LDO稳压器工作原理
LDO工作原理以及消除LDO自激

LDO工作原理以及消除LDO自激LDO(Low Drop-Out)稳压器又称为线性稳压器,是一种用于将输入电压稳定到所需输出电压的电路。
LDO的工作原理主要涉及差动放大电路、参考电压源和调整电路三个方面。
与其他稳压器相比,LDO的特点是能够实现更低的输出压降(Drop-Out)。
LDO的工作原理可以简单概括为以下几个步骤:1.输入电压经过输入滤波电路后进入差动放大电路。
该电路根据负反馈原理控制输出电压稳定在所需值。
当输入电压变动时,差动放大电路会调整控制信号,以使输出电压保持不变。
2.参考电压源为差动放大电路提供稳定的参考电压。
参考电压源通常由一个稳压二极管或者基准电阻分压电路等构成。
它的稳定性对LDO的输出稳定性起着重要作用。
3.调整电路根据差动放大电路的输出信号来控制功率晶体管的导通程度,从而使LDO的输出电压稳定在预设值。
消除LDO自激是保障稳压器稳定工作的关键。
LDO自激是指LDO在特定的工作条件下无法保持稳定输出电压的现象。
常见的LDO自激原因有负载容性不稳定、输入滤波电容选择不当和电感不当。
消除LDO自激的方法主要包括以下几个方面:1. 选用稳定的输出滤波电容。
输出滤波电容的选择应符合负载特性和输出电压的要求。
常见的电解电容和陶瓷电容都可以使用,但电容的ESR(Equivalent Series Resistance)和ESL(Equivalent Series Inductance)要适当。
2.优化输入滤波电容。
输入滤波电容可以帮助在输入电压变化较大时提供更稳定的电压,一般使用电解电容和陶瓷电容的组合,以减小ESR和ESL的影响。
3.添加补偿电路。
补偿电路可以通过在差动放大电路中增加电容或者电感等元件来提高稳定性。
补偿电路可以根据LDO特性进行调整,使LDO能够稳定工作。
4.保证良好的散热。
LDO在工作过程中会产生一定的热量,如果散热不良,会导致温度过高,进而影响到LDO的稳定性。
ldo工作原理

ldo工作原理
LDO(Low Drop-Out)是一种电压稳压器,工作原理如下:
1. 电压差:LDO通过一个参考电压和输入电源之间的电压差
来工作。
输入电源电压要高于参考电压。
2. 参考电压:LDO内部包含一个参考电压源,通常为基准二
极管或参考电流源。
参考电压源的输出电压在很大程度上稳定,可提供稳定的参考电压给控制电路使用。
3. 错误放大器:LDO内部还包含一个错误放大器,用于比较
参考电压和反馈电压。
反馈电压来自于输出端的电阻分压。
4. 控制电路:错误放大器将参考电压和反馈电压进行比较,并产生一个误差信号,通过控制电路调整LDO的输出。
控制电
路通常包括一个误差放大器、一个误差电流源和一个输出驱动器。
5. 调整元件:LDO的调整元件可根据误差信号进行调整,以
达到输出电压的稳定。
6. 输出电压:最终,LDO将输入电压通过调整元件和控制电
路转换为稳定的输出电压供给负载使用。
需要注意的是,LDO的输入电压和输出电流之间有一定的电
压差损耗,称为“Drop-Out Voltage”。
在LDO额定电流范围内,Drop-Out Voltage越小,LDO的性能越好。
ldo 工作原理

ldo 工作原理LDO(Low Dropout Regulator),中文翻译为低压差稳压器,是一种常见的电压调节器件。
它是一种具有线性稳压功能的电源管理芯片,输如电压可以是高于或低于输出电压。
LD0稳压器的工作原理是利用负反馈技术,使输出电压稳定在设定值,不受输入电压的变化影响。
一个LDO稳压器通常由三个主要部分组成:参考源,误差放大器和功率级。
参考源是一个固定电压源,通常是基准二极管或Zener二极管。
误差放大器对参考电压和输出电压进行比较,生成一个反馈信号。
功率级根据反馈信号产生相应的输出电压,将输入电压降至输出电压以下的压差,这就是“低压差”的含义。
LDO稳压器的工作原理如下:1. 当输入电压高于输出电压时,LDO稳压器将输入电压通过功率级降至输出电压水平,这意味着LDO稳压器的负载特性是线性的。
2. 当输入电压下降,LDO稳压器必须增加其输出电流来保持输出电压恒定。
这可以通过功率级的控制来实现,功率级可以改变其大小以适应负载的变化。
3. 如果LDO稳压器输出电流很小,那么其负载特性会失去线性。
在这种情况下,LDO稳压器将变成一种不能控制其输出电压的电路,因此需要通过负载电流的限制来避免输出电压失控。
4. 如果输入电压超过LDO稳压器所能处理的最大电压,那么它将无法正常工作。
在这种情况下,需要使用其他保护手段来保护LDO稳压器。
LDO稳压器的主要优点是:它能够提供非常稳定和干净的输出电压,并能够在负载变化时保持较高的输出准确性和稳定性。
它还可以在噪声和干扰环境中工作,为模拟电路提供优质的电源供应,并且非常适用于需要低功耗、低成本和小体积的应用场景。
总之,随着技术的不断进步,LDO稳压器在电源管理领域发挥着越来越重要的作用。
LDO稳压器不仅能够有效解决电源问题,还能够使模拟电路性能得到显著提升,从而满足不同应用场景的需求。
ldo工作原理带宽

ldo工作原理带宽LDO(低压差线性稳压器)是一种用于调节电压的电子元件,其主要特点是输入电压与输出电压之间的差值较低。
LDO工作原理主要基于比较器、放大器和调整管等元件来实现输出电压的稳定。
LDO的工作原理如下:1. 比较器:比较器的同相输入端连接取样电阻,反相输入端连接基准电压Uref。
当输出电压Uout降低时,取样电压与基准电压的差值增大,从而使比较器的输出驱动电流增加。
2. 放大器:比较器的输出驱动电流经过放大器A放大后,控制串联调整管的压降,以达到稳定输出电压的目的。
3. 调整管:调整管VT根据放大器的输出电流调整其电阻值,从而使输出电压保持稳定。
当输出电压降低时,调整管的压降增大,以减小输出电压的下降。
4. 取样电阻:取样电阻R1和R2用于收集输入电压和输出电压之间的差值,以便比较器进行比较。
LDO的带宽是指其输出电压信号的频率响应范围。
在理想情况下,LDO的带宽越宽,输出电压信号的稳定性越好。
实际应用中,带宽受到器件参数、电路设计等因素的影响。
为了提高LDO的带宽,可以采用以下方法:1. 选用高带宽的比较器和放大器:采用性能更好的比较器和放大器,可以提高LDO的带宽。
2. 减小取样电阻的阻值:减小取样电阻的阻值可以降低比较器的输入电容,从而提高带宽。
3. 优化电路布局和元件选择:合理布局电路,选用合适的元件,可以降低电路中的寄生电容和电阻,从而提高带宽。
4. 采用多级放大器设计:通过将LDO电路设计为多级放大器结构,可以进一步提高带宽。
总之,LDO的工作原理和带宽与其电路设计、元件选择和布局等因素密切相关。
为了实现较高的带宽,需要综合考虑这些因素并进行优化。
ldo工作原理

ldo工作原理LDO(Low Drop Out)稳压器是一种常用的电源管理器件,它可以将高电压降低到稳定的低电压输出,以满足各种电子设备对电源的要求。
LDO的工作原理主要包括反馈控制、功率调节和保护等方面。
一、反馈控制LDO的反馈控制是实现稳定输出的关键。
它通过比较输出电压与参考电压的差值,控制输出电压的变化,使其保持在设定的稳定值。
反馈控制的核心是反馈电路,它由比较器、误差放大器、电阻和电容等组成。
比较器是反馈电路的核心部件,它将输出电压与参考电压进行比较,并输出一个误差信号。
误差放大器将误差信号放大,并通过电阻和电容等元件进行滤波处理,以减小噪声和干扰。
最后,反馈电路将处理后的误差信号反馈给控制电路,控制电路通过调节输出电压的大小,使其与参考电压保持一致。
二、功率调节LDO的功率调节是实现高效能输出的关键。
它通过控制输入电压和输出电流的大小,实现电源的高效能转换。
功率调节的核心是功率晶体管,它由N沟道MOSFET和P沟道MOSFET组成。
当输入电压高于输出电压时,N沟道MOSFET导通,P沟道MOSFET 截止,电流从输入端流入LDO,经过N沟道MOSFET和负载,最后流回地端。
当输入电压低于输出电压时,N沟道MOSFET截止,P沟道MOSFET导通,电流从负载端流入LDO,经过P沟道MOSFET和地端,最后流回输入端。
功率晶体管的导通和截止是由控制电路控制的,控制电路通过反馈电路的误差信号,调节功率晶体管的导通时间和截止时间,以实现稳定输出和高效能转换。
三、保护LDO的保护是保障电子设备安全的关键。
它通过多种保护机制,保护LDO和负载不受过电压、过电流、过温等因素的损害。
保护机制包括过压保护、欠压保护、过流保护、短路保护、过温保护等。
过压保护是指当输入电压超过LDO的额定电压时,LDO会自动切断输出电压,以保护负载不受过电压的损害。
欠压保护是指当输入电压低于LDO的额定电压时,LDO会自动切断输出电压,以保护负载不受欠电压的损害。
介绍LDO的工作原理

介绍LDO的工作原理LDO是“线性低压差稳压器(Linear Low Drop-Out regulator)”的缩写。
它是一种常见的稳压器,用于将不稳定的输入电压转换为稳定的输出电压,以供给各种电子设备和电路使用。
LDO的工作原理如下:当输入电压超过稳压器的正常工作要求时,LDO器件的内部功率晶体管将打开,通过有源调节控制电路将调整过的电压输出到负载电路上。
而当输入电压低于稳压器的正常工作要求时,内部功率晶体管关闭,由控制电路切断输出,以保护稳压器和负载电路。
LDO主要由以下几个组成部分构成:1. 电压参考源(Voltage Reference):它是LDO的核心部件,为稳压器提供一个稳定的基准电压。
通常使用基准电流源、电阻分压器、电压比较器等组成来实现。
2. 误差放大器(Error Amplifier):它与电压参考源相连,用于通过比较输出电压与基准电压之间的差异来产生误差信号。
误差放大器将误差信号放大,并通过反馈回路调节功率晶体管的导通。
3. 反馈回路(Feedback Loop):它由稳压器的输出到误差放大器之间的电阻网络组成,用于将输出电压与参考电压比较,以产生误差信号。
4. 输出级(Output Stage):它通过功率晶体管将调节过的电压输出到负载电路上。
功率晶体管的导通和截止通过误差放大器的调节来实现。
LDO的主要工作过程如下:1.当输入电压高于稳压器所需的输出电压时,误差放大器将产生一个正的误差信号。
此时,反馈回路通过将误差信号反馈给误差放大器,调节功率晶体管的导通,使其降低输出电压,直到误差信号减少至零。
2.当输入电压低于稳压器所需的输出电压时,误差放大器将产生一个负的误差信号。
此时,反馈回路通过将误差信号反馈给误差放大器,将功率晶体管关闭,以避免输出电压过低。
LDO的优势和特点包括以下几点:1.低压差:LDO可以在输入电压较低的情况下仍能提供稳定的输出电压,因此可以满足低压差、高精度的稳压要求。
ldo的工作原理

ldo的工作原理
LDO(Low Drop Out)稳压器是一种常用的线性稳压器件,主要用于在电路中提供稳定的直流电压。
LDO的工作原理基于
负反馈控制机制,其主要组成部分包括参考电压源、误差放大器、功率管(NPN或PNP晶体管)以及电流源。
LDO的工作原理如下:首先,参考电压源提供一个稳定的参
考电压作为基准。
误差放大器通过比较参考电压和输出电压之间的差异来获取误差信号,然后将这个信号放大并输出。
与此同时,功率管作为控制开关,通过给定的输入和输出电压之间的差值来控制它的导通程度。
当输入电压高于输出电压时,功率管将变为导通状态,从而形成开路。
当输入电压低于输出电压时,功率管将变为截止状态,从而形成闭路。
混合偏置电流源(包括通道偏置电流源和直接偏置电流源)与功率管形成反馈回路。
当功率管导通时,混合偏置电流源通过负载电流路径直接将电流提供给输出负载;当功率管截止时,混合偏置电流源通过通道复制电流路径向输出负载提供电流。
整个回路中的负反馈控制机制使得输出电压始终稳定在参考电压的附近,从而实现了稳压的功能。
当输入电压变化或负载变化时,误差放大器会调整功率管的导通程度,以使得输出电压保持稳定。
总之,LDO通过参考电压、误差放大器、功率管和混合偏置
电流源等组成部分的协同作用,实现了对输入电压的稳压功能。
它具有结构简单、稳定性好、输出电流大等特点,在各种电子设备中被广泛应用。
LDO的工作原理详细分析

LDO的工作原理详细分析LDO(Low-Dropout)是一种线性稳压器件,其工作原理是通过控制输出端与负载之间的电压差来实现稳压,将高电压的输入电源转换为所需的稳定低电压输出。
下面将详细分析LDO的工作原理。
LDO由输入级、控制级和输出级组成,其中输入级包括输入电源、输入电感和输入电容;控制级包括误差放大器、参考电压、电流源和可调电阻;输出级包括输出晶体管、输出电感和输出电容。
(一)调整阶段1.输入级:当输入电源施加在输入电感上时,输入电感起到滤波作用,去除输入电源中的噪声和纹波。
输入电容则能够提供瞬态电流,减小对输入电源的要求。
2.控制级:误差放大器将输出电压与参考电压进行比较,并将比较结果输入给电流源,电流源通过可调电阻控制输出级的输出电压。
(二)稳定阶段1.输出级:当误差放大器将输出电压与参考电压进行比较后,电流源会调整输出级的输出电流,进而调整输出电压。
输出晶体管通过调整它的截止与饱和状态来控制输出电流,将不稳定的输入电压转换为稳定的输出电压。
2.输出电容:输出电容用于滤除加载纹波和提供输出电流,它能够稳定输出电压并降低输出纹波电压。
3.反馈回路:输出电压经过反馈回路返回到误差放大器中进行比较,这样在负载变化或输入电压变化时,误差放大器可以及时调整输出电流,使输出电压保持稳定。
LDO的电源线路具有低压降特性,当输入电源电压下降时,LDO可以通过调整输出级的输出电流来保持输出电压的稳定。
因此,LDO的输出电压只需要稍高于所需输出电压,具有低的压差(低压降)特性。
LDO主要由晶体管工作在放大状态,因此在它的基极和发射极之间存在一个较小的压差,这个压差也称为基极–发射极压降(VBE)或基极–源极压降(VBE)。
通过调整输入级的输入电流,LDO的VBE可以保持在一个较小的值,以实现低压降。
总结起来,LDO的工作原理可以归结为以下几个步骤:1.输入电源电压通过输入电感和输入电容滤波后进入LDO。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LDO稳压器工作原理随着便携式设备(电池供电)在过去十年间的快速增长,像原来的业界标准 LM340 和 LM317 这样的稳压器件已经无法满足新的需要。
这些稳压器使用NPN 达林顿管,在本文中称其为NPN 稳压器(NPN regulators)。
预期更高性能的稳压器件已经由新型的低压差(Low-dropout)稳压器(LDO)和准LDO稳压器(quasi-LDO)实现了。
(原文:Linear Regulators: Theory of Operation and Compensation )NPN 稳压器(NPN regulators)在NPN稳压器(图1:NPN稳压器内部结构框图)的内部使用一个 PNP管来驱动 NPN 达林顿管(NPN Darlington pass transistor),输入输出之间存在至少1.5V~2.5V的压差(dropout voltage)。
这个压差为:Vdrop = 2Vbe +Vsat(NPN 稳压器) (1)LDO 稳压器(LDO regulators)在LDO(Low Dropout)稳压器(图2:LDO稳压器内部结构框图)中,导通管是一个PNP 管。
LDO的最大优势就是PNP管只会带来很小的导通压降,满载(Full-load)的跌落电压的典型值小于500mV,轻载(Light loads)时的压降仅有10~20mV。
LDO的压差为: Vdrop = Vsat (LDO 稳压器) (2)准LDO 稳压器(Quasi-LDO regulators)准LDO(Quasi-LDO)稳压器(图3:准 LDO 稳压器内部结构框图)已经广泛应用于某些场合,例如:5V到3.3V 转换器。
准LDO介于NPN 稳压器和LDO 稳压器之间而得名, 导通管是由单个PNP 管来驱动单个NPN 管。
因此,它的跌落压降介于NPN稳压器和LDO之间:Vdrop=Vbe+Vsat (3)稳压器的工作原理(Regulator Operation)所有的稳压器,都利用了相同的技术实现输出电压的稳定(图4:稳压器工作原理图)。
输出电压通过连接到误差放大器(Error Amplifier)反相输入端(Inverting Input)的分压电阻(Resistive Divider)采样(Sampled),误差放大器的同相输入端(Non-inverting Input)连接到一个参考电压Vref。
参考电压由IC内部的带隙参考源(Bandgap Reference)产生。
误差放大器总是试图迫使其两端输入相等。
为此,它提供负载电流以保证输出电压稳定:Vout = Vref(1 + R1 / R2) (4)性能比较(Performance Comparison)NPN,LDO和准LDO在电性能参数上的最大区别是:跌落电压(Dropout Voltage)和地脚电流(Ground Pin Current)。
为了便于分析,我们定义地脚电流为Ignd (参见图4),并忽略了IC到地的小偏置电流。
那么,Ignd等于负载电流IL除以导通管的增益。
NPN 稳压器中,达林顿管的增益很高(High Gain), 所以它只需很小的电流来驱动负载电流IL。
这样它的地脚电流Ignd也会很低,一般只有几个mA。
准LDO也有较好的性能,如国半(NS)的LM1085能够输出3A的电流却只有10mA的地脚电流。
然而,LDO的地脚电流会比较高。
在满载时,PNP管的β值一般是15~20。
也就是说LDO 的地脚电流一般达到负载电流的7%。
NPN稳压器的最大好处就是无条件的稳定,大多数器件不需额外的外部电容。
LDO在输出端最少需要一个外部电容以减少回路带宽(Loop Bandwidth)及提供一些正相位转移(Positive Phase Shift)补偿。
准LDO一般也需要有输出电容,但容值要小于LDO的并且电容的ESR局限也要少些。
反馈及回路稳定性(Feedback and Loop Stability)所有稳压器都使用反馈回路(Feedback Loop)以保持输出电压的稳定。
反馈信号在通过回路后都会在增益和相位上有所改变,通过在单位增益(Unity Gain,0dB)频率下的相位偏移总量来确定回路的稳定性。
波特图(Bode Plots)波特图(Bode Plots)可用来确认回路的稳定性,回路的增益(Loop Gain,单位:dB)是频率(Frequency)的函数(图5:典型的波特图)。
回路增益及其相关内容在下节介绍。
回路增益可以用网络分析仪(Network Analyzer)测量。
网络分析仪向反馈回路(Feedback Path)注入低电平的正弦波(Sine Wave),随着直流电压(DC)的不断升高, 这些正弦波信号完成扫频,直到增益下降到0dB。
然后测量增益的响应(Gain Response)。
波特图是很方便的工具,它包含判断闭环系统(Closed-loop System)稳定性的所有必要信息。
包括下面几个关键参数:环路增益(Loop Gain),相位裕度(Phase Margin)和零点(Zeros)、极点(Poles)。
回路增益(LOOP GAIN)闭环系统(Closed-loop System)有个特性称为回路增益(Loop Gain)。
在稳压电路中,回路增益定义为反馈信号(Feedback Signal)通过整个回路后的电压增益(Voltage Gain)。
为了更好的解释这个概念,LDO的结构框图(图2)作如下修改(图6:回路增益的测量方法)。
变压器(Transformer)用来将交流信号(AC Signal)注入(Inject)到“A”、“‘B”点间的反馈回路。
借助这个变压器,用小信号正弦波(Small-signal Sine Wave)来“调制”(modulate)反馈信号。
可以测量出A、B两点间的交流电压(AC Voltage),然后计算回路增益。
回路增益定义为两点电压的比(Ratio):Loop Gain =Va / Vb (5)需要注意, 从Vb点开始传输的信号, 通过回路(Loop)时会出现相位偏移(Phase Shift),最终到达Va点。
相位偏移(Phase Shift)的多少决定了回路的稳定程度(Stability)。
反馈(FEEDBACK)如前所述,所有的稳压器都采用反馈( Feedback)以使输出电压稳定。
输出电压是通过电阻分压器进行采样的(图6),并且该分压信号反馈到误差放大器的一个输入端,误差放大器的另一个输入端接参考电压,误差放大器将会调整输出到导通管(Pass Transistor)的输出电流以保持直流电压(DC Valtage)的稳定输出。
为了达到稳定的回路就必须使用负反馈(Negative Feedback)。
负反馈,有时亦称为改变极性的反馈(degenerative feedback),与源信号的极性相反(图7:反馈信号的相位示意图)。
负反馈与源(Source)的极性相反,它总会阻止输出的任何变化。
也就是说,如果输出电压想要变高(或变低),负反馈回路总会阻止,强制其回到正常值。
正反馈(Positive Feedback)是指当反馈信号与源信号有相同的极性时就发生的反馈。
此时,回路响应会与发生变化的方向一致。
显而易见不能达到输出的稳定,不能消除输出电压的改变,反而将变化趋势扩大了。
当然,不会有人在线性稳压器件中使用正反馈。
但是如果出现180°的相移,负反馈就成为正反馈了。
相位偏移(PHASE SHIFT)相位偏移就是反馈信号经过整个回路后出现的相位改变(Phase Change)的总和(相对起始点)。
相位偏移,单位用度(Degrees)表示,通常使用网络分析仪(network analyzer)测量。
理想的负反馈信号与源信号相位差180°(如图8:相位偏移示意图),因此它的起始点在-180°。
在图7中可以看到这180°的偏置,也就是波型差半周。
可以看到,从-180°开始,增加180°的相移,信号相位回到零度,就会使反馈信号与源信号的相位相同,从而使回路不稳定。
相位裕度(PHASE MARGIN)相位裕度(Phase Margin,单位:度),定义为频率的回路增益等 0dB(单位增益,Unity Gain)时,反馈信号总的相位偏移与-180°的差。
一个稳定的回路一般需要20°的相位裕度。
相位偏移和相位裕度可以通过波特图中的零、极点计算获得。
极点(POLES)极点(Pole)定义为增益曲线(Gain curve)中斜度(Slope)为-20dB/十倍频程的点(图9:波特图中的极点)。
每添加一个极点,斜度增加20dB/十倍频程。
增加n个极点,n ×(-20dB/十倍频程)。
每个极点表示的相位偏移都与频率相关,相移从0到-90°(增加极点就增加相移)。
最重要的一点是几乎所有由极点(或零点)引起的相移都是在十倍频程范围内。
注意:一个极点只能增加-90°的相移,所以最少需要两个极点来到达-180°(不稳定点)。
零点(ZEROS)零点(Zero)定义为在增益曲线中斜度为+20dB/十倍频程的点(如图10:波特图中的零点)。
零点产生的相移为0到+90°,在曲线上有+45°角的转变。
必须清楚零点就是“反极点”(Anti-pole),它在增益和相位上的效果与极点恰恰相反。
这也就是为什么要在LDO 稳压器的回路中添加零点的原因,零点可以抵消极点。
波特图分析用包含三个极点和一个零点的波特图(图11:波特图)来分析增益和相位裕度。
假设直流增益(DC gain)为80dB,第一个极点(pole)发生在100Hz处。
在此频率,增益曲线的斜度变为-20dB/十倍频程。
1kHz处的零点使斜度变为0dB/十倍频程,到10kHz 处斜度又变成-20dB/十倍频程。
在100kHz处的第三个也是最后一个极点将斜度最终变为-40dB/十倍频程。
图11中可看到单位增益点(Unity Gain Crossover,0dB)的交点频率(Crossover Frequency)是1MHz。
0dB频率有时也称为回路带宽(Loop Bandwidth)。
相位偏移图表示了零、极点的不同分布对反馈信号的影响。
为了产生这个图,就要根据分布的零点、极点计算相移的总和。
在任意频率(f)上的极点相移,可以通过下式计算获得:极点相移 = -arctan(f/fp) (6) 在任意频率(f)上的零点相移,可以通过下式计算获得:零点相移 = -arctan(f/fz) (7) 此回路稳定吗?为了回答这个问题,我们根本无需复杂的计算,只需要知道0dB时的相移(此例中是1MHz)。