电磁感应动量定理应用
动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。
基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。
关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。
例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。
例析动量定理在电磁感应问题中的应用

△ △f
导轨 MN、 Q, P 存在 有竖 直向上的匀 强磁 场 , 磁感 .
应强度为 B, 导轨上 放着 两根 质量均 为 、 电阻均 图3
为| R的金属棒 n b 、。开 始时 , 棒 静止 , b a棒 以初 速度向 右运动 。设两棒始终不相碰 , 在运动过程 中通过 a棒 求 上 的总电荷量 。 解析 : 设棒稳 定运动后 的共 同速度为 , 对系统从 a 棒开始运动到两棒达 到共 同速度 的过程 , 应用动量守 恒 定律有 : o my mv :2 设 回路中的平均 电流 为 J 。再对 a棒 , 应用 动量定
理:
一
根据欧姆定律 , 可得平均 电流为 了 E一 : 由动量定理得 : 一B儿 ・ 一 △ 一0 联立上式 :一 点评 : 本题 实质上是利 用动量定理 求感应电荷 量。
【 2 如 图 2 例 】
B L△t I 一
— m
所示 , 足够 长 的相 距 为z 的平行金 属导轨
由法拉第 电磁感应定律得 : 一 :
【 1 如图 1 示 , 例 】 所
质量为 m 的导体棒可沿光
滑 水 平 面 的 平 行 导 轨 滑
由闭合 电路欧姆定律 :一 一 - E 』
对 a 应 用 动量 定 理 得 : l £=1 解得 : x 棒 B = 17 =1 2 A 一
又 Q=7 t = a 解得 : = Q一 点评 : 本题是利用动量定理计算电荷量的典型例子。
MN 、 Q放 置在 水平 P 面内 , 强 磁 场 竖 直 匀
通过 以上三个例题 的分析 , 会当导体切 割磁感 线 体
而产生感应 电流 , 果感应 电流不恒定 , 体所受 到的 如 导 安 培力也 不恒 定 而做变 速运 动 时 , 些 问题 如 涉及 位 有 ( 责任 编辑 易志毅)
电磁感应动量定理的应用(最新整理)

电磁感应与动量的综合1.安培力的冲量与电量之间的关系:设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即tF I ∆=冲冲而=B L (为电流对时间的平均值)F I I 故有:安培力的冲量t L I B I ∆⋅=冲而电量q =Δt ,故有I BLq I =冲因只在安培力作用下运动 BLq =mv 2-mv 1 BLPq ∆=2.感应电量与磁通量的化量的关系:R n t R t n t R E t I q ∆Φ=∆⋅∆∆Φ=∆⋅=∆⋅=若磁感应强度是匀强磁场,R BLx R S B R q =∆=∆Φ=以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。
例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L 的区域内,现有一个边长为a (a <L )的正方形闭合线圈以初速度v 0垂直磁场边界滑过磁场后,速度为v (v <v 0),那么线圈A .完全进入磁场中时的速度大于(v 0+v )/2B .完全进入磁场中时的速度等于(v 0+v )/2C .完全进入磁场中时的速度小于(v 0+v )/2D .以上情况均有可能例2.在水平光滑等距的金属导轨上有一定值电阻R ,导轨宽d ,电阻不计,导体棒AB 垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B 。
现给导体棒一水平初速度v 0,求AB 在导轨上滑行的距离。
例3.如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。
已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。
开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。
电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类电磁感应是物理学中非常重要的一个分支,与动量定理的关系也
非常密切。
动量定理是物理学中的基本定律之一,它表明了物体的动
量会随时间的推移而改变,这种变化与物体所受的力的大小和方向有关。
在电磁感应问题中,动量定理可以应用于以下几个方面。
1. 电动势的产生
电动势是指电路中电势差的改变所导致的电场力,即带电体感应
产生的电势差。
当外界场改变时,导体中的电子会受到作用力,从而
导致电子动量改变,从而产生电动势。
此时,根据动量定理,受到该
作用力的物质越多,电势差的变化就越大。
2. 磁场的产生
在电磁感应问题中,动量定理还可以应用于磁场的产生。
因为磁
场实际上是由运动电荷产生的,因此当电流流过导体时,会导致电子
的运动并产生动量。
根据动量定理,当电流越大时,电子运动就越快,从而导致的磁场也就越强。
3. 电磁波的传播
电磁波是由振动电场和磁场相互作用产生的,它们通过相互作用
来传播。
在电磁波传播过程中,电磁波会将电子推动,并导致其产生
动量变化。
根据动量定理,越多的电子受到作用力,电磁波的能量就
越大,传播的速度也就越快。
总之,动量定理是应用于电磁感应问题的一个非常重要的定律,它可以帮助我们更好地理解电磁现象的产生和传播。
在物理学的学习和应用中,我们要充分利用这一定律,将其应用到实际问题中,为科学技术的发展做出贡献。
用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。
本文结合例题分析应用动量定理解决电磁感应问题的思维起点。
一、 以累积公式q=It 结合动量定理为思维起点直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。
通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。
在时间△t 内安培力的冲量BLq t BLI t F =∆=∆,式中q 是通过导体截面的电量。
利用该公式结合动量定理是解答此类问题思维起点。
例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。
析与解:当右棒运动时,产生感应电动势,两棒中有感应电流通过,右棒受到安培力作用而减速,左棒受到安培力作用而加速。
当它们的速度相等时,它们之间的距离最大。
设它们的共同速度为v ,则据动量守恒定律可得:mv 0=2mv ,即021v v = 对于左棒应用动量定理可得:BILt= mv所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2=∆ 由上述各式可得: x =220LB R mv 。
v点评:本题结合冲量公式BLq t BLI t F =∆=∆应用动量定理,使貌似复杂的问题得到迅速解决。
例2.(原创预测题)如图所示,两水平放置的平行光滑金属导轨相距为L ,导轨左端用导线连在一起,导轨电阻不计,整个装置垂直处于磁感强度为B 的匀强磁场中,另有一根长也为L 的金属棒垂直放在导轨上,现给金属棒一向右的水平初速度v 。
动量定理动量守恒在电磁感应中导轨与导体棒的应用解析版

动量定理动量守恒在电磁感应中导轨与导体棒的应用解析版Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】ABRv0B导轨与导体棒问题一、单棒问题【典例1】如图所示,AB杆受一冲量作用后以初速度v=4m/s沿水平面内的固定轨道运动,经一段时间后而停止.AB的质量为m=5g,导轨宽为L=,电阻为R=2Ω,其余的电阻不计,磁感强度B=,棒和导轨间的动摩擦因数为μ=,测得杆从运动到停止的过程中通过导线的电量q=10﹣2C,求:上述过程中(g取10m/s2)(1)AB杆运动的距离;(2)AB杆运动的时间;(3)当杆速度为2m/s时,其加速度为多大【答案】(1);(2);(3)12m/s2.(2)根据动量定理有:﹣(F安t+μmgt)=0﹣mv而F安t=BLt=BLq ,得:BLq+μmgt=mv,解得:t=(3)当杆速度为2m/s时,由感应电动势为:E=BLv安培力为:F=BIL,而I=然后根据牛顿第二定律:F+μmg=ma代入得:解得加速度:a=12m/s2,25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。
如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。
运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。
其他电阻忽略不计,重力加速度为g。
(1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。
求运输车与导轨间的动摩擦因数μ;(2)在水平导轨上进行实验,不考虑摩擦及空气阻力。
①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。
电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类电磁感应是指通过磁场的变化产生感应电流或电动势的现象。
动量定理是牛顿力学中的重要定律,描述了物体的动量变化与施加在其上的力之间的关系。
本文将探讨电磁感应问题中动量定理的应用,并提供相关的参考内容。
1. 电磁感应中的电磁铁制动问题当磁铁的磁场加强时,会引起铝片产生感应电流。
根据安培力定律,感应电流会受到一个与外磁场相反的磁场之力,即产生阻力。
这一阻力使得磁铁减速,最终停止。
在这个过程中,动量定理可以用来描述磁铁的动能的变化。
参考内容:杨继拓. (2013). 电磁铁制动过程中电磁感应定律的应用. 物理, (8), 31-32.2. 电磁感应中的涡流制动问题当金属盘在磁场中旋转时,会产生涡流。
根据法拉第电磁感应定律,涡流会产生磁场,磁场与外磁场相互作用会产生力,即涡流制动力。
这一力对金属盘产生负作用,使其减速或停止旋转,同时也会消耗金属盘的动能。
动量定理可以用来描述金属盘的动能的变化。
参考内容:郁锋. (2017). 电磁感应中的涡流制动效应研究. 科技创新导报, 14(5), 183-184.3. 电磁感应中的感应电动势问题当导体中的磁通量发生变化时,会在导体两端产生感应电动势。
根据洛伦兹力定律,感应电动势会产生电流,而电流在导体中受到电阻力的作用,从而减慢电流的流动速度。
动量定理可以用来描述电阻力对电流动能的影响,进而分析电流的变化情况。
参考内容:陈立农. (2018). 电磁感应中感应电动势的发生和应用. 科技导报, (15), 110-112.4. 电磁感应中的电磁泵问题电磁泵是利用电磁感应产生的电磁力来实现液体输送的装置。
当电流通过线圈时,会在涡轮中产生涡流。
根据法拉第电磁感应定律,涡流会产生磁场与线圈的磁场相互作用,从而产生电磁力,将液体推入导管中。
动量定理可以用来分析电磁力对液体动能的传递。
参考内容:杨伟. (2013). 基于电磁感应原理的电磁泵设计. 物理, (8), 61-62.5. 电磁感应中的感应发电问题当导体与磁场相互作用时,会产生感应电流。
动量观点在电磁感应中的应用

小于磁场区域的宽度。若线框进、出磁场的过程中通
过线框横截面的电荷量分别为q1、q2,线框经过位置
Ⅱ时的速度为v。则下列说法正确的是( BD)
A.q1=q2 C.v=1.0 m/s
B.q1=2q2 D.v=1.5 m/s
01 02 03 04 05 06 07 08
图2
目录
提升素养能力
解析 根据 q=ΔRΦ=BRΔS可知,线框进、出磁场的过程中通过线框横截面的电 荷量 q1=2q2,故 A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理- B-I1LΔt1=mv-mv0,即-BLq1=mv-mv0,同理线圈从位置Ⅱ到位置Ⅲ,由动 量定理-B-I2LΔt2=0-mv,即-BLq2=0-mv,联立解得 v=13v0=1.5 m/s,故 C 错误,D 正确。
目录
研透核心考点
解析 对 ab 棒由动量定理有-B-ILt=0-mv0,而 q=-It,即-BqL=0-mv0,当流过棒的电荷量为q2 时,有-B·q2L=mv1-mv0,解得 v1=12v0,A 错误; 当棒发生位移为 s 时,q=ΔRΦ=BRLs,则当棒发生位移为3s时,q′=ΔRΦ′=B3LRs, 可知此时流过棒的电荷量 q′=q3,代入 B-ILΔt=BLq′=mv2-mv0,解得棒的速 度为 v2=32v0,B 错误;定值电阻与导体棒释放的热量相同,在流过棒的电荷量 达到q2的过程中,棒释放的热量为 Q=1212mv20-12mv21=136mv20=3B1q6Lv0,C 正确; 同理可得整个过程中定值电阻 R 释放的热量为 Q′=21×21mv20=qB4Lv0,D 错误。
给金属棒 ab 一个水平向右的初速度 v0,金属棒沿着金属导轨滑过磁场的过程中,流 过金属棒的电流最大值为 I,最小值为12I。不计导轨电阻,金属棒与导轨始终接触良
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应与动量的综合
1.安培力的冲量与电量之间的关系:
设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即t F I ∆=安
冲 而F =B I L (I 为电流对时间的平均值) 故有:安培力的冲量t L I B I ∆⋅=冲
而电量q =I Δt ,故有BLq I =冲
因只在安培力作用下运动 BLq =mv 2-mv 1 BL
P q ∆= 2.感应电量与磁通量的化量的关系:R
n t R t n t R
E t I q ∆Φ=∆⋅∆∆Φ=∆⋅=∆⋅= 若磁感应强度是匀强磁场,R BLx R S B R q =∆=∆Φ= 以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。
例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分
布在宽度为L 的区域内,现有一个边长为a (a <L )的正方形闭合线圈以
初速度v 0垂直磁场边界滑过磁场后,速度为v (v <v 0),那么线圈
A .完全进入磁场中时的速度大于(v 0+v )/2
B .完全进入磁场中时的速度等于(v 0+v )/2
C .完全进入磁场中时的速度小于(v 0+v )/2
D .以上情况均有可能
例2.在水平光滑等距的金属导轨上有一定值电阻R ,导轨宽d ,电阻不
计,导体棒AB 垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上
的匀强磁场中,磁感应强度为B 。
现给导体棒一水平初速度v 0,求AB 在导轨上
滑行的距离。
例3.如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。
已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均
可沿导轨无摩擦的滑行。
开始时,导体棒cd 静止、ab 有水平向右的初
速度v 0,两导体棒在运动中始终不接触。
求:⑴开始时,导体棒ab 中
电流的大小和方向;⑵从开始到导体棒cd 达到最大速度的过程中,矩形
回路产生的焦耳热;⑶当ab 棒速度变为3v 0/4时,cd 棒加速度的大小。
例4.如图所示,在水平面上有两条导电导轨MN 、PQ ,导轨间距
为d ,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B ,两
根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂
直。
它们的电阻均为R ,两杆与导轨接触良好,导轨电阻不计,金属杆
的摩擦不计。
杆1以初速度v 0滑向杆2,为使两杆不相碰,则杆2固定
与不固定两种情况下,最初摆放两杆时的最少距离之比为( )
A .1∶1
B .1∶2
C .2∶1
D .1∶1
例5.如图所示,电阻不计的两光滑金属导轨相距L,放在水平绝缘桌面上,半径为R的1/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。
两金属棒ab、cd垂直于两导轨且与导轨接触良好。
棒ab质量为2 m,电阻为r,棒cd的质量为m,电阻为r。
重力加速度为g。
开始棒cd静止在水平直导
轨上,棒ab从圆弧顶端无初速度释放,进入水平直导
轨后与棒cd始终没有接触并一直向右运动,最后两棒
都离开导轨落到地面上。
棒ab与棒cd落地点到桌面边
缘的水平距离之比为3∶1。
求:⑴棒ab和棒cd离开导
轨时的速度大小;⑵棒cd在水平导轨上的最大加速度;
⑶两棒在导轨上运动过程中产生的焦耳热。
例6.两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离L=0.20m,两根质量均为m=0.10kg
的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每
根金属杆的电阻为R=0.50Ω。
在t=0时刻,两杆都处于静止状态。
现有一与导轨
平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。
经过
t=5.0s,金属杆甲的加速度为a=1.37 m/s2,求此时两金属杆的速度各为多少?
例7.如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强
磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动。
先固定a,释放
b,当b的速度达到10m/s时,再释放a,经过1s后,a的速度达到12m/s,则:⑴此时b
的速度大小是多少?⑵若导轨很长,a、b棒最后的运动状态。
例8.如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
ab、cd是质量均为m的金属棒,现让ab从离水平轨道h 高处由静止下滑,设导轨足够长。
试求:⑴ab、cd棒的最终速度;⑵全过程中感应电流产生的焦耳热。