第三章 一维定常流动的基本方程 气体动力学 教学课件
合集下载
空气动力学第三章

⎡ ⎤ ⎥ ρ ⎢ γ +1 = ⎢ ⎥ ρ * ⎢ 2(1 + γ − 1 M 2 ) ⎥ 2 ⎣ ⎦
(3.13)
γ /( γ −1)
(3.14)
⎡ ⎤ ⎥ γ +1 c ⎢ = ⎢ ⎥ c* ⎢ 2(1 + γ − 1 M 2 ) ⎥ ⎣ ⎦ 2
1/2
(3.15)
考虑能量方程:
V = 2c p (T0 − T ) = 2γ R (T0 − T ) γ −1
& m G * = ( ) max A
R (1 + γ − 1 M 2 )(γ +1)/[2(γ −1)] 2 & p γ 2 (γ +1)/(γ −1) m = *= 0 ( ) A T0 R r + 1
γ
M
A G 1 2 γ − 1 2 ( γ +1)/[ 2( γ −1)] M )] = = [( )(1 + * A G M γ +1 2
γ − 1 *2 M γ +1
马赫数和临界马赫数的关系曲线如图3.6所示:
当M<1时,M*<1; 当M=1时,M*=1; 当M>1时,M*>1; 当M趋近无穷时;
M* = r +1 r −1
• 3.4 由马赫数表示的质量流流率
& m G = = ρV A
ρ = p / RT
c = γ RT
V γ G = p( ) c RT
V2 = M2 γ RT
T0 γ −1 2 = 1+ M T 2
(3.4 )
cp =
γR γ −1
公式(3.4)实用于绝热流动和等熵流动。
对于完全气体的等熵流动,其压力和密度与温度的关系 为: p0 T0 γ /(γ −1) ρ0 T0 1/(γ −1) =( ) =( ) T ρ p T 将上述公式与(3.4)结合起来,可以得到压力和密度由 马赫数来表示的关系式如下:
(3.13)
γ /( γ −1)
(3.14)
⎡ ⎤ ⎥ γ +1 c ⎢ = ⎢ ⎥ c* ⎢ 2(1 + γ − 1 M 2 ) ⎥ ⎣ ⎦ 2
1/2
(3.15)
考虑能量方程:
V = 2c p (T0 − T ) = 2γ R (T0 − T ) γ −1
& m G * = ( ) max A
R (1 + γ − 1 M 2 )(γ +1)/[2(γ −1)] 2 & p γ 2 (γ +1)/(γ −1) m = *= 0 ( ) A T0 R r + 1
γ
M
A G 1 2 γ − 1 2 ( γ +1)/[ 2( γ −1)] M )] = = [( )(1 + * A G M γ +1 2
γ − 1 *2 M γ +1
马赫数和临界马赫数的关系曲线如图3.6所示:
当M<1时,M*<1; 当M=1时,M*=1; 当M>1时,M*>1; 当M趋近无穷时;
M* = r +1 r −1
• 3.4 由马赫数表示的质量流流率
& m G = = ρV A
ρ = p / RT
c = γ RT
V γ G = p( ) c RT
V2 = M2 γ RT
T0 γ −1 2 = 1+ M T 2
(3.4 )
cp =
γR γ −1
公式(3.4)实用于绝热流动和等熵流动。
对于完全气体的等熵流动,其压力和密度与温度的关系 为: p0 T0 γ /(γ −1) ρ0 T0 1/(γ −1) =( ) =( ) T ρ p T 将上述公式与(3.4)结合起来,可以得到压力和密度由 马赫数来表示的关系式如下:
气体动力学基础PPT课件

气体动力学基础_1
23
第二章 一维定常流的基本方程
§2.1 应知的流体力学基本概念
• 无限多个连续分布的流体微团 组成的连续介质的假设(
Euler明确,1752)。而非分子论。适用于l/L<1/100,例
如100公里以下的大气与飞行器
• 一维定常流 1-D Steady flow,流线 Streamline,
3
第一章 绪论
§1.1 气体动力学的涵义
气体动力学是
➢ 流体力学的一个分支,在连续介质假设下,研
究与热力学现象有关的气体的运动规律及其与
相对运动物体之间的相互作用。
➢ 气体在低速流动时属不可压缩流动,其热力状
态的变化可以不考虑;但在高速流动时,气体
的压缩效应不能忽略,其热力状态也发生明显
的变化,气体运动既要满足流体力学的定律,
学科名 Discipline 流体力学 Fluid Dynamics 空气动力学 Aerodynamics 气体动力学 Gas Dynamics
主要研究范围 Primary Scope
不可压缩流体动力学 Incompressible Fluid Flow
不可压缩+可压缩流体动力学 Incom-+Com-pressibleLeabharlann 解析解,螺旋桨理论,飞机设计
1904-20年代,普朗特Prandtl(德)的普朗特-迈耶流动理论,(超音
速膨胀波和弱压缩波),风洞技术,边界层理论,机翼举力线、举
力面理论,湍流理论,接合理论流体与实验流体,奠定了现代流体
力学气体动力学研究的基础
1910年瑞利和泰勒研究得出了激波的不可逆性
1933年泰勒和马科尔提出了圆锥激波的数值解
气体动力学基础_1
第三章一元流体动力学基础

2
d (gz p 1 u 2 ) 0
2
积分后得 gz p 1 u 2 常数
2
考虑到重度γ=ρg,将上式两端除以重力加速度g,得: z p u 2 常数 (3)
2 . 通过某一空间点在给定瞬间只能有一条流线,一般情况流 线不能相交和分支。否则在同一空间点上流体质点将同时 有几个不同的流动方向。只有在流场中速度为零或无穷大 的那些点,流线可以相交,这是因为,在这些点上不会出 现在同一点上存在不同流动方向的问题。速度为零的点称 驻点,速度为无穷大的点称为奇点。
)
再看右端三式相加: 由于是在重力场中,故流体
dx
u x t
u x x
ux
u x y
uy
u x z
uz
X
1
p x
的质量力只是重力,则 X=0, Y=0, Z=-g。
dy
u y t
u y x
ux
u y y
uy
u y z
uz
Y
1
p y
所以: Xdx+Ydy+Zdz=-gdz
dz
u z t
u z x
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f (x, y, z,t),u f (x, y, z,t)
定常流动
非定常流动
有旋流动(rotational flow):流体在流动中,流场中有若干处 流体微团具有绕通过其自身轴线的旋转运动
无旋流动(irrotational flow):在整个流场中各处的流体微团 均不绕自身轴线的旋转运动
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 的流动状况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程
d (gz p 1 u 2 ) 0
2
积分后得 gz p 1 u 2 常数
2
考虑到重度γ=ρg,将上式两端除以重力加速度g,得: z p u 2 常数 (3)
2 . 通过某一空间点在给定瞬间只能有一条流线,一般情况流 线不能相交和分支。否则在同一空间点上流体质点将同时 有几个不同的流动方向。只有在流场中速度为零或无穷大 的那些点,流线可以相交,这是因为,在这些点上不会出 现在同一点上存在不同流动方向的问题。速度为零的点称 驻点,速度为无穷大的点称为奇点。
)
再看右端三式相加: 由于是在重力场中,故流体
dx
u x t
u x x
ux
u x y
uy
u x z
uz
X
1
p x
的质量力只是重力,则 X=0, Y=0, Z=-g。
dy
u y t
u y x
ux
u y y
uy
u y z
uz
Y
1
p y
所以: Xdx+Ydy+Zdz=-gdz
dz
u z t
u z x
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f (x, y, z,t),u f (x, y, z,t)
定常流动
非定常流动
有旋流动(rotational flow):流体在流动中,流场中有若干处 流体微团具有绕通过其自身轴线的旋转运动
无旋流动(irrotational flow):在整个流场中各处的流体微团 均不绕自身轴线的旋转运动
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 的流动状况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程
空气动力学基础空气动力学课件PPT

(2)层流附面层和紊流附面层
前段附面层内层流附面层。 后段附面层紊流附面层。 附面层由层流状态转变为紊流状态叫转捩 转捩段 转换段是很窄的区域,可近似看成一点,称为“转捩
点”。
转捩原因
流动距离越长,附面层内的分层流动越不稳 机体表面对附面层施加扰动
在紊流附面层的底层,机体表面气流的阻滞作用要比 层流附面层大得多。
1. 气流在机体表面的流动状态
(1)附面层 (2)层流附面层和紊流附面层 (3)附面层的分离
(1)附面层
附面层
沿机体表面法向方向,流速由零逐渐增加到外界气流流速的 薄薄的一层空气层;机体表面到附面层边界(流速增大到外界 气流流速99% 处)的距离为附面层的厚度(δ)
附面层的厚度越来越厚
(2) 减小压差阻力的措施
①尽量减小飞机机体的迎风面积。 ②暴露在空气中的机体各部件外形应采用流线型。 ③飞行时,除了起气动作用的部件外,其他机体部件的铀钱
应尽量与气流方向平行。
4. 干扰阻力
(1)干扰阻力的产生
流过机体各部件的气流在部件结合处互相干扰而产生的阻力 干扰阻力与各部件组合时的相对位置有关,也和部件结合部
a平板翼型 b弯板翼型 c超临界翼型 d哥廷根398 e低亚音速翼型
f
g对称翼型,常用于尾翼 h i超音速菱形翼型
j超音速双弧形翼型
2.机翼平面形状和参数
机翼平面形状
机翼平面形状是飞机处于 水平状态时,机翼在水平 面上的投影形状
(a)矩形;(b)梯形; (c)椭圆形;
(d)后掠翼; (e)(f)和(g)为三角
在机翼的前缘有一点(A) , 气流速度减小到零,正压达到最大 值,此点你为驻点。
机翼上表面有一点(B) , 气流速度最大,负压达到最大值,称 为最低压力点。
风力机空气动力学5.3气体一维定熵流动5.3 气体的一维定常等熵流动

2
h0
第三节 气体的一维定常等熵流动
二、滞止状态
cp
R 1
Ma2 v2 c2
c2 RT
同理
T v2 2c p
T0
T0 T
c02 c2
1 -1 Ma2
2
1
p0 1 -1 Ma2 1
p 2
0 1 -1 Ma2 -1
2
1
-1
第三节 气体的一维定常等熵流动
五、速度系数
M v ccr
当v=vmax时
M max
vmax ccr
1 -1
M*与Ma的关系
M
2
1Ma2 2 -1Ma2
Ma2
2M
2
1
1M
2
第三节 气体的一维定常等熵流动
2
第三节 气体的一维定常等熵流动 三、极限状态
气流膨胀到完全真空所能达到的最大速度
极限速度
vmax
2R 1
T0
能量方程的另一种形式
c2
v2
v2 max
c02
1 2 2 1
第三节 气体的一维定常等熵流动
四、临界状态
ห้องสมุดไป่ตู้
ccr
2 1c0
1
v 1
用速度系数表示
T T0
c2 c02
1
-
-1 1
M
2
流体力学 第三章

无数微元流束的总和称为总流。自然界和工程中所遇到 的管流或渠流都是总流。根据总流的边界情况,可以把总流 流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
气体的一维定常流动

1 1
1 2 1 M* 0 1
1 1
0 1 2 1 Ma 2
§6-4 气体流动的三种状态和速度系数
第六章 气体的一维定常流动
第五节 气流参数与通道截面 之间的关系
变截面一维定常等熵流动模型
§6-1 气体一维流动的基本概念
气体的比热容
比热容:单位质量物质温度升高 1K 或 1 ℃ 时所 吸收的热量。 单位质量气体升高 1K 或 1 ℃ 时所吸收的热量与 热力学过程有关,故气体的比热容不唯一。 定容比热容cV:容积不变条件下的比热容。 定压比热容cp:压强不变条件下的比热容。 比热比γ:定压比热与定容比热的比值。
v h h0 2
c v h0 1 2
2 2
2
v h0 1 2 v RT h0 1 2
p
2
2
cp p cp p p h R cp cV 1
§6-3 气体一维定常流动的基本方程
第六章 气体的一维定常流动
第四节 气体流动的三种状态 和速度系数
v M* ccr
§6-4 气体流动的三种状态和速度系数
速度系数
速度系数的优点在于: 临界声速是常数,故速度系数与流动速度成 线性正比关系; 速度存在极限速度,故速度系数的极限是有 限值。
vmax 1 M *max ccr 1
v M* ccr
§6-4 气体流动的三种状态和速度系数
滞止状态
气流速度减到零时的状态称为滞止状态,对应 的流动参数称为滞止参数或总参数。 能量方程可以写为
1 v2 v2 T T T0 R 2 2cp
c
1 2 1 M* 0 1
1 1
0 1 2 1 Ma 2
§6-4 气体流动的三种状态和速度系数
第六章 气体的一维定常流动
第五节 气流参数与通道截面 之间的关系
变截面一维定常等熵流动模型
§6-1 气体一维流动的基本概念
气体的比热容
比热容:单位质量物质温度升高 1K 或 1 ℃ 时所 吸收的热量。 单位质量气体升高 1K 或 1 ℃ 时所吸收的热量与 热力学过程有关,故气体的比热容不唯一。 定容比热容cV:容积不变条件下的比热容。 定压比热容cp:压强不变条件下的比热容。 比热比γ:定压比热与定容比热的比值。
v h h0 2
c v h0 1 2
2 2
2
v h0 1 2 v RT h0 1 2
p
2
2
cp p cp p p h R cp cV 1
§6-3 气体一维定常流动的基本方程
第六章 气体的一维定常流动
第四节 气体流动的三种状态 和速度系数
v M* ccr
§6-4 气体流动的三种状态和速度系数
速度系数
速度系数的优点在于: 临界声速是常数,故速度系数与流动速度成 线性正比关系; 速度存在极限速度,故速度系数的极限是有 限值。
vmax 1 M *max ccr 1
v M* ccr
§6-4 气体流动的三种状态和速度系数
滞止状态
气流速度减到零时的状态称为滞止状态,对应 的流动参数称为滞止参数或总参数。 能量方程可以写为
1 v2 v2 T T T0 R 2 2cp
c
《气体动力学》课件-一维定常流的基本方程

gAdz Adp Ffric AVdV 曲线流管微段
gz dp p V 2 2
无粘性曲线流管
气体动力学基础_1
10
2.3应知的流体力学定义、定律方程
能量方程
m dq m pdv m du
(闭口系统=)体系,无流动
• •
•
QW s m
g
z2 z1
h(2稳定h流1动的开V口22系2统V=12)有 限控制体,定常流动
International Civil Aeronautical Organization 确定为ISA
气体动力学基础_1
5
2.1 应知的流体力学基本概念
描述流体运动的两种方法及基本概念
研究流体运动方法
拉格朗日法(体系) 积分法 欧拉法(控制体) 微发法
体系指某些确定物质的集合;通过边界与体系外物质(环境)分开。 边界上可有动量和能量的交换,但无质量交换。边界随流体运动。
气体动力学基础_1
21
例2-1 吸气式喷气发动机的推力公式
[解]:控制体受各力在x方向的合力为
R pa A0 pa Ae Ae pe Ae R Ae pe pa
x方向的动量变化率为
m V bg e mV
由动量方程得
R
Ae
pe
pa
m bg
Ve
mV
则发动机对控制体内气流的作用力 :
2.4 国际标准大气
因大气密度ρ是变量且与p、T 有关,我们可用静平衡微分方
程把压强随高度下降的规律推导出来。
某个高度上的大气压强可以看作是面积 为1米2的一根上端无界的空气柱的重量 压下来所造成的 ,在如图坐标系中考虑 某高度上的单位质量空气微元,其受到 的彻体力分量为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在欧拉法中用流体质点的空间坐标 x, y, z 与时间变量 t 来 表达流体的运动规律,x, y, z,t 叫欧拉变数,欧拉变数不是各自独
立的,因为流体质点在场中的空间位置与时间 t 有关,不同的时
间 t ,流体质点有不同的空间坐标 x, y, z 。因此对于任一个流体
质点的位置变量 x 、 y 、 z 是时间 t 的函数,即
对时间的偏V r导(a数,b,,c,t加)速rr度(a是,b,速c,度t)对时间的偏导数,即
r t
a r(a,b,c,t)V(a,b,c,t)
(3.6)
t
在欧拉法中,随流导数必须是跟随时刻位于空间点( x, y, z )
上的那个点的物理量随时间的变化率(该物理量是同一流体质 点而非同一空间点)。
若该物理量用 N(x, y,z,t) 表示,则的随流导数为
流体质点的速度。
同样,压强、温度和密度等物理量都可以表示成 x, y, z,t的函数。
3.1.3随流导数
一、随流导数 在流动过程中,流体质点的各物理量随时间的变化率称为相
应物理量的随流导数,也称为随体导数或质点导数。
物理量在随拉时格间朗的日导法数中,,这物时理(量a的,b,随c)流是导不数变是的跟。随如质速点度(是a,矢b,c径)rv的
式中
d dt
N(x,
y,
z,t)
d dt
N
x a, b, c, t ,
y
a, b, c, t ,
z
a,b,c,t
, t
= N x N y N z N x t y t z t t
=
N x
Vx
N y
Vy
N z
Vz
N t
(3.8)
=
N
r (Vg)N
t
d dttVxxVyyVzz
r i
r j
r k
的流体质点。显然质点的空间位置不但与时间有关,而且还与该
质点起始时刻的空间位置有关。于是时刻任意流体质点的位置在
空间的坐标可表示为
x f1(a ,b, c,t)
y f2(a,b,c,t)
(3.1)
z f3(a,b,c,t)
式中(a,b,c)称为拉格朗日坐标,(a, b, c,t) 称为拉格朗日变 数。拉格朗日变数是各自独立的,质点的初始坐标(a,b,c)与t 无
关,仅影响运动坐标、速度和加速度。显然流体质点不管什么
时候运动到哪里,拉格朗日坐标并不改变。 当(a,b,c)一定时,上式代表某个流体质点的运动轨迹,代表时
刻流体质点所处的位置。因此任一流体质点的速度和加速度可表
示为
Vx
x t
f1(a ,b , c,t) t
Vy
y t
f2 (a ,b , c,t) t
第三章 一维定常流动的基本方程
➢3.1 描述流体运动的两种方法及基本概念 ➢3.2 流体微团运动分析 ➢3.3 适合于系统的基本方程及雷诺输运定理 ➢3.4 连续方程 ➢3.5 动量方程 ➢3.6 动量矩方程 ➢3.7 能量方程 ➢3.8 柏努利方程
是随时间改变的,控制体的边界叫做控制面,它总是封闭的表 面。通过控制面,可以有流体流入或流出。在控制面上可以有 力的作用和能量的交换。控制体主要有三种类型,他们分别为 静止、运动和可变形,其中前两种控制体为固定形状,如图 3.1所示。本书仅考虑刚性的、没有运动的控制体。
量随时间的变化;以及找出任意相邻空间点之间这些物理量的变
化关系,即分析由空间某一点转到另一点时流动参数的变化。从
而得出整个流体的运动情况。可见,欧拉法不需要注意各个流体
质点的运动过程,而是研究运动流体所占空间各点的流体参数的
变化。研究一切描述流体运动的物理参数在空间的分布,即研究
各流动参数的场。如速度场、压强场、密度场等向量场和标量场。
x y z
式(3.8)表明,用欧拉法求质点物理量的随流导数由两项构成, 一项是表示在给定点上物理量N随时间的变化率 N ,称为局 部导数或当地导数,它是由r于流动的非定常性引起 的t ,对定常 流,该项等于零。第二项 (V)N 表示物理量N在空间分布不均 匀的情况下,流体质点运动时引起N的变化率,称为对流导数或 迁移导数。它表示在非均匀的流场中(有梯变 N ),由空间 位置变化引起的。该项反映了流场的非均匀性,对于均匀流场, 该项为零。
有以上可知随流导数在拉格朗日法中是偏导数 ,在欧拉法 中是全导数。还可以看出流动参数的随流导数把该参数的瞬时 变化率与流场中该参数的导数联系起来。欧拉法描述中,特性 场是直接可以利用的,所以随流导数把拉格朗日法与欧拉法之 间建立了一种联系。由以上讨论可知,随流导数是对流体质点 的,它反映了流体质点物理量随时间的变化率,因此随流导数 本质上是拉格朗日观点下的概念。
(a)固定控制体 (b)以船速运动的控制 (c)汽缸内的变形控制体 图3.1固定、运动和可变形的控制体
3.1.2描述流体运动的两种方法
目前,研究流体运动有两种不同的观点,因而形成两种不同 的方法:一种方法是从分析流体各个质点的运动着手,即跟踪 流体质点的方法来研究整个流体的运动,称之为拉格朗日法; 另一种方法则是从分析流体所占据的空间中各固定点处的流体 的运动着手,即设立观察站的方法来研究流体在整个空间里的 运动,称其为欧拉法。
x x (t) y y (t)
(3.4)
z z(t)
设V x 、V y 和 V z 分别代ቤተ መጻሕፍቲ ባይዱ流体质点的速度在 x, y, z 轴上的分量,
则
Vx
dx dt
Vx x, y,z,t
Vy
dy dt
Vy x,
y, z,t
(3.5)
Vz
dz dt
Vz
x, y,z,t
上式表示在空间点 x, y, z 处 t 时刻的流体速度。这个速度是某 一流体质点的速度,即在 t 时刻运动到空间点 x, y, z 处的那个
(3.2)
Vz
zf3(a,b,c,t)
t
t
ax
Vx t
2
f1(a ,b , c,t) t2
ay
Vx t
2
f2 (a , b , c, t) t2
(3.3)
az
Vz t
2
f3 (a , b , c , t ) t2
2.欧拉(Euler)法
该方法着眼点是流场中的空间点或着眼于控制体。即研究运
动流体所占空间中某固定空间点流体的速度、压强和密度等物理
1.拉格朗日(Lagrange)法
该方法着眼点是流体质点。即研究个别流体质点的速度、加 速度、压强和密度等参数随时间的变化,以及由某一流体质点 转向另一流体质点时这些参数的变化,然后再把全部流体质点 的运动情况综合起来,就得到整个流体的运动情况。此法实质 上就是质点动力学研究方法的延续。
通常利用初始时刻流体质点的坐标来标注不同流体质点的坐 标。设初始时刻流体质点的坐标是(a,b,c),不同的(a,b,c)代表不同