:2441(1)11x x x x x −++÷−−,其中x 是满足不等式组21323x x +>−⎧⎨+≤⎩的最小整数.35.先化简再求值:211122x x x −⎛⎫÷− ⎪++⎝⎭,其中13x =.36.已知210m m −−=,求23211m m m m m −⎛⎫⋅− ⎪−⎝⎭的值.37.先化简:352242a a a a −⎛⎫÷+− ⎪−−⎝⎭,再从1,2,3,4中选择一个合适的数作为a 的值代入求值.38.先化简:2221x x x x x÷−+,其中12x −剟,且x 是整数,再求值.39.先化简,再求值:(2241442a a a a−−−+−)÷222a a −,其中a =﹣1.40.先化简,再求值:526222m m m m −⎛⎫+−÷⎪−−⎝⎭,其中212m −⎛⎫= ⎪⎝⎭41.先化简,再求值:22424422x x x x x −⎛⎫−÷⎪−+−⎝⎭,其中2260x x +−=.42.先化简,再求值:2269111x x x x −+⎛⎫−÷⎪−−⎝⎭,请从0,1,2,3四个数中选取一个你喜欢的数x 代入求值.43.化简代数式22293211x x x x x x ⎛⎫−−÷+ ⎪+++⎝⎭,并求当7x =时此代数式的值.44.先化简22211326x x x x −+⎛⎫+÷⎪⎝⎭−−,然后从1、2、3中任选一个合适的x 的值,代入求值.45.先化简,再求值:293111x x x x x ⎛⎫++÷ ⎪−−−⎝⎭,其中2x =.46.先化简,再求值:211(1)422x x x x−+÷+−−,其中6x =.47.先化简,再求值:223211·1131x x x x x x −++⎛⎫÷+ ⎪−−−⎝⎭,其中x =2.48.先化简:2241193x x x −⎛⎫÷− ⎪−+⎝⎭,再从不等式237x −<的正整数解中选取一个使原式有意义的数代入求值.49.先化简,再求值:24512(1)()11a a a a a a−+−÷−−−−,其中a =﹣1.50.先化简,再求值(1﹣43a +)÷22219a a a −+−,其中a =﹣2.微 信:letaotao99966651.先化简,再求值:2111244a a a a −⎛⎫+÷ ⎪−−+⎝⎭,取一个你喜欢的数作为a 代入求值.52.先化简232(1)11x xx x x −+−÷−−,再从0≤x ≤4中选一个适合的整数代入求值.53.先化简,再求值:228161212224x x x x x x x −+⎛⎫÷−−− ⎪+++⎝⎭,其中1x =.54.先化简22111121x x x x −⎛⎫−÷ ⎪+++⎝⎭,再从22x −<≤中选一个合适的整数作为x 的值代入求值.55.先化简,再求值:(2﹣1xx −)•2144x x x −−+,请在﹣1,0,1,2中选一个数代入求值.56.先化简22211369x x x x −⎛⎫−÷ ⎪+++⎝⎭,然后从12x −≤<中选出一个合适的整数作为x 的值代入求值.57.先化简,再求值:224114422a a a a a a ⎛⎫−+−÷⎪−+−+⎝⎭,其中a =﹣1.58.先化简再求值:222914()2,6933x x x x x x x−+−÷−−+−−,其中x =4.59.先化简,再求值:235(2)22x x x x x −÷+−−−,其中x 2+3x ﹣5=0.60.先化简代数式2221(1)21a a a a a a −−÷+++,再选择一个合适的a 的值代入求值.61.先化简,再求值:2211224x x x ⎛⎫+÷ ⎪+−−⎝⎭,其中1x =−.62.先化简,再求值:(1﹣21x −)÷22691x x x −+−,并从1,2,3中选取一个合适的数作为x 的值代入求值.63.先化简,再求值:221y x x y x y ⎛⎫÷− ⎪−+⎝⎭,其中1x y =+.64.先化简,再求值:22244242a a a a a a+++⋅÷−,其中a =3.65.先化简,再求值:(11x +﹣1)÷22121x x x −++,其中x =2021.66.先化简,再求值:2221m mm m +++÷(111m m −+),其中m =﹣2.67.计算:22214244y yy y y y y y ⎛⎫+−−+÷ ⎪−−+⎝⎭.68.计算:2211121a a a a a a −+⎛⎫−÷⎪−−+⎝⎭.69.先化简,再求值:221112111x x x x x⎛⎫−−÷⎪−+−−⎝⎭,其中12x =;70.先化简,再求值:53222x x x x −⎛⎫+−÷⎪−−⎝⎭,其中3x =.71.化简:226116933m m m m m −⎛⎫÷+ ⎪−++−⎝⎭.72.先化简,再求值2211xyx y x y x y ⎛⎫+÷ ⎪−+−⎝⎭,其中2x =,2y =−.73.先化简代数式22111211a a a a a ⎛⎫++÷ ⎪−−+−⎝⎭,然后确定使原式有意义的a 的取值范围,再选取一个a 的值代入求值.74.先化简,再求值.微 信:letaotao9996662222121111+−+⋅−−−+a a a a a a a ,再从﹣1≤a ≤2的整数中选取一个你喜欢的a 的值代入求值.75.先化简,再求值.(x ﹣1﹣81x +)÷22231x x x+−−,其中x =﹣2.76.先化简,再求代数式2121211a a a a +⎛⎫÷+ ⎪−+−⎝⎭的值,其中(011a =+.77.先化简,再求值22222212a b a b a b ab ab ⎛⎫−+÷− ⎪+⎝⎭,其1a =−,2b =.78.先化简,再求值:31111a a a a a −−⎛⎫−÷⎪++⎝⎭,其中a =2.79.先化简,再求值:(1﹣11a +)÷21aa −,其中a =3.80.先化简22211121x x x x x x ⎛⎫−−+÷ ⎪+++⎝⎭,再从-1、0、1中选择合适的x 值代入求值. 81.化简并求值:22121111x x x x x −⎛⎫+÷ ⎪+−−⎝⎭,其中0x =. 82.先化简,再求值:231111x x x x −⎛⎫+÷ ⎪+−⎝⎭,x 是不等式组1120x x x −−⎧−>⎪⎨⎪>⎩的整数解. 83.先化简,再求值222214244a a a a a a +⎛⎫−÷ ⎪−−++⎝⎭;其中a 是满足12a −<≤的一个整数,择一个合适数,代入求值.84.先化简,再求值:22344111x x x x −+⎛⎫−÷⎪+−⎝⎭,其中3x =.85.先化简再求值:2643211x x x x x +⎛⎫+÷ ⎪−−−⎝⎭,其中2x =.86.先化简,再求值:222221412()x x x x x x x x−+−+÷−+,2x =.。

(完整版)120道分式化简求值练习题库.doc

(完整版)120道分式化简求值练习题库.doc

化简求值题1 2,其中 x=- 2.1.先化简,再求值:x 2x 1 12、先化简,再求值:,其中a=﹣1.3、先化简,再求值:,其中x=.4、先化简,再求值:,其中.5 先化简,再求值,其中x满足x2﹣x﹣1=0.6、化简:a3b a b a b a b7、先化简,再求值:,其中a=.8、先化简(x1 ) 1 ,再从﹣ 1、 0、 1 三个数中,选择一个你认为合适的数作为x 的值代入求值.x 1 x 1 x2 19、先化简,再求值: (+1 ) ÷ ,其中 x=2.3 1810、先化简,再求值: x –3–x 2 –9 ,其中 x =10–311、先化简下列式子,再从2,﹣ 2, 1, 0,﹣ 1 中选择一个合适的数进行计算. .12、先化简,再求值:x x 1 21 (-2), 其中 x=2.xx13、先化简,再求值:,其中 .14、先化简 (x x )2 x x 23 x 的值代x 2 ,然后从不等组 的解集中,选取一个你认为符合题意的x 5 5 x 252x 12入求值.15、先化简,再求值:2 a 24 a 2,其中 a 5 .a6a 9 2a616、先化简,再求值:3xx x 2,其中x3 .(x 1 x 1)x2 1 217 先化简。

再求值:2a 1 a2a2 2a 1 1 ,其中a 1 。

a2 1 a a 1 218.先化简,再求值:1 x2 -2x+ 1,其中 x=-5.1+÷ 2x-2 x -4x2 1 2x 1,其中 x 是一元二次方程x 2 2 x 2 0 的正数根 .19. 先化简再计算: 2 xxx x20 化简,求值:m2 2m 1 m 1)其中 m=3.m21(m 11m ,21、( 1)化简:÷.( 2)化简:a ba 2ab b2 ( a b ) a a22、先化简,再求值:,其中.x 3 x2 6x 9 123请你先化简分式 21 x 22x 1, 再取恰的 x的值代入求值 .x x 124、(本小题2a 2 a 2 1其中 a= 3 +18 分)先化简再求值 a 1a 2 2a 1a 125、化简,其结果是.26.先化简,再求值: (2- 16x- 2) ÷x2 ,其中 x= 3- 4.x- 2 x - 2xx2+ 4x+ 4 x+ 2-2x,其中 x= 2.27、先化简,再求值: 2-16 ÷x 2x- 8 x+ 428、先化简,再求值:3x x 2 x,其中 x3 4 .(x 2 x 2 ) x2 429.先化简,再求值:(2aa ) a ,其中 a2 1.a 1 1 a30、先化简,再求值:2a 1 1( 2 ) a ,其中 a2 a 1 1 a31、( 1)化简:1 x2 11 ) a 1 .( 2) 1x (3) (axa a32.( 1) (a bb 2 ) a b。

初二分式化简练习题

初二分式化简练习题

初二分式化简练习题分式是初中数学中的重要内容之一,它广泛应用于各个数学概念和解题方法中。

在初二阶段,学生需要掌握如何化简分式,以便更好地理解和应用分式知识。

本文将提供一些初二分式化简练习题,以帮助学生加深对分式化简的理解和熟练运用。

1. 化简下列分式:a) $\dfrac{2x^2 + 4x}{6x}$b) $\dfrac{3ab + 9a}{6a}$c) $\dfrac{4xy^2 + 8x}{2x}$d) $\dfrac{9x^2y^3 + 6x^3y}{3xy}$解析:a) 对于$\dfrac{2x^2 + 4x}{6x}$,我们可以提取公因式$x$,得到$\dfrac{x(2x + 4)}{6x}$;然后可以将分子和分母都除以2,化简得到$\dfrac{x(x + 2)}{3x}$。

b) 对于$\dfrac{3ab + 9a}{6a}$,我们可以提取公因式$3a$,得到$\dfrac{3a(b + 3)}{6a}$;然后可以将分子和分母都除以3,化简得到$\dfrac{b + 3}{2}$。

c) 对于$\dfrac{4xy^2 + 8x}{2x}$,我们可以提取公因式$4x$,得到$\dfrac{4x(y^2 + 2)}{2x}$;然后可以将分子和分母都除以2和$x$,化简得到$2(y^2 + 2)$。

d) 对于$\dfrac{9x^2y^3 + 6x^3y}{3xy}$,我们可以提取公因式$3xy$,得到$\dfrac{3xy(3xy^2 + 2x^2)}{3xy}$;然后可以将分子和分母都除以$3xy$,化简得到$3xy^2 + 2x^2$。

2. 化简下列混合分式:a) $\dfrac{4}{3} + \dfrac{2}{5}$b) $\dfrac{5}{2} - \dfrac{3}{4}$c) $\dfrac{1}{2} \times \dfrac{3}{4}$d) $\dfrac{\dfrac{1}{2}}{\dfrac{2}{3}}$解析:a) 对于$\dfrac{4}{3} + \dfrac{2}{5}$,我们需要找到它们的最小公倍数,并将分子通分。

八年级下册分式化简求值练习50题

八年级下册分式化简求值练习50题

分式的化简求值练习50题(1-缶)亠諾齐I,其中X2耳X),其中X1 X 1 X-,再从-1、0、1三个数中,选择一个你认为合适的数作为X19、先化简,再求值:1)壬,其中X=2.X 110、先化简,再求值: 光,其中X皿3。

1先化简, 再求值:2、先化简, 再求值:2川 1 、a 2a 1 甘由a1.3、先化简, 再求值:4、先化简, 再求值:(1丄)X—,其中X 1X 25先化简,再求值(2X 1 X 2 2X X 甘由-- ----- ) --- ----- ,其中X满足2x -X—6、先化简(1宀)代入求值. X2 4X 4X2 1,然后从一2< x< 2的范围内选取一个合适的整数作为X的值7、先化简,再求值:2a~2 ~a 2a豊OH1,其中a^2a.8先化简(丄X 1 的值代入求值.m宁,再从2,- 2, 1,0,- 1中选择一个合适的数进行计算.12、先化简,再求值:2),其中x=2. x 1 x13、先化简,再求值: (U JL,其中x 1 x 2x 1 x 114、先化简(亠丄x 5 5 意的x的值代入求值. 然后从不等组x2x21233的解集中,选一个你认为符合题15、先化简, 再求值:a2 4~2a 6a 9皂2,其中2a 616、先化简, 再求值: 汁其中x17、先化简。

再求值:2a 1 a2 a21—2a_1 -J—其中a2 5 /、丨Qa a a 118、先化简, 再求值:2- 1 、X 2x 1 甘由U (1 ---- ) 一2----- ,其中x= —5.x 2 x 4219.先化简再计算:辛」(x红」),其中x是一元二次方程X22x 2 0的正数根.x x x20、化简,求值:2m 2m 1 , d m 1、甘由匚2 (m 1) -- 其中m=V3 m 1 m 12 11先化简(代231、先化简,再求值:a 1无a2 1,其中a 血1 .221、已知x 、y 满足方程组x y 3,先将旦化简,再求值。

中考复习分式化简求值练习题

中考复习分式化简求值练习题

1. 先化简,再求值:12112---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1. 3、先化简,再求值:,其中x=.4、先化简,再求值:,其中.5先化简,再求值,其中x 满足x 2﹣x ﹣1=0. 7、先化简,再求值:,其中a=.8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:(+1)÷,其中x=2. 10、先化简,再求值:3x –3 – 18x 2 – 9 ,其中x = 错误!–311、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (xx 1--2),其中x =2. 13、先化简,再求值:,其中. 14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x x x x x --÷+--,其中x =.17先化简。

再求值: 2222121111a a a a a a a +-+⋅---+,其中12a =-。

18. 先化简,再求值:⎝ ⎛⎭⎪⎫1+1x -2÷x 2-2x +1x 2-4,其中x =-5. 19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根. 20 化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =3. 22、先化简,再求值:,其中.23请你先化简分式2223691,x 1211x x x x x x x +++÷+--++再取恰的的值代入求值. 24、先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+1 26.先化简,再求值:(x x -2-2)÷x 2-16x 2-2x,其中x =3-4. 27、 先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2x x +4,其中x =2.28、先化简,再求值:232()224x x x x x x -÷-+-,其中4x =.29.先化简,再求值:2()11a a a a a+÷--,其中 1.a =+30、先化简,再求值:2211()11a a a a ++÷--,其中a33先化简,再求值:()22111a a a ⎛⎫-+÷+ ⎪+⎝⎭,其中1a . 34化简:. 35.先化简,再求值:2121-1a a a ++-,其中21=a . 36、.先化简x 2+2x +1x 2-1-x x -1,再选一个合适的x 值代入求值.40先化简,再把 x 取一个你最喜欢的数代入求值:2)22444(22-÷+-++--x x x x x x x 41.先化简,再选择一个你喜欢的数代入求值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档