初三数学三角形知识点整理
初三数学三角形知识点总结归纳

初三数学三角形知识点总结归纳三角形是初中数学中的重要内容,掌握三角形的相关知识是理解和解决相关问题的基础。
在初三数学学习中,我们需要对三角形的性质、分类、定理等内容进行总结和归纳,以便更好地应对考试和日常学习中的问题。
一、三角形的基本概念三角形是由三条边和三个内角组成的图形。
常见的表示方法有三个顶点的大写字母或者使用线段AB、BC、CA表示。
三角形的顶点分别为A、B、C,三边分别为a、b、c,对应的内角为∠A、∠B、∠C。
二、三角形的分类1. 根据边的长度分类:- 等边三角形:三条边的长度相等,对应的内角也相等,记作∆ABC。
- 等腰三角形:两条边的长度相等,对应的两个内角也相等,记作∆ABC。
- 普通三角形:三条边的长度均不相等,对应的内角也均不相等,记作∆ABC。
2. 根据角度的大小分类:- 直角三角形:一个内角为直角(90度角),记作∆ABC。
- 钝角三角形:一个内角大于90度,记作∆ABC。
- 锐角三角形:三个内角均小于90度,记作∆ABC。
三、三角形的性质1. 三角形内角和定理:一个三角形的内角和等于180度。
∠A + ∠B + ∠C = 180度2. 三角形的外角和定理:一个三角形的外角和等于无关角的内角和或补角。
∠D = ∠A + ∠B 或∠D = 180度 - ∠C3. 三角形的边与角关系:- 三角形两边之和大于第三边。
- 三角形两边之差小于第三边。
- 三角形内角的关系:最大的内角对应最长的边,最小的内角对应最短的边。
四、常见的三角形定理1. 直角三角形的性质:- 勾股定理:直角三角形斜边的平方等于两直角边的平方和。
c^2 = a^2 + b^2- 余弦定理:直角三角形中,直角边的平方等于斜边的平方减去另一直角边的平方。
a^2 = c^2 - b^2 或 b^2 = c^2 - a^22. 等腰三角形的性质:- 等腰三角形的底角相等。
∠A = ∠C- 等腰三角形的高度和斜边关系:等腰三角形的高度是斜边平分线的垂直平分线。
初三数学解直角三角形专题复习

第五讲解直角三角形一、【知识梳理】知识点 1、 解直角三角形定义: 由直角三角形中已知元素求出未知元素的过程叫解直角三角形。
知识点 2、解直角三角形的工具:1、直角三角形边、角之间的关系:sinA=cosB=a b a bsinB=cosA=ctanA=cotB=cotA=tanB=cba2、直角三角形三边之间的关系 : a 2 b 2 c 2 (勾股定理)3、直角三角形锐角之间的关系:AB 90 。
(两锐角互为余角)知识点3、解直角三角形的种类:能够概括为以下2 种,(1)、已知一边和一锐角解直角三角形;知识点 4、解直角三角形应用题的几个名词和素语1、方向角:( 2)、已知两边解直角三角形。
在航海的某些问题中,描绘船的航向,或目标对观察点的地点,常用方向角.画方向角时,常以铅直的直线向上的方向指北,而以水平直线向右的方向为东,而以交点为观察点.2、仰角和俯角在利用测角仪察看目标时,视野在水平线上方和水平线的夹角称为仰角,视野在水平线下方和水平线的夹角称为俯角(如图). 在丈量距离、高度时,仰角和俯角常是不行缺乏的数据.3、坡度和坡角:在筑坝、修路时,常把坡面的铅直高度 h 和水平宽度 l 的比叫作坡度(或坡比),用字母i 表示(如图( 1)),则有 ih, 坡面和水平面的夹角叫作坡角.明显有: ih tan,l. l这说明坡度是坡角的正切值,坡角越大,坡度也越大二、【典型题例】考点 1、解直角三角形例 1.、 1、在 ABC 中,C 为直角, A 、B 、C 所对的边分别为 a 、 b 、 c .( 1)已知 b3 , A30 ,求 a 和 c .( 2)已知 a20 , b 20 ,求A .2、如图,已知△ ABC 中∠ B=45 °,∠ C=30°, BC=10 , AD 是 BC 边上的高,求 AD 的长3、已知,如图,△ABC 中,∠ A=30 °, AB=6 , CD ⊥ AB 交C AAB 延伸线于 D ,∠ CBD=60 °。
初三数学相似三角形知识点总结

实用工具:常用数学公式 公式分类 公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注�韦达定理判别式
与非零向量
a�
平行�那么存在唯一的实数
� m, 使 b
�
ma�
3.单位向量 我们把长度为 1 的向量叫做单位向量。设 e� 为单位向量�则 e� � 1 。对于任意非零向量
a� �与它同方向的单位向量记作 a�0 ,则
a� �
�� � a a0,a0
�
1 a�
a�
4.线性运算
向量加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算。如 3a � 2b � a � 2b 、 3(a � 5b) 等�都是向量的线性运算。
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前 n 项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
初三数学直角三角形性质、相关定理和推论

第2次课:直角三角形性质、相关定理和推论一、考点、热点回顾1、基本知识点:勾股定理 直角三角形两条直角边的平方和等于斜边的平方。
勾股定理的逆定理 如果三角形两边的平方等于第三边的平方,那么这个三角形就是直角三角形。
应用:由边的关系判定三角形是直角三角形定理 斜边和一条直角边对应相等的两个直角三角形全等。
(HL ) 应用:判定直角三角形全等的方法 2、互逆定理如果两个角是对顶角,那么它们相等。
如果两个角相等,那么它们是对顶角。
如果小明患了肺炎,那么他一定会发烧。
如果小明发烧,那么他一定患了肺炎。
全等三角形中相等的边所对的角相等。
全等三角形中相等的角所对的边相等。
逆命题: 互逆命题: 逆定理: 互逆定理:三角形三边长与三角形形状之间的关系设三角形的三边长分别为a 、b 、c ,其中c 为最大边的长(1)若222+=a b c ,则三角形为直角三角形; (2)若222+<a b c ,则三角形为钝角三角形; (3)若222+>a b c ,则三角形为锐角三角形;二、典型例题例如图,在△ABC 中,∠ACB=900,AB=5,BC=3,CD ⊥AB 于点D ,求CD 的长。
DABC例如图,在△ABC 中,D 是BC 上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD 的长.例右图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m,∠A =30 °, 立柱BC 、DE 要多长?例将下面的空补充完整。
如图所示,已知△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠A=30°.求证:AB=4BD解:∵△ABC 中,∠ACB=90°,∠A=30°∴ BC= AB ∠B=又∵△BCD 中,CD ⊥AB ∴∠BCD= ∴BD= BC ∴BD= AB 即例:说出下列命题的逆命题,并判断每对命题的真假;(1)四边形是多边形;(2)两直线平行,内旁内角互补; (3)如果ab =0,那么a =0, b =0AB CD1.如图,CD ⊥AD,CB ⊥AB,AB=AD. 求证:CD=CB.2.如图,一架2.5m 长的梯子AB ,斜靠在一坚直的墙上AC 上,这时梯足B 到墙底端C 的距离为0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯足将向外移动多少米?3.如图,AD 是△ABC 的高,E 为AC 上一点,BE 交高AD 于点F ,且BF=AC ,FD=CD 。
数学初三必考知识点归纳

数学初三必考知识点归纳这里按照五个大类把初三的全部知识点都整理一遍,一共二十八个知识点,如下所示:一、相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
三、二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。
考点11:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
解直角三角形知识点总结

解直⾓三⾓形知识点总结 解直⾓三⾓形是中考数学的⼀⼤考点,但相关的知识点其实并不是⼗分的难,下⾯解直⾓三⾓形知识点总结是⼩编为⼤家带来的,希望对⼤家有所帮助。
解直⾓三⾓形知识点总结 【知识梳理】 1.解直⾓三⾓形的依据(1)⾓的关系:两个锐⾓互余;(2)边的关系:勾股定理;(3)边⾓关系:锐⾓三⾓函数 2.解直⾓三⾓形的基本类型及解法:(1)已知斜边和⼀个锐⾓解直⾓三⾓形;(2)已知⼀条直⾓边和⼀个锐⾓解直⾓三⾓形;(3)已知两边解直⾓三⾓形. 3.解直⾓三⾓形的应⽤:关键是把实际问题转化为数学问题来解决 【课前预习】 1、在Rt△ABC中,∠C=90°,根据已知量,填出下列表中的未知量: a b c ∠A ∠B 6 30° 10 45° 2、所⽰,在△ABC中,∠A=30°,,AC= ,则AB= . 变式:若已知AB,如何求AC? 3、在离⼤楼15m的地⾯上看⼤楼顶部仰⾓65°,则⼤楼⾼约 m. (精确到1m, ) 4、铁路路基横断⾯为⼀个等腰梯形,若腰的坡度为1:,顶宽为3⽶,路基⾼为4⽶, 则坡⾓= °,腰AD= ,路基的下底CD= . 5、王英同学从A地沿北偏西60°⽅向⾛100m到B地,再从B地向正南⽅向⾛200m到C地,此时王英同学离A地 m. 【解题指导】 例1 在Rt△ ABC中,∠C=90°,AD=2AC=2BD,且DE⊥AB. (1)求tanB;(2)若DE=1,求CE的长. 例2 34-4所⽰,某居民⼩区有⼀朝向为正南⽅向的居民楼,该居民楼的⼀楼是⾼6m的⼩区超市,超市以上是居民住房,在该楼的前⾯15m处要盖⼀栋⾼20m的新楼.当冬季正午的阳光与⽔平线的夹⾓为32°时. (1)问超市以上的居民住房采光是否有影响,为什么? (2)若新楼的影⼦刚好部落在居民楼上,则两楼应相距多少⽶? (结果保留整数,参考数据: ) 例3某校初三课外活动⼩组,在测量树⾼的⼀次活动中,34-6所⽰,测得树底部中⼼A到斜坡底C的⽔平距离为8.8m.在阳光下某⼀时刻测得1m的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡⽐,求树⾼AB.(结果保留整数,参考数据 ) 例4 ⼀副直⾓三⾓板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长. 【巩固练习】 1、某坡⾯的坡度为1: ,则坡⾓是_______度. 2、已知⼀斜坡的坡度为1:4,⽔平距离为20m,则该斜坡的垂直⾼度为 . 3、河堤的横断⾯1所⽰,堤⾼BC是5m,迎⽔斜坡AB长13m,那么斜坡AB的坡度等于 . 4、菱形在平⾯直⾓坐标系中的位置2所⽰, ,则点的坐标为 . 5、先锋村准备在坡⾓为的⼭坡上栽树,要求相邻两树之间的⽔平距离为5⽶,那么这两树在坡⾯上的距离AB为 . 6、⼀巡逻艇航⾏⾄海⾯处时,得知其正北⽅向上处⼀渔船发⽣故障.已知港⼝处在处的北偏西⽅向上,距处20海⾥; 处在A处的北偏东⽅向上,求之间的距离(结果精确到0.1海⾥) 【课后作业】 ⼀、必做题: 1、4,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为 cm. 2、某⼈沿着有⼀定坡度的坡⾯前进了10⽶,此时他与⽔平地⾯的垂直距离为⽶,则这个坡⾯的坡度为__________. 3、已知5,在△ABC中,∠A=30°,tanB= ,BC= ,则AB的长为__ ___. 4、6,将以A为直⾓顶点的等腰直⾓三⾓形ABC沿直线BC平移得到△,使点与C重合,连结,则的值为 . 5、7所⽰,在⼀次夏令营活动中,⼩亮从位于A点的营地出发,沿北偏东60°⽅向⾛了5km到达B 地,然后再沿北偏西30°⽅向⾛了若⼲千⽶到达C地,测得A地在C地南偏西30°⽅向,则A、C两地的距离为( ) (A) (B) (C) (D) 6、8,⼩明要测量河内岛B到河边公路l的距离,在A测得,在C测得,⽶,则岛B到公路l的距离为( )⽶. (A)25 (B) (C) (D) 7、9所⽰,⼀艘轮船由海平⾯上A地出发向南偏西40°的⽅向⾏驶40海⾥到达B地,再由B地向北偏西10°的⽅向⾏驶40海⾥到达C地,则A、C两地相距( ). (A)30海⾥ (B)40海⾥ (C)50海⾥ (D)60海⾥ 8、是⼀⽔库⼤坝横断⾯的⼀部分,坝⾼h=6m,迎⽔斜坡AB=10m,斜坡的坡⾓为α,则tanα的值为( ) (A) (B) (C) (D) 9、11,A,B是公路l(l为东西⾛向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东45°⽅向上. (1)求出A,B两村之间的距离; (2)为⽅便村民出⾏,计划在公路边新建⼀个公共汽车站P,要求该站到两村的距离相等,请⽤尺规在图中作出点P的位置(保留清晰的作图痕迹,并简要写明作法). 10、是⼀个半圆形桥洞截⾯⽰意图,圆⼼为O,直径AB是河底线,弦CD是⽔位线,CD∥AB,且CD = 24 m,OE⊥CD于点E.已测得sin∠DOE = .(1)求半径OD;(2)根据需要,⽔⾯要以每⼩时0.5 m的速度下降,则经过多长时间才能将⽔排⼲? 11、所⽰,A、B两城市相距100km. 现计划在这两座城市间修筑⼀条⾼速公路(即线段AB),经测量,森林保护中⼼P在A城市的北偏东30°和B城市的北偏西45°的⽅向上. 已知森林保护区的范围在以P 点为圆⼼,50km为半径的圆形区域内. 请问:计划修筑的这条⾼速公路会不会穿越保护区?为什么?(参考数据:, ) 12、,斜坡AC的坡度(坡⽐)为1: ,AC=10⽶.坡顶有⼀旗杆BC,旗杆顶端B点与A点有⼀条彩带AB 相连,AB=14⽶.试求旗杆BC的⾼度. ⼆、选做题: 13、,某货船以每⼩时20海⾥的速度将⼀批重要物资由A处运往正西⽅向的B处,经过16⼩时的航⾏到达.此时,接到⽓象部门的通知,⼀台风中⼼正以40海⾥每⼩时的速度由A向北偏西60o⽅向移动,距台风中⼼200海⾥的圆形区域(包括边界)均会受到影响.⑴ B处是否会受到台风的影响?请说明理由.⑵为避免受到台风的影响,该船应在到达后多少⼩时内卸完货物? 14、所⽰,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P. (1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长; (2)若CE=2,BD=BC,求∠BPD的正切值; (3)若tan∠BPD= ,设CE=x,△ABC的周长为y,求y关于x的函数关系式.。
初三数学直角三角形三角函数

精品文档、一周知识概述(3)三个三角函数之间的关系:① 互余关系 sinA=cos(90 ° — A)、cosA=sin(90 ° — A)② 平方关系:处「= ■sin AtarM = -------③ 商数关系: ■-亠■■-2、注意两个转化(1)把实际问题转化为数学问题:将实际问题图形转化为平面几何图形,依题意,画 出图形•(2)若三角形不是直角三角形,应添加适当的辅助线,将原图形分割成几个直角三角 形,找当0°WaW 90°时,正弦与正切的函数值随角的增大而增大,但 tan90°的值不存在,而余弦的函数值是随角的增大而减小. 5、理解仰角、俯角、坡角、坡度等概念COSJ 4 =—(2)三个锐角三角函数:a c tan .4 = —i ;cot 卫=—Jba■视有时为了测出江河、水库、筑路等的坡面 AB 与地面BC 的倾斜程度,有时用坡角a 的大小来反映。
当a( 0°<a< 90°)较大时,则倾斜程度就较徒,有时把坡面 AB 的 铅垂高度h 和水平宽度f 的比叫做坡度,用字母i 表示..(2) 0°、90° 的特殊情况:sinO ° =0, cosO ° =1, tan0 ° =0,sin90 ° =1,cos90° =0, tan90 °不存在.(3)已知锐角a ,则可求出sin a ,cos a ,ta n a 的值,当a 是0°〜90°中一般角时,可用科学计算器求出,反过来,若已知某三角函数值时,也可求出 0° ~90°间的角. (4) 利用直角三角形中的边角关系,解决实际冋题 2、难点将一般三角形中所要求的值,转化为直角形求其值,即辅助线要恰当地作出。
一般 来说,辅助线不要破坏所给的特殊角. 一、周知识概述1、从实际问题出发一一梯子靠在墙上,有的较陡,有的较缓,用什么值反映出来?通 过学习发现:把这一问题tan A =转化为在直角三角形中,某锐角的对边与邻边的比.所以规定山的对起B乙扛的对边BCA人_____________ CC小旳邻边AC显然,梯子的倾斜程度与tanA 的值的大小有关,当0° <A° <90 °,若/ A 逐渐增大,则tanA 的值逐渐增大 ,梯子越陡•..乙4的对边.山的邻边sin A = -------- cos >1= ----------2、相应地规定正弦:斜边料边BBBC'ACCABAB 322 312 1sin atan a2ABM 6(P= — AS^AB2昱~2~60°30°45° 3、关于30°, 45°, 60°的正弦,余弦、正切值,可由直角二角形来确定,与直角二 角形大小无关,而与两锐 角大小有关•当/ A=30°时当/ A=45时 当/ A=60°时则EU ^-AB2AC=^-AB1—击4、为方便学习,应了解一下在直角三角形中,把/ A 的邻边与/ A 的对边之比起名为余 切,即卩则紀=• —2AB ABABBCtaL6(F = —AC ^AB将它们的特殊值列表如下:三角函数 角a 的度数 COSamtA=山的邻边显然cot虫-------- .匕1的对边tan』5、在Rt△ ABC中,由锐角A (0° vA<90°)的特点,可得到0<sinA<1,0<cosA<1,由定义:2 2 2sin A= —r cos =—T(sm 乂〕卞 + (co务妊尸=—y ■—= —— \. 2 2芒芒可得出疋匸' 芒即sin A+ cos A=1.6除特殊角30°, 45°, 60°的三角函数值外,还有0°, 90°的极端情况规定:stnO°= _ = H = o?co s0D= —= - - l r tan 0° = —= - = 0c c e c b b(b^0),而sin90 ° =1, cos90 ° =0, tan90。
初三数学几何知识点归纳

初三数学几何知识点归纳一、三角形1. 三角形的基本概念- 三角形由不在同一直线上的三条线段首尾顺次相接所组成。
- 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
例如,若三角形三边为a、b、c,则a + b>c,a - b<c。
2. 三角形的分类- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形,直角三角形中斜边最长,两直角边的平方和等于斜边的平方(勾股定理a^2+b^2=c^2,其中c为斜边,a、b为两直角边)。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形两底角相等(等边对等角),等腰三角形三线合一(底边上的高、底边上的中线、顶角平分线互相重合)。
- 等边三角形:三边都相等的三角形,等边三角形三个角都是60^∘,等边三角形是特殊的等腰三角形。
3. 三角形的内角和与外角- 三角形内角和定理:三角形三个内角的和等于180^∘。
- 三角形的外角:三角形的一边与另一边的延长线组成的角。
三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
二、四边形1. 平行四边形- 定义:两组对边分别平行的四边形叫做平行四边形。
- 性质:- 平行四边形的对边平行且相等。
- 平行四边形的对角相等,邻角互补。
- 平行四边形的对角线互相平分。
- 判定:- 两组对边分别平行的四边形是平行四边形。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 两组对角分别相等的四边形是平行四边形。
- 对角线互相平分的四边形是平行四边形。
2. 矩形- 定义:有一个角是直角的平行四边形叫做矩形。
- 性质:- 矩形具有平行四边形的所有性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年初三数学三角形知识点整理
【编者按】为了丰富同学们的学习生活,查字典数学网初中频道搜集整理了2019年初三数学三角形知识点整理,供大家参考,希望对大家有所帮助!
2019年初三数学三角形知识点整理
☆内容提要☆
三角形
分类:⑴按边分;
⑵按角分
1.定义(包括内、外角)
2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中,
3.三角形的主要线段
讨论:①定义②线的交点三角形的心③性质
①高线②中线③角平分线④中垂线⑤中位线
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②专用方法
6.三角形的面积
⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线
⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线
8.证明方法
⑴直接证法:综合法、分析法
⑵间接证法反证法:①反设②归谬③结论
⑶证线段相等、角相等常通过证三角形全等
⑷证线段倍分关系:加倍法、折半法
⑸证线段和差关系:延结法、截余法
其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
⑹证面积关系:将面积表示出来
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让
学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。