一元一次不等式组(4)
湘教版八年级数学上册作业课件 第4章 一元一次不等式(组) 一元一次不等式的应用

3.(4分)(醴陵市月考)某超市花费1 140元购进苹果100千克, 销售中有5%的正常损耗,为避免亏本(其它费用不考虑), 售价至少定为多少元/千克? 设售价为x元/千克,根据题意所列不等式正确的是( )A A.100(1-5%)x≥1 140 B.100(1-5%)x>1 140 C.100(1-5%)x<1 140 D.100(1-5%)x≤1 140
5.(4分)某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车
多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生 产汽车x辆应满足的不等式为___1_5_(_x_+__6_)>__2_0_x_.
6.小明和爸爸妈妈三人玩跷跷板.三人的体重一共为168千克,爸爸坐在跷 跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这 时爸爸那端仍然着地.若设小明的体重为x千克,则妈妈的体重为__千2x克,爸 爸的体重为___(_1_6_8_-__x_-__2千x) 克,根据小明和妈妈的体重之和___<爸爸的体重 (填“>”或“=”或“<”), 即可得出关于x的关系式为___x_+__2_x_<__1_6_8_-__x_-___2,x 解得x<___2_8.
11.(南京中考)铁路部门规定旅客免费携带行李箱的 长、宽、高之和不超过160 cm, 某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm, 长与宽的比为3∶2,则该行李箱的长的最大值为____7c8m.
三、解答题(共45分) 12.(15分)(长沙中考)为建设“秀美幸福之市”,长沙市绿化提质改造工程 正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某 段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元. (1)若购买两种树苗的总金额为90 000元,求需购买甲、乙两种树苗各多少 棵? (2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种 树苗多少棵?
一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(答案解析)(4)

一、选择题1.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到450m 以外的安全区域.已知导火线的燃烧速度是12cm/s .,操作人员跑步的速度是6m/s .为了保证操作人员的安全,导火线的长度要超过( )A .90cmB .80cmC .70cmD .60cm 2.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .2 3.不等式323x x +-≤的非负整数解有( ) A .3个 B .4个 C .5个 D .无数个 4.已知a b >,下列不等式中,不成立的是( )A .44a b +>+B .33a b ->-C .22a b > D .22a b ->- 5.若点(,)A n m 在第二象限,则点()2,B m n -位于( )A .第一象限B .第二象限C .第三象限D .第四象限 6.点P 坐标为(m +1,m -2),则点P 不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 8.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 9.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 10.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤ 11.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a- 12.下列各数是不等式271x -≥的解的是( ).A .4B .3C .2D .1二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.已知a 340218a <+<a 的值为____________.15.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 16.已知关于x 的不等式0123x a x ->⎧⎨->-⎩只有五个整数解,则实数a 的取值范围是__________.17.不等式组()2231117232x x x x ⎧+>-⎪⎨-≤-⎪⎩的解为_____.18.若方程组3133x y a x y +=+⎧⎨+=⎩的解x 、y 满足 3y x -<,则a 的取值范围为_________. 19.不等式组235,324,x x -≤⎧⎨-<⎩的解集是________. 20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______.三、解答题21.如图,ABC 中,8,6AC BC AB ===,现有两点,M N 分别从点A 点B 同时出发,沿三角形的边运动,已知点M 的速度为每秒1个单位长度,点N 的运度为每秒2个单位长度,当点M 到达B 点时,,M N 同时停止运动,设运动时间为t 秒.(1)当03t ≤≤时,AM = ,AN = ;(用含t 的代数式表示)(2)当点,M N 在边BC 上运动时,是否存在某个时刻,使得12AMN ABC S S =△△成立,若成立,请求出此时点M 运动的时间;若不成立请说明理由.(3)当点,M N 在同一直线上运动时,求运动时间t 的取值范围.22.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2312x y +=,得1222433x y x -==-(x ,y 为正整数).要使243y x =-为正整数,则23x 为正整数,由2,3互质,可知x 为3的倍数,从而把3x =,代入243y x =-,得2y =.所以2312x y +=的正整数解为32x y =⎧⎨=⎩, 问题: (1)请你直接写出方程36x y -=的一组正整数解:__________.(2)若123x -为自然数,则满足条件的x 的正整数值有( )A .5个;B .6个;C .7个;D .8个 (3)七年级某班为了奖励学生学习的进步,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案?写出购买方案.23.为了美化校园,某学校决定利用现有的332盆甲种花卉和310盆乙种花卉,搭配A ,B 两种园艺造型共50个,摆放在校园道路两侧.已知一个A 种园艺造型需甲种花卉7盆,乙种花卉5盆;一个B 种园艺造型需甲种花卉6盆,乙种花卉8盆.(1)问搭配A ,B 两种园艺造型共有几种方案?(2)若一个A 种园艺造型的成本是200元,一个B 种园艺造型的成本是300元,哪种方案成本最低?请写出此方案.24.某县在创建省文明卫生城市中,绿化档次不断提升.某校计划购进A 、B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元(1)求A 种、B 种树木每棵各多少元?(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价八折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.解下列不等式组()220463x x x ⎧-<⎨+≥⎩26.为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A ,B 两种蔬菜,若种植20亩A 种蔬菜和30亩B 种蔬菜,共需投入36万元;若种植30亩A 种蔬菜和20亩B 种蔬菜,共需投入34万元.(1)种植A ,B 两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A 种蔬菜每亩可获利0.8万元,种植B 种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w 万元.设种植A 种蔬菜m 亩,请直接写出w 关于m 的函数关系式;(3)在(2)的条件下,若要求A 种蔬菜的种植面积不能少于B 种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意可知:操作人员点燃导火线后,要在炸药爆炸前跑到450米以外的安全区域,列出不等式,解不等式即可.【详解】解:设导火线长度为x cm ,根据题意得,1.2x >4506, 解得x >90,故选:A .【点睛】本题考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式. 2.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k 的取值范围,再结合选项解答.【详解】解:根据图象,得2k <6,3k >5,解得k <3,k >53,所以53<k <3. 只有2符合.故选:D .【点睛】 利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.3.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x -2)≤x +3,去括号,得3 x -6≤x +3,移项、合并同类项,得2x ≤9,系数化为1,得x ≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C .【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.4.D解析:D【分析】根据不等式的性质逐个判断即可.【详解】解:A .不等式a b >两边都加上4,不等号的方向不变,即44a b +>+,原变形成立,故此选项不符合题意;B .不等式a b >两边都减去3,不等号的方向不变,即33a b ->-,原变形成立,故此选项不符合题意;C .不等式a b >两边都除以2,不等号的方向不变,即22a b >,原变形成立,故此选项不符合题意; D .不等式a b >两边都乘以2-,不等号的方程改变,即22a b -<-,原变形不成立,故此选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;:②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.5.A解析:A【分析】根据第二象限的点的横坐标是负数,纵坐标是正数,表示出m、n,再根据各象限内的点的坐标特征解答即可;【详解】∵点A(n,m)在第二象限,∴m>0,n<0,∴m2>0,-n>0,∴点B(m2,-n)在第一象限,故选:A.【点睛】本题考查了各象限内点的坐标的特征以及解不等式,记住各象限内点的坐标的符号是解决问题的关键.6.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解.【详解】解:A、当m>2时,m+1与m-2都大于0,P在第一象限,所以A不符合题意;B、若P在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B符合题意;C、当m<-1时,m+1与m-2都小于0,P在第三象限,所以C不符合题意;D、当-1<m<2时,m+1>0,m-2<0,P在第四象限,所以D不符合题意;故选B .【点睛】本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.7.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y(x,y均是非负整数),则有y=5-3x,且0≤y≤3,由此即可求得x、y的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y,∵该球队小组赛共积5分,∴y=5-3x,又∵0≤y≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.8.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.9.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.10.D解析:D【分析】根据运行程序,第一次运算结果小于等于75,第二次运算结果大于75列出不等式组,然后求解即可.【详解】由题意得,()2175221175x x +≤⎧⎪⎨++>⎪⎩①②,解不等式①得:37x ≤,解不等式②得:18x >,∴1837x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.11.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A 错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误;由a<-1可知-a>1,因此101a<-<,∴D 正确. 故选D .【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键. 12.A解析:A【分析】先求出不等式的解集,再选项进行判断即可.271x -≥,217x +≥,28x ≥解得,4x ≥.故选:A .【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.15.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.16.【分析】此题需要首先解不等式根据解的情况确定a 的取值范围特别是要注意不等号中等号的取舍【详解】解不等式x-a >0得:x >a 解不等式1-2x >-3得:x <2∴不等式组的解集是a <x <2∵只有五个整数解解析:43a -≤<-【分析】此题需要首先解不等式,根据解的情况确定a 的取值范围.特别是要注意不等号中等号的取舍.【详解】解不等式x -a >0,得:x >a ,解不等式1-2x >-3,得:x <2,∴不等式组的解集是a < x <2,∵只有五个整数解,∴整数解是1,0,-1,-2,-3∴-4≤a <-3,故答案为:-4≤a <-3.【点睛】此题考查了一元一次不等式组的解法.解题中要注意分析不等式组的解集的确定,含参数问题需要特别注意取等号时的情况.17.x≤4【分析】求出每个不等式的解集再根据找不等式组解集的规律找出即可【详解】解:解不等式①得x <5;解不等式②得x≤4;所以不等式组的解集为:x≤4【点睛】本题考查的知识点是不等式的性质解一元一次不解析:x≤4【分析】求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【详解】解:()2231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩①② 解不等式①得,x <5;解不等式②得,x≤4;所以,不等式组的解集为:x≤4.【点睛】本题考查的知识点是不等式的性质,解一元一次不等式组,解此题的关键是能根据不等式的解集找出不等式组的解集.18.a >-4【分析】先把两式相减求出y−x 的值再代入中得到关于a 的不等式进而求出a 的取值范围即可【详解】由②-①得:2y−2x =2−a ∵则∴2−a <6∴a >-4故答案是:a >-4【点睛】本题考查的是解二解析:a >-4【分析】先把两式相减求出y−x 的值,再代入 3y x -<中得到关于a 的不等式,进而求出a 的取值范围,即可.【详解】3133x y a x y +=+⎧⎨+=⎩①②, 由②-①得:2y−2x =2−a ,∵ 3y x -<,则2 26y x -<,∴2−a <6,∴a >-4,故答案是:a >-4.【点睛】本题考查的是解二元一次方程组及一元一次不等式,解答此题的关键是把a 当作常数表示出y−x 的值,再得到关于a 的不等式.19.【分析】求出不等式组中两不等式的解集找出解集的公共部分即可;【详解】∵由第一个式子求得:x≥-1由第二个式子求得:x <2则不等式组的解集为-1≤x <2故答案为:-1≤x <2【点睛】本题考查了解一元一解析:12x -≤<【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可;【详解】∵235324x x -≤⎧⎨-⎩< 由第一个式子求得:x ≥-1,由第二个式子求得:x <2,则不等式组的解集为-1≤x <2,故答案为:-1≤x <2【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解本题的关键; 20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)t ,62t -;(2)存在,10秒;(3)37t ≤≤或811t ≤≤【分析】(1)先由运动得出AM=t ,BN=2t ,继而得出AN ,即可得出结论;(2)当点M ,N 在边BC 上运动时,AM=t-8,CN=2t-6-8,即可得到MN=t-6,根据题意知12MN BC =,列出方程即可求解; (3)根据运动的时间、速度和距离即可求得运动时间t 的取值范围.【详解】(1)∵6÷2=3,∴当 0≤t≤3 时,点N 在AB 上运动(包括端点),∵运动时间为t 秒.∴AM=t ,BN=2t ,∴AN=6-2t ,故答案为:t ,6-2t ;(2)存在.理由如下:当M N 、在边BC 上运动时,8672t +>=,点N 在边BC 上,881t >=,点M 在边BC 上, ∴点N 在点M 前面,此时,CM=t-8,CN=2t-14, ∵12AMN ABC S S ∆∆=, ∴12MN BC =, 则1(214)(8)82t t ---=⨯, 解得:10t = 所以,当点M N 、在边BC 上运动,10t =秒时,12AMN ABC S S ∆∆=; (3)①当点M N 、同在AC 上时,∵68AB AC ==,,点N 的速度为2, ∴当66822t +≤≤即37t ≤≤时,点N 在AC 上, 又∵点M 的速度为1,∴当18t ≤≤时,点M 在AC 上, ∴当37t ≤≤时,点M N 、同在AC 上;②当点M N 、同在BC 上时,∵68AB AC ==,,点N 的速度为2,∴当6868822t +++≤≤即711t ≤≤时,点N 在BC 上, 又∵点M 的速度为1. ∴当88811t +≤≤即816t ≤≤时,点M 在BC 上, ∴当811t ≤≤时,点M N 、同在AC 上; 综上所述,当37t ≤≤与811t ≤≤时,点M N 、在同一直线上运动.【点睛】本题考查了一元一次方程在几何中的应用,一元一次不等式在几何中的应用等,解题的关键是理解题意,学会用方程的思想思考问题.22.(1)33x y =⎧⎨=⎩;(2)B ;(3)三种,方案见解析 【分析】(1)求方程3x-y=6的正整数解,可给定x 一个正整数值,计算y 的值,如果y 的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买单价为3元的笔记本m 本,单价为5元的钢笔n 支.则根据题意得:3m+5n=48,其中m、n均为自然数.求该二元一次方程的正整数解即可.【详解】解:(1)由3x-y=6,得y=3x-6,要使y是正整数,则3x-6是正整数,所以需要x>2,故当x=3时,y=3,所以3x-y=6的一组正整数解可以是:33 xy=⎧⎨=⎩,故答案是:33 xy=⎧⎨=⎩;(2)若123x-为自然数,则满足条件的x的正整数值有4,5,6,7,9,15共6个,故答案是:B;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.于是有:n=4835m-,则有4835mm-⎧>⎪⎨⎪>⎩,解得:0<m<16.由于n=4835m-为正整数,则48-3m为正整数,且为5的倍数.∴当m=1时,n=9;当m=6时,n=6,当m=11时,n=3.答:有三种购买方案:即购买单价为3元的笔记本1本,单价为5元的钢笔9支;或购买单价为3元的笔记本6本,单价为5元的钢笔6支;或购买单价为3元的笔记本11本,单价为5元的钢笔3支.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数.23.(1)共有3种方案;(2)当A种园艺造型32个,B种园艺造型18个,成本最低【分析】(1)根据题意列出一元一次不等式组,直接解不等式组,然后取整数解即可得出答案;(2)根据题意列出总成本关于x的一次函数,利用一次函数的性质求解可得.【详解】(1)解:设A种园艺造型x个,B种园艺造型(50)x-个()()76503325850310x x x x ⎧+-≤⎪⎨+-≤⎪⎩∴3032x ≤≤x 为正整数:x 取30,31,32,∴可设计3种搭配方案:第一种:A 种园艺造型30个,B 种园艺造型20个;第二种:A 种园艺造型31个,B 种园艺造型19个;第三种:A 种园艺造型32个,B 种园艺造型18个.(2)解:设总成本为y 元()20030050y x x =+-10015000y x =-+∴0k <,y 随x 的增大而减小∴当32x =时,y 取最小值∴当A 种园艺造型32个,B 种园艺造型18个,成本最低【点睛】本题主要考查了一元一次不等式组和一次函数的实际应用,解题关键是弄清题意,合适的等量关系,列出不等式组,属于中档题.24.(1)A 种树每棵100元,B 种树每棵80元;(2)当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为7600元【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(100-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.8×(A 种树的金额+B 种树的金额)进行解答.【详解】解:(1)设A 种树每棵x 元,B 种树每棵y 元依题意得:256003380x y x y +=⎧⎨+=⎩解得10080x y =⎧⎨=⎩ 答:A 种树每棵100元,B 种树每棵80元(2)设购买A 种树木为a 棵,则购买B 种树木为()100a -棵则()3100a a ≥-解得75a ≥设实际付款总金额是w 元,则()0.810080100w a a =+-⎡⎤⎣⎦即166400w a =+∵160>,w 随a 的增大而增大∴当75a =时,w 最小即当75a =时,167564007600w =⨯+=最小值(元)答:当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为7600元.【点睛】本题考查了一次函数的应用和二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.25.62x -≤<【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()220463x x x ⎧-<⎨+≥⎩①②由①得:2x <由②得:6x ≥-∴62x -≤<【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)种植A ,B 两种蔬菜,每亩各需分别投入0.6和0.8万元;(2)w =−0.1m +150;(3)当种A 蔬菜100亩,B 种蔬菜50亩时,获得最大利润为140万元.【分析】(1)根据题意列二元一次方程组,问题即可求解;(2)用w 表示种植两种蔬菜的利润,即可得到w 与m 之间函数关系式;(3)根据A 种蔬菜的种植面积不能少于B 种蔬菜种植面积的2倍得到m 的取值范围,结合一次函数的性质,即可求出w 最大值.【详解】(1)设种植A ,B 两种蔬菜,每亩各需分别投入x ,y 万元,根据题意得:203036302034x y x y ⎧⎨⎩+=+=, 解得:0.60.8x y ⎧⎨⎩==, 答:种植A ,B 两种蔬菜,每亩各需分别投入0.6和0.8万元;(2)由题意得:w =0.8m +1.2×1000.60.8m -=−0.1m +150, 即:w =−0.1m +150;(3)由(2)得:m≥2×1000.60.8m-,解得:m≥100,∵w=−0.1m+150,k=−0.1<0,∴w随m的增大而减小,∴当m=100时,w最大=140,此时,1000.60.8m-=50,∴当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.【点睛】本题主要考查一次函数实际应用问题,二元一次方程组、不等式、列一次函数关系式和根据自变量取值范围求一次函数的最值.根据题意,列出方程和一次函数解析式,掌握一次函数的性质,是解题的关键.。
上海六年级数学下册同步精练 专题04 一元一次不等式(组)(真题测试)(教师版)

专题04一元一次不等式(组)【真题测试】一、选择题1.(金山2018期中5)如果x >y ,那么下列结论中错误的是()(A )x 4>y 4(B )22x y ->-(C )44x y +>+(D )33x y>【答案】B ;【解析】因为x y >,所以44x y >,22x y -<-,44x y +>+,33x y>,故B 错误,因此选B.2.(浦东四署2019期中5)下列不等式的变形不正确的是()A.若a b >,则33a b +>+;B.若a b >,则33a b -<-;C.若a b >,则0a b ->;D.若a b >,则ac bc >.【答案】D ;【解析】根据不等式性质1知A 正确;根据不等式性质1、3知B 正确;根据不等式性质1知C 正确;根据不等式性质2、3可知当0c >时,有ac bc >,若当0c <时,有ac bc <,故D 错误;因此选D.3.(金山2018期末3)如果a 、b 都是有理数(0≠⋅b a ),且b a <,那么下列结论正确的是()(A)22b a <;(B)b a 22-<-;(C)ba 11<;(D)22a b -+>-+.【答案】D;【解析】A、如:222,1a b a b =-=>,则,故A 错误;B、根据不等式性质3,可得22a b ->-,故B 错误;C、如:111,2a b a b==>,则,故C 错误;D、根据不等式性质3和1可知22a b -+>-+,故D 正确;因此选D.4.(奉贤2018期末3)如果a b >,下列不等式正确的是()A .)3()3(-+<-+b aB .b a ->-55C .c a +3<c b+3D .3232+-<+-b a 【答案】D;【解析】考查不等式的性质,因为a b >,所以(3)(3)a b +->+-(性质1),故A 错误;因为a b >,所以55a b -<-(性质3、1),故B 错误;因为a b >,所以33a bc c +>+(性质2、1),故C 错误;因为a b >,所以2323a b -+<-+(性质3、1),故D 正确;因此答案选D.5.(浦东四署2019期中6)已知有理数a 、b 、c 、d ,且满足以下条件:0,0,0abcd a b cd <+=>,那么在这四个数中负数的个数至少有()A.1个;B.2个;C.3个;D.4个.【答案】A ;【解析】由0a b +=可知a 、b 中必有一个为负数,一个为正数;由0cd >可知c 、d 同号,因此在这四个数中负数的个数至少有1个,因此选A.6.(崇明2018期中2)下列不等式组中,解集在数轴上表示出来如图所示的不等式组为()(A)⎩⎨⎧-≤>;1,2x x (B)⎩⎨⎧-≥<;1,2x x (C)⎩⎨⎧-><;1,2x x (D)⎩⎨⎧-≤<.1,2x x 【答案】B;【解析】根据图形可知,12x -≤<即21x x <⎧⎨≥-⎩.故选B.二、填空题7.(普陀2018期末12)不等式511x ->的解集是.【答案】115x <-;【解析】解不等式511x ->,得115x <-(不等式性质3).8.(松江2018期末4)不等式组43x x ≤-⎧⎨<-⎩的解集是_______________.【答案】4x ≤-;【解析】解不等式组43x x ≤-⎧⎨<-⎩的解集是4x ≤-,规律是“小小取小”.9.(浦东四署2019期中13)不等式2541x x ->-的最大整数解是.【答案】3x =-;【解析】移项得:2451x x ->-,合并得:24x ->,系数化为1得:2x <-,故其中最大的整数解为3x =-.10.(浦东2018期末9)比较大小:如果a b <,那么23______23a b --.(填“>”“<”或“=”)【答案】>;【解析】因为a b <,所以33a b ->-(不等式性质3),所以2323a b ->-(不等式性质1).11、(金山2018期末12)若23x -是非负数,那么满足题意的最小整数x 是.【答案】2x =;【解析】依题,得203x -≥,解得2x ≥,所以最小整数是2;12.(金山2018期中15)已知a 与b 两数的和是非负数,若用不等式表示,那么结果是.【答案】0a b +≥;【解析】因为a 与b 两数的和是非负数,所以用不等式表示为0a b +≥.13.(松江2019期中9)用不等式表示“x 的相反数减去3的差是一个非负数”:.【答案】30x --≥;【解析】用不等式表示“x 的相反数减去3的差是一个非负数”为30x --≥.14.(崇明2018期中11)用不等式表示“2-a 是不大于3-的数”为.【答案】23a -≤-;【解析】用不等式表示“2a -是不大于-3的数”为23a -≤-.15.(奉贤2018期末17)若不等式组412x m x m <-⎧⎨>+⎩无解,则m 的取值范围是.【答案】1m ≤;【解析】因为不等式组412x m x m <-⎧⎨>+⎩无解,故412m m -≤+,解得1m ≤.16.(金山2018期中18)关于x 的不等式(1)1b x +>-的解集是32x <-,那么关于x 的不等式2)1b x +<-(的解集为.【答案】3x <-;【解析】因为关于x 的不等式(1)1b x +>-的解集是32x <-,所以由(1)1b x +>-得11x b -<+,则1312b -=+,所以53b =-,将53b =-代入2)1b x +<-(中得113x <-,所以3x <-.三、解答题17.(浦东2018期末21)解不等式:)9(5-x ≥)1(615--x .【解析】解:去括号,得5451566x x -≥-+,移项,得562145x x +≥+,所以6x ≥.所以,原不等式的解集为6x ≥.18.(金山2018期中26)解不等式:1015(82)x x x -<--.【答案】2x >-;【解析】解:去括号,得101582x x x -<-+,移项,得158210x x x -+<+,合并,得612x -<,系数化为1,得2x >-.所以原不等式的解集是2x >-.19.(松江2018期中25)解不等式:632412+≥--x x ,并把它的解集表示在数轴上.【答案】3x ≤;【解析】解:去分母,得243(1)2(23)x x --≥+,去括号,得243346x x -+≥+,移项整理得721x -≥-,所以3x ≤.所以原不等式的解集为3x ≤.将不等式的解集在数轴上表示如图所示:20.(宝山2018期末23)解不等式631125x x ≤--,并把不等式的解集表示在数轴上.【答案】32x ≥;【解析】解:去分母,得54(1)2x x --≤,去括号,得5442x x -+≤,移项合并,得69x -≤-,所以32x ≥.故原不等式的解集为32x ≥.用数轴表示如下图所示.21.(浦东四署2019期中23)解不等式组:26623232x x x x -≤-⎧⎪⎨++>⎪⎩;在数轴上表示出不等式组的解集,并写出它的整数解.【解析】解:解不等式2662x x -≤-,得3x ≤,解不等式3232xx ++>,得1x >-,将不等式解集表示在数轴上如下:所以不等式组的解集为13x -<≤;则不等式组的整数解有0,1,2,3x =.22.(杨浦2019期中27)解不等式组1225104(3)2(1)x x x x -+⎧>⎪⎨⎪--≥-⎩①②,并把它的解集在数轴上表示出来.【答案】34x <≤;【解析】解:由①得:5524,5245,3x x x x x ->+->+∴>,由②得:1041222,624,4x x x x -+≥-∴-≥-∴≤.所以原不等式组的解集为34x <≤.23.(黄浦2018期末21)解不等式组:2(1)5223x x x x -<⎧⎪+⎨<+⎪⎩,.并把不等式组的解集表示在数轴上.【答案】12x -<<;【解析】解:2(1)5223x x x x -<⎧⎪+⎨<+⎪⎩, .①②,由①得2(1)x x -<,得2x <;由②得523(2)x x +<+,得1x >-;∴不等式组的解集为:12x -<<.把解集表示在数轴上如图所示.24.(宝山2018期末24)求不等式组32452113x x x ->-⎧⎪-⎨≤⎪⎩的正整数解.【答案】1和2;【解析】解:32452113x x x ->-⎧⎪-⎨≤⎪⎩①②,由①得,3x <,由②得,2x ≤,解集数轴表示略,所以,原不等式的解集是2x ≤,正整数解为1,2.25.(松江2018期末22)求不等式组:245103(2)21(6)x x x x -<-⎧⎨-≤-+⎩①②的整数解.【答案】3,4,5;【解析】由○1得36x -<-,解得2x >;由○2式去括号:36216x x -≤--,解得214x ≤;所以不等式组的解集为:2124x <≤,所以其中的整数解为3,4,5.26.(普陀2018期末23)解不等式组:612,39(2)4x x x -+-⎧⎨⎩≥<①②并把它的解集在数轴上表示出来.【答案】132x <≤;【解析】解:由①,解得1.2x ≥由②,解得3x <.不等式①、②的解集在数轴上表示为:所以,原不等式组的解集是132x <≤.27.(浦东四署2019期中25)最近,王老师家所在的小区新开了一家健身会所,王老师打算参加该健身会所开设的瘦身健美课程,按照收费标准,一次需要收费280元,若购买该健身会所的会员年卡,可享受如下优惠:会员年卡类型会员卡年费(元)每次收费(元)A 类2800200B 类3800150C 类580080(1)请你帮助王老师算一算,她一年参加瘦身健美课程多少次,办A 类会员年卡和办C 类会员年卡的消费费用是一样的?(2)若王老师一年参加课程的次数是20次,你认为哪种方式最省钱?(3)如果王老师想办理C 类会员年卡,那么王老师在一年内至少要参加多少次课程,才能保证比办理A 类会员卡和B 类会员卡都要省钱?【答案】(1)25次;(2)【解析】解:(1)设王老师一年参加瘦身健美课程x 次,根据题意,得2800200580080x x +=+,解方程,得25x =,答:王老师一年参加瘦身健美课程25次,办A 类会员年卡和办C 类会员年卡的消费费用是一样的;(2)不办理会员年卡:280205600⨯=元;办理A 类年卡:2800200206800+⨯=元;办理B 类年卡:3800150206800+⨯=元;办理C 类年卡:580080207400+⨯=元,故若王老师一年参加课程的次数是20次,不办理年卡最省钱;(3)设设王老师一年参加瘦身健美课程x 次,依题得:58008028002005800803800150x x x x+<+⎧⎨+<+⎩,解之得20042877x >=.答:如果王老师想办理C 类会员年卡,在一年内至少要参加29次课程,才能保证比办理A 类会员卡和B 类会员卡都要省钱.28.(浦东四署2019期末27)先阅读理解下列问题,再按要求完成解答.例题:解一元二次不等式(32)(21)0x x -+>.解:由有理数的乘法法则“两数相乘,同号得正”有320320210210x x x x ->-<⎧⎧⎨⎨+>+<⎩⎩或①②,解不等式组①得23x >,解不等式②得12x <-.所以元二次不等式(32)(21)0x x -+>的解集是2132x x ><-或.根据上述例题解答,求不等式51023x x +<-的解集.【答案】1352x -<<;【解析】解:由有理数的除法法则“两数相除,异号得负”有510510230230x x x x +>+<⎧⎧⎨⎨-<->⎩⎩或①②,解不等式组①得1352x -<<,解不等式②得无解.所以元二次不等式51023x x +<-的解集是1352x -<<.。
一元一次不等式组教学设计

一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。
一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。
如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。
类似于方程组引出一元一次不等式组的概念和记法。
探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。
在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。
若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。
一元一次不等式练习题(精华版)

四.变式练习
1不等式组 的解集是x>2,则m的取值范围是( ).
(A)m≤2(B)m≥2(C)m≤1(D)m≥1
2.k满足______时,方程组 中的x大于1,y小于1.
3.若m、n为有理数,解关于x的不等式(-m2-1)x>n.
4..已知关于x,y的方程组 的解满足x>y,求p的取值范围.
15、不等式组 的解集在数轴上表示正确的是()
16、把不等式组 的解集表示在数பைடு நூலகம்上,正确的为图3中的()
A.B.C.D.
17、用 表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么 这三种物体按质量从大到小的顺序排列应为()
18、不等式组 的解集在数轴上可表示为()
19、在数轴上表示不等式组 的解集,正确的是()
车站名A B C D E F G H
8、已知有长度为3cm,7cm,xcm的三条线段,问,当x为多长时,这三条线段可以围成一个三角形?
9、把一批铅笔分给几个小朋友,每人分5支还余2支;每人分6支,那么最后一个小朋友分得的铅笔小于2支,求小朋友人数和铅笔支数。
一元一次不等式组(4)
一、填空
1、不等式组 的解集为2、若m<n,则不等式组 的解集是
3、四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图3所示,则他们的体重大小关系是()
A、 B、 C、 D、
4、把不等式组 的解集表示在数轴上正确的是()
5、不等式 的解集是( )
A. B. C. D.
6、若不等式组 有实数解,则实数 的取值范围是()
A. B. C. D.
7、若 ,则 的大小关系为()
12、不等式组 的解集在数轴上可表示为()
初中数学一元一次不等式(组)单元综合能力达标测试题4(附答案)

(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已经模糊不清,只能辨认应为小于5的整数,笔记本的单价可能为多少元?
参考答案
1.A
【解析】
,
解①得:x≥a+b,
解②得:x< ,
根据题意得:
解得: ,
所以 .
故选A.
【详解】
设胜的场次为x,则负的场次为32-x,则根据题意可得:
,解得不等式为 ,故这个队至少要胜20场才有希望进入季后赛.
【点睛】
本应用题关键学会利用方程的思想解不等式。
13.0,1,2
【解析】
【分析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得: ,
故选:C
【点睛】
本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.
7.C
【解析】
【分析】
利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.
【详解】
A.方差越大,越不稳定,故选项错误;
B.在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;
(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有 人参加,请问校方应如何租车,且又省钱?
24.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.
初中数学一元一次不等式及其性质4含答案

一元一次不等式及其性质4一.选择题(共30小题)1.不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1 2.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣4 3.关于x的不等式组的整数解只有4个,则m的取值范围是()A.﹣2<m≤﹣1B.﹣2≤m≤﹣1C.﹣2≤m<﹣1D.﹣3<m≤﹣2 4.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是()A.1B.﹣C.D.4或﹣45.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.下列哪个数是不等式2(x﹣1)+3<0的一个解?()A.﹣3B.﹣C.D.27.如图,一个倾斜的天平两边分别放有小立方体和砝码,每个砝码的质量都是5克,每个小立方体的质量都是m克,则m的取值范围为()A.m<15B.m>15C.m<D.m>8.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,关于x 的不等式k2x<k1x+b的解集为()A.x>﹣2B.x<﹣2C.x<3D.x>39.若a<b,则下列各不等式不一定成立的是()A.a﹣4<b﹣4B.2a<2b C.﹣3a>﹣3b D.ac2<bc210.在数轴上表示不等式2x+6≥0的解集,正确的是()A.B.C.D.11.若关于x的方程3x﹣m=3+x的解为负数,则m的取值范围是()A.m>﹣3B.m<﹣3C.m≥﹣3D.m≤﹣312.不等式组的解集在数轴上表示为()A.B.C.D.13.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<a<c C.c<a<b D.a<b<c14.若实数2是关于x的一元一次不等式2x﹣a﹣2<0的一个解,则a的取值范围是()A.a>2B.a<2C.a>4D.a>315.如果a>b,可知下面哪个不等式一定成立()A.﹣a>﹣b B.<C.a+b>2b D.a2>ab16.若a>b,则不等式变形正确的是()A.2a<2b B.<C.a﹣2>b﹣2D.2﹣a<1﹣b 17.已知x>y,则下列不等式成立的是()A.2x<2y B.x﹣6<y﹣6C.x+5>y+5D.﹣3x>﹣3y 18.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,4),则不等式﹣2x+b<0的解集为()A.x>2B.x<2C.x<4D.x>419.已知关于x的方程3k﹣x=6的解是非负数,则k的取值范围是()A.k≤﹣2B.k≤2C.k≥﹣2D.k≥220.如果关于x的不等式(a﹣b)x>a﹣b的解集为x<1,那么a、b的大小关系为()A.a>b B.a=b C.a<b D.无法确定21.已知a>b,下列不等式中,不成立的是()A.a+4>b+4B.a﹣3>b﹣3C.>D.﹣2a>﹣2b 22.如果a<b,那么下列各式一定正确的是()A.a2<b2B.C.a﹣1>b﹣1D.﹣2a>﹣2b 23.下列方程或不等式的解法正确的是()A.由2x>﹣4,得x<﹣2B.由﹣x>5,得x>﹣5C.由﹣x=5,得x=5D.由﹣x≤3,得x≥﹣624.若关于x的方程3(x+k)=x+6的解是非负数,则k的取值范围是()A.k≥2B.k>2C.k≤2D.k<225.已知不等式组的解集为﹣1<x<2,则2019a﹣4(b+6)3﹣37=()A.2018B.2019C.2020D.202226.若关于x的不等式的整数解共有3个,则m的取值范围是()A.5<m<6B.5≤m<6C.5≤m≤6D.5<m≤627.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣428.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤229.不等式组的解集是()A.﹣2<x≤2B.x<﹣2C.x≥2D.无解30.若点P(4﹣m,m﹣3)在第二象限,则m的取值范围是()A.m<3B.m>4C.3<m<4D.3≤m≤4一元一次不等式及其性质4参考答案与试题解析一.选择题(共30小题)1.解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.2.解:∵3x+a≤2,∴3x≤2﹣a,则x≤,∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2≤<3,解得:﹣7<a≤﹣4,故选:D.3.解:不等式组整理得:,解集为m<x<3,由不等式组的整数解只有4个,得到整数解为2,1,0,﹣1,∴﹣2≤m<﹣1,故选:C.4.解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.5.解:,由①得x≤1,由②得x>﹣2,故不等式组的解集为﹣2<x≤1,在数轴上表示为:.故选:C.6.解:解不等式2(x﹣1)+3<0,得,因为只有﹣3<,所以只有﹣3是不等式2(x﹣1)+3<0的一个解,故选:A.7.解:由题意得:2m>3×5,解得:m>.故选:D.8.解:两条直线的交点坐标为(﹣2,3),且当x>﹣2时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣2.故选:A.9.解:A、∵a<b,∴a﹣4<b﹣4,故本选项不符合题意;B、∵a<b,∴2a<2b,故本选项不符合题意;C、∵a<b,∴﹣3a>﹣3b,故本选项不符合题意;D、∵a<b,∴ac2≤bc2,故本选项符合题意;故选:D.10.解:∵2x+6≥0,∴2x≥﹣6,则x≥﹣3,故选:C.11.解:∵3x﹣m=3+x,∴x=,∵关于x的方程3x﹣m=3+x的解是负数,∴<0,解得m<﹣3.故选:B.12.解:解不等式2x﹣1≤3,得:x≤2,解不等式x+1>2,得:x>1,∴不等式组的解集为1<x≤2,表示在数轴上如下:故选:C.13.解:∵根据图片可知:c>b,b>a,∴a<b<c,故选:D.14.解:∵2x﹣a﹣2<0,∴2x<a+2,∴x<,∵实数2是关于x的一元一次不等式2x﹣a﹣2<0的一个解,∴>2,解得a>2,故选:A.15.解:A、∵a>b,∴﹣a<﹣b,故本选项不符合题意;B、∵a>b,∴当a与b同号时有,当a与b异号时,有,故本选项不符合题意;C、∵a>b,∴a+b>2b,故本选项符合题意;D、∵a>b,且a>0时,∴a2>ab,故本选项不符合题意;故选:C.16.解:A、∵a>b,∴2a>2b,故本选项不符合题意;B、∵a>b,∴>,故本选项不符合题意;C、∵a>b,∴a﹣2>b﹣2,故本选项符合题意;D、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,但2﹣a不一定小于1﹣b,故本选项不符合题意;故选:C.17.解:A、∵x>y,∴2x>2y,故本选项不符合题意;B、∵x>y,∴x﹣6>y﹣6,故本选项不符合题意;C、∵x>y,∴x+5>y+5,故本选项符合题意;D、∵x>y,∴﹣3x<﹣3y,故本选项不符合题意;故选:C.18.解:∵一次函数y=﹣2x+b的图象过A(0,4),∴b=4,∴函数解析式为y=﹣2x+4,当y=0时,x=2,∴B(2,0),∴不等式﹣2x+b<0的解集为x>2,故选:A.19.解:解方程3k﹣x=6得,x=3k﹣6,∵方程的解是非负数,∴3k﹣6≥0,解得k≥2.故选:D.20.解:∵不等式(a﹣b)x>a﹣b的解集是x<1,∴a﹣b<0,∴a<b,则a与b的大小关系是a<b.故选:C.21.解:A.不等式a>b两边都加上4,不等号的方向不变,即a+4>b+4,原变形成立,故此选项不符合题意;B.不等式a>b两边都减去3,不等号的方向不变,即a﹣3>b﹣3,原变形成立,故此选项不符合题意;C.不等式a>b两边都除以2,不等号的方向不变,即>,原变形成立,故此选项不符合题意;D.不等式a>b两边都乘以﹣2,不等号的方程改变,即﹣2a<﹣2b,原变形不成立,故此选项符合题意;故选:D.22.解:若a=﹣1,b=0,则a2>b2,若a<b,则<,a﹣1<b﹣1,﹣2a>﹣2b.所以选项A、B、C不正确,选项D正确,故选:D.23.解:A、由2x>﹣4,得x>﹣2;故错误;B、由﹣x>5,得x<﹣5,故错误;C、由﹣x=5,得x=﹣5;故错误;D、由﹣x≤3,得x≥﹣6,故正确.故选:D.24.解:解方程得:x=3﹣k,则3﹣k≥0,解得:k≤2.故选:C.25.解:,∵解不等式①得:x>2﹣a,解不等式②得:x<,∴不等式组的解集是2﹣a<x<,∵不等式组的解集为﹣1<x<2,∴2﹣a=﹣1,=2,解得:a=3,b=4,∴2019a﹣4(b+6)3﹣37=2019×3﹣4×(4+6)3﹣37=2020,故选:C.26.解:,∵不等式②的解集是x≥3,∴不等式组的解集是3≤<m,又∵关于x的不等式的整数解共有3个,是3,4,5,∴5<m≤6,故选:D.27.解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴,解得∴直线为y=﹣+1,当y=2时,2=﹣+1,解得x=﹣2,由图象可知:不等式kx+b≤2的解集是x≥﹣2,故选:C.28.解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x 的不等式组的解集是x<2,所以,a≥2,故选:A.29.解:解不等式3(x﹣1)>x﹣7,得:x>﹣2,解不等式2x+2≥3x,得:x≤2,则不等式组的解集为﹣2<x≤2,故选:A.30.解:∵点P(4﹣m,m﹣3)在第二象限,∴,解得m>4,故选:B.第1页(共1页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲以5km/h的速度进行有氧体育训练, 2h后,乙骑自行车从同地出发沿同一条路 追赶甲。根据他们两人的约定,乙最快不 早于1h追上甲,最慢不晚于1h15min追上 甲。乙骑车的速度应控制在什么范围?
解:设乙骑车的速度为x km/h,根据题意,得 1×x 5×2+5×1 5 5 x 5×2+5× 4 4
{
例4
一群女生住若干间宿舍,每间住4人,剩19人 无房住;每间住6人,有一间宿舍住不满。
(1)设有x间宿舍,请写出x应满足的不等式组;
{
6x>4x+19 6(x-1)<4x+19
(2)可能有多少间宿舍、多少名学生?
因此有三种可能,第一种,有10间宿舍,59 名学生;第二种,有11间宿舍,63名学生;第三 种,有12间宿舍,67名学生.
练习一:
一堆玩具分给若干小朋友,若每人分3件,则剩余 4件;若前面每人分4件,则最后一人得到的玩具不足3 件。求小朋友的人数与玩具数。
玩具不足3用不等式(组)解决实际问题的基本步骤是什么?
练习二
某工厂现有甲种原料360kg,乙种原料290kg,计划 利用这两种原料生产A、B两种产品共50件。已知生产一 件A种产品需甲种原料9kg,乙种原料3kg,生产一件B种 产品需甲种原料4kg,乙种原料10kg。 1、设生产x件A种产品,写出x应满足的不等式组; 2、有哪几种符合题意的生产方案?