基因工程知识点总结归纳(更新版)
高中生物基因工程知识点总结

高中生物基因工程知识点总结基因工程是现代生物技术的核心内容之一,在高中生物学习中占据着重要的地位。
下面我们就来详细总结一下高中生物基因工程的相关知识点。
一、基因工程的概念基因工程,又称为基因拼接技术或 DNA 重组技术,是指按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
二、基因工程的基本工具1、“分子手术刀”——限制性核酸内切酶(限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
2、“分子缝合针”——DNA 连接酶根据来源不同,DNA 连接酶分为两类:E·coli DNA 连接酶和T4DNA 连接酶。
E·coli DNA 连接酶只能将双链 DNA 片段互补的黏性末端之间的磷酸二酯键连接起来,而 T4DNA 连接酶既可以连接黏性末端,又可以连接平末端,但连接平末端的效率相对较低。
3、“分子运输车”——载体常用的载体有质粒、λ噬菌体的衍生物、动植物病毒等。
作为载体,需要具备以下条件:(1)能够在受体细胞中稳定保存并自我复制。
(2)具有一个或多个限制酶切点,以便与外源基因连接。
(3)具有标记基因,便于进行筛选。
三、基因工程的基本操作程序1、目的基因的获取(1)从基因文库中获取基因文库包括基因组文库和部分基因文库(如 cDNA 文库)。
(2)利用 PCR 技术扩增目的基因PCR 是一项在生物体外复制特定 DNA 片段的核酸合成技术。
(3)通过化学方法人工合成如果基因比较小,核苷酸序列又已知,可以通过 DNA 合成仪用化学方法直接人工合成。
2、基因表达载体的构建(基因工程的核心)目的基因、启动子、终止子、标记基因等组成基因表达载体。
启动子是 RNA 聚合酶识别和结合的部位,驱动基因转录出 mRNA;终止子终止转录;标记基因用于鉴别和筛选含有目的基因的细胞。
高中生物选修三基因工程知识点总结

高中生物选修三基因工程知识点总结
高中生物选修三(基因工程)知识点总结如下:
1. 基因工程的基本步骤:
- 分离基因:从目标DNA序列中分离特定的基因。
- 转录:将分离得到的基因转录成RNA。
- 修饰:对转录后的基因进行修饰,使其更具表达效果。
- 克隆:用适当的载体将修饰过的基因导入目标细胞中。
- 表达:使目标细胞中导入的基因表达。
2. 基因工程的主要方法:
- 重组DNA技术:包括文库制备、扩增和筛选。
- 外源DNA片段导入技术:包括限制性内切酶消化、连接、转化、融合等。
- 自组织培养技术:包括离心、培养基选择、细胞培养等。
- 基因编辑技术:包括CRISPR/Cas9、CRISPR-Cas13a等。
3. 基因工程的应用:
- 细胞治疗:通过基因工程手段治疗一些遗传性疾病。
- 农业育种:通过基因工程技术改良作物品质和产量。
- 生物恐怖袭击防御:通过基因工程技术检测和防御生物恐怖袭击。
- 环境污染治理:通过基因工程技术处理污染物。
4. 基因工程的限制:
- 伦理和道德问题:基因工程技术可能会带来未知的伦理和道德
问题。
- 技术成本:基因工程技术相对其他技术更为复杂,成本较高。
- 技术安全:基因工程技术的安全性需要持续进行研究和维护。
5. 基因工程的安全性问题:
- 基因突变:基因工程过程中可能会引发基因突变,导致不良后果。
- 质量控制:基因工程技术的产品需要进行质量控制,以确保其质量和稳定性。
高考生物《基因工程知识点》总汇

高考生物《基因工程知识点》总汇1、基因工程的先导是?艾弗里等人的工作证明了DNA可以从一种生物个体转移到另一种生物个体2、不同生物的基因为什么可以连接在一起?因为所有生物的DNA基本结构是相同的3、真核生物的基因为什么可以在原核生物体内表达?(或者原核生物的基因为什么可以在真核生物体内表达?)所有生物共用一套密码子4、基因工程育种的原理是什么?具有什么优点?原理:基因重组优点:打破了生殖隔离,定向改造生物的性状5、与DNA有关的酶的比较6、特定的核苷酸序列,并在特定的位点上进行切割7、限制酶不切割自身DNA的原因是什么?原核生物DNA分子中不存在该酶的识别序列或识别序列已经被修饰。
8、DNA连接酶可以连接什么样的末端?①同一种限制酶切割形成的相同的黏性末端②两种不同限制酶切割后形成的相同黏性末端③任意的两个平末端9、如何防止载体或目的基因的黏性末端自己连接即所谓“环化”?可用不同的限制酶分别处理含目的基因的DNA和载体,使目的基因两侧及载体上各自具有两个不同的黏性末端。
10、载体需具备的条件及其作用11、基因工程的基本操作步骤是哪四步?目的基因的获取;基因表达载体的构建;将目的基因导入受体细胞;目的基因的检测与鉴定12、目的基因的获取方法有哪些?三种方法都需要模板吗?①从基因文库中获取目的基因②利用PCR技术扩增目的基因③通过化学方法人工合成前两种需要模板,从基因文库中寻找目的基因时需要用DNA探针利用DNA分子杂交的方法找到目的基因;化学方法人工合成不需要模板,只要知道核苷酸序列就行,这是一个纯粹的化学反应13、CDNA文库和基因组文库的区别?cDNA是指以mRNA为模板,在逆转录酶的作用下形成的互补DNA。
以细胞的全部mRNA 逆转录合成的cDNA组成的重组克隆群体成为cDNA文库。
cDNA文库只包含表达的基因,并且逆转录得来的基因缺乏内含子和启动子、终止子等调控序列基因组文库指的是将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞,进行克隆得到的所有重组体内的基因组DNA片段的集合,它包含了该生物的所有基因。
基因工程知识点总结归纳(更新版)

基因工程绪论1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。
作动词:基因的分离和重组的过程。
2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。
供体、受体和载体是基因工程的三大要素。
3、基因工程诞生的基础三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。
以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。
三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。
2、限制酶的命名:属名(斜体)+种名+株系+序数3、II型限制性内切酶识别特定序列并在特定位点切割4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。
5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。
6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。
7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。
8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。
9、S1核酸酶:特异性降解单链DNA或RNA。
10、RNAH降解与DNA杂交的RNA,用于cDNA文库建立时除去RNA以进行第二链的合成。
基因工程知识点

基因工程各章知识点第一章绪论1.基因工程的首例操作实验三大理论基础:DNA是遗传物质、DNA的双螺旋结构和半保留复制、遗传密码的破译和遗传物质传递方式的确定三大技术基础:限制性核酸内切酶的发现与DNA的切割、DNA连接酶的发现与DNA片段的连接、基因工程载体的研究与应用基因工程的诞生:72年,P.Berg首次实现体外DNA重组:体外用EcoRI分别切割SV40和λDNA,并用T4 DNA连接酶连接成为重组的杂种DNA分子73年,S.Cohen 体外重组DNA并转化:具Kanr的E.Coli质粒R6-5和具Tetr的E.Coli质粒pSC101切割并连接转化的大肠杆菌具有双重抗性S.Cohen 和H.Boyer首次实现真核基因在原核中表达:将非洲爪蟾的DNA与E.Coli质粒(pSC101)体外切割并连接,转化大肠杆菌2.基因工程的基本概念基因工程是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种新物体(受体)内,使之稳定遗传并表达出新产物或具有新性状的DNA体外操作技术,也称为分子克隆或重组DNA 技术。
供体、载体、受体是基因工程的三大基本元件。
3.基因工程的基本操作过程a分离目的DNA片段:酶切、PCR扩增、化学合成等。
b重组:体外连接的DNA和载体DNA,形成重组DNA分子。
c转化:将重组DNA分子导入受体细胞并与之一起增殖。
d筛选:鉴定出获得了重组DNA分子的受体细胞。
e对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。
第二章载体1.理解用PBR322和PUC18作载体的克隆外源基因的原理。
答案不确定PBR322作载体的克隆外源基因的原理:PBR322质粒具有12 种限制性内切酶的单一识别位点:Tet r 基因内有7个酶切位点:Bam HⅠ,SalⅠ:Amp r基因内有3 个酶切位点:PstⅠ。
Eco RⅠ和HindⅢ不在抗生素基因内,不导致插入失活。
基因工程知识点总结

基因工程总结一.概念(1)原理:。
(2)优点:与杂交育种相比,;与诱变育种相比,。
(3)基因工程成功的原因:①成功拼接的原因:②成功表达的原因:二.基本工具1、两种酶:(1) :作用特点:。
(2) :E·coli DNA连接酶与T4 DNA连接酶的区别:2、一种运载体(1)条件:①;②;③具有特殊的标记基因(作用:)(2)种类:最常用;其他动植物病毒、三、操作程序(1) :方法:①:不知道脱氧核苷酸序列②:已知目的基因两端一小段序列,便于③利用化学方法人工合成:知道全部序列,且基因比较小。
这种方法不需要模板。
(2) ——基因工程的核心基因表达载体的组成:(3)(4)①目的基因是否插入到转基因生物的染色体DNA上:②是否转录:③是否翻译:④个体水平鉴定:抗虫、抗病接种实验易错点说明:1、切割目的基因和运载体的要求:用限制酶。
目的是:。
同种的含义是:同一种或相同两种,即单酶切或双酶切。
选择双酶切的原因是。
2、工具≠工具酶;运载体≠质粒。
3、启动子≠起始密码子,终止子≠终止密码子起始密码子和终止密码子位于mRNA上,分别控制翻译过程的启动和终止。
启动子:。
终止子:一段有特殊结构的DNA短片段,位于基因的尾端,作用是使转录过程停止。
4、基因探针的要求:①单链②有③5、农杆菌转化法中的“2”次导入:第一次:将含有目的基因的T—DNA的质粒导入农杆菌;第二次(非人工操作):将含有目的基因的T—DNA导入受体细胞并整合到植物细胞的染色体DNA上。
6、转化:。
7、(1)乳腺生物反应器与化学反应器比较,优点是:质量稳定,成本低廉,无污染,经济效益显著。
(2)乳腺生物反应器与膀胱生物反应器比较,或者优点是:①收集产物更容易,不必对动物造成伤害;②从动物一出生就可以收集;③与性别无关。
8、将目的基因导入植物细胞采用最多的方法;导入单子叶植物最常用且成本较高的方法;我国科学家独创且简便经济的方法。
巩固练习1、下图中的图1是Eco RⅠ限制酶的作用示意图。
基因工程复习资料

基因工程复习资料第一章核酸的制备1.主要步骤:分、切、接、转、筛、表2.基因工程的概念:基因工程又称基因堆叠技术和dna重组技术,就是以分子遗传学为理论基为础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种dna分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
第二章基因工程工具酶1.生物催化剂:核酶、抗体酶、模拟酶。
2.限制性内切核酸酶:定义:限制性内乌核酸酶就是一类能够辨识双链dna中特定核苷酸序列(辨识序列),并在识别序列上使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
命名:限制性内乌核酸酶通常就是以第一次抽取至这类酶的生物的种名的第一个字母和种名的第一、第二个字母命名的,有的在后面还加菌株(型)代号中的一个字母。
如果从同一种生物中先后提取到多种限制性内切核酸酶,则依次用罗马数字ⅰ、ⅱ、ⅲ表示。
并且名称的前三个字母须用斜体,第一个字母用大写。
3.dna连接酶:定义:dna连接酶也称dna黏合酶,在分子生物学中扮演一个既特殊又关键的角色,那就是连接dna链3‘-oh末端和,另一dna链的5’-p末端,使二者生成磷酸二酯键,从而把两段相邻的dna链连成完整的链的一种酶。
种类:大肠杆菌dna连接酶、t4dna连接酶、tscdna连接酶、真核生物细胞辨认出的连接酶,例如酶ⅰ、酶ⅱ、酶ⅲ等多种类型。
4.dna片段的相连接方法:①具互补黏性末端dna片段之间的连接:可用e?colidna连接酶,也可用t4dna连接酶。
②尼奥罗末端dna片段之间的相连接:就可以用t4dna连接酶,并且必须减少酶的用量。
③dna片段末端修饰后进行连接:dna片段末端同聚物加尾后进行连接,可按互补粘性末端片段之间的连接方法进行连接;粘性末端修饰成平末端后进行连接;dna片段5′端脱磷酸化后进行连接;dna片段加连杆或衔接头后连接。
5.dna聚合酶:①定义:dna聚合酶就是指用dna单链为模板,以4种脱氧核苷酸为底物,催化剂制备一条与模板链序列优势互补的dna新链的酶。
基因工程重点考点归纳

基因工程重点考点归纳1. 简述基因工程中的四大要素。
答:基因工程的四大要素是基因、工具酶、载体、宿主细胞。
2. 简述基因工程诞生的基础。
答:基因工程诞生的基础是理论上的三大发现和技术上的三大发明。
1971年,史密斯(Smith H. O.)等人从细菌中分离出的一种限制性酶,酶切病毒DNA分子,标志着DNA重组时代的开始。
1972年伯格(Berg P.)等用限制性酶分别酶切猿猴病毒和噬菌体DNA,将两种DNA 分子用连接酶连接起来,得到新的DNA分子。
1973年,科恩(Cohen S.)等进一步将酶切DNA分子与质DNA 连接起来,并将重组质粒转入E.coli细胞中。
理论上的三大发现:(1)DNA是遗传物质(2)DNA双螺旋模型(Watson/Crick 1953)(3)确定了遗传信息传递的方式(60年代)技术上的三大发明:(1)工具酶的使用【Smith 和Wilcox(1970) 流感嗜血杆菌分离纯化了Hind II其它工具酶(如连接酶)等的发现分子剪刀和DNA缝合工具】(2)基因运载工具—DNA载体的使用(对质粒的认识)【细菌的致育因子—F因子Lederberg 1946抗药性因子(R) 大肠杆菌素因(Col)】(3)逆转录酶的使用【Baltimomore 和Temin (1970) 各自发现了逆转录酶】意义:丰富了“中心法则”、真核基因的制备成为可能、构建cDNA 文库成为可能。
第二章1.简述细菌的限制与修饰系统答:细胞中存在位点特异性限制酶和特异性甲基化酶,即细胞中有限制—修饰系统(R-M Restriction-modification system)。
R-M系统是细菌安内御外的积极措施。
根据酶的亚单位组成、识别序列的种类和是否需要辅助因子,限制与修饰系统至少可分为四类。
2.II型限制性内切酶的特点答:II型限制性内切酶是同源二聚体,由两个彼此按相反方向结合在一起的相同亚单位组成。
识别回文对称序列,在回文序列内部或附近切割DNA,产生带3‘- 羟基和5’-磷酸基团的DNA 产物,需Mg2+,相应的修饰酶只需SAM 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程绪论1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。
作动词:基因的分离和重组的过程。
2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。
供体、受体和载体是基因工程的三大要素。
3、基因工程诞生的基础三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。
以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。
三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。
2、限制酶的命名:属名(斜体)+种名+株系+序数3、II型限制性内切酶识别特定序列并在特定位点切割4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。
5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。
6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。
7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。
8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。
9、S1核酸酶:特异性降解单链DNA或RNA。
10、RNAH降解与DNA杂交的RNA,用于cDNA文库建立时除去RNA以进行第二链的合成。
11、DNA聚合酶:(1)、DNA聚合酶I:5’—3’外切酶活性、3’—5’外切酶活性,5’—3’聚合酶活性,用途:除去3’端突起。
补齐5’端突起。
合成cDNA第二链。
切口移位探针的制备。
(2)、Klenow大片段:没有5’→3’外切酶活性,而保留了5’→3’DNA聚合酶活性和3’→5’外切酶活性。
用途:用同位素标记具5’端突起的DNA片段末端。
补平5’粘性末端。
DNA序列测定。
合成cDNA第二链。
(3)、Taq酶:75度为最适反应温度,95度仍具有稳定性,不具有外切酶活性,主要用于PCR。
12、主要修饰酶:(1)碱性磷酸酶:除去核酸分子3’和5’端的磷酸基团。
(2)T4多聚核苷酸磷酸激酶:催化ATP中的γ位的磷酸基转移5’-OH上(3)末端脱氧核苷酸转移酶:在3’端高效添加脱氧核苷酸。
分子克隆载体1、分子克隆载体:是一类可供外源DNA片段插入并携带重组分子进入宿主细胞进行扩增或表达的DNA分子。
2、分子克隆载体的功能:(1)为外源基因提供进入受体细胞的转移能力(2)为外源基因提供在受体细胞中复制或整合的能力(3)为外源基因提供在受体细胞中扩增和表达的能力3、载体的分类:(1)按用途分:克隆载体、表达载体、整合载体(2)按来源分:原核生物载体:质粒载体、λ噬菌体载体、M13噬菌体载体、cosmid 载体、phagemid载体;真核病毒载体4、载体的特点:(1)至少有一个复制起点,因而至少可在一个生物体中自主复制(2)至少有一个克隆位点,可供外源DNA插入(3)至少有一个标记基因,以知识载体或重组DNA分子是否进入受体细胞(4)具有较小的分子量和较高的拷贝数5、标记基因的作用:外源基因是否插入载体分子形成重组子;外源载体是否进入宿主细胞6、标记基因的种类:抗性标记基因;营养标记基因;生化标记基因;噬菌斑7、常用的遗传标记基因:四环素抗性基因(Tc);氨苄青霉素抗性基因(Ap);氯霉素抗性基因(Cm);卡那霉素(Kan);新霉素(Neo);β—半乳糖甘酶基因(LacZ);葡萄糖苷酸酶基因(Gus);荧光素酶基因;发光蛋白质基因。
8、按复制起点划分克隆载体:1)质粒复制型—复制起点来自质粒或线粒体和叶绿体(有低拷贝和高拷贝)2)ARS复制型—染色体复制型(一般拷贝数比较高)3)病毒复制型—复制起点来自病毒,若为RNA必须反转录为cDNA(高拷贝)4)混合复制型:不同种生物复制起点混合(穿梭载体)9、根据载体的分子生物学特性划分:质粒载体、病毒型载体、混合型载体10、根据载体功能分类:1)普通型载体:至少有一个以上的克隆位点和两个标记基因。
如PBR322和pUC载体2)表达型载体:3类:Ⅰ型:转录起始区(调控序列+启动子)+终止子;Ⅱ型:转录起始区+翻译起始区(核糖体结合序列和起始密码子)+终止子;Ⅲ型: 转录起始区+ 翻译起始区+ 信号肽链编码区+ 终止子(常称之为表达分泌型载体)3)失控型质粒载体(Run-away plasmid vector):是一些低拷贝质粒,其复制控制是温度敏感型或药物敏感型,在不同温度或不同药物浓度下,质粒拷贝数会显著变化。
4)探针型载体:该类载体主要特点是含有一些特殊的DNA序列,用于特定的研究目的,如分离基因启动子、终止子、DNA复制起点等。
5)定序型载体:主要用于核苷酸的序列测定6)整合型载体:主要用于基因治疗,稳定表达外源基因。
9、标记基因与拷贝的关系:若标记基因的表达效率较高,宿主细胞可能不大量表达标记基因以满足选择压力的要求,因而载体的拷贝数会降低,可采取相应方法提高拷贝数。
如:对于药物抗性标记基因,可提高药物的浓度。
对于营养标记基因,可降低该基因的表达效率。
大肠杆菌分子克隆载体1、E.coli克隆载体的种类1)质粒载体—复制起点来自一些天然质粒。
2)噬菌体载体—λ,P1和M13、fd载体,复制起点来自噬菌体。
3)COS质粒载体—质粒载体中插入λcos片段,以利于体外包装4)噬粒载体(phagemid)—有质粒和M13、fd的复制起点,以质粒或噬菌体方式复制。
2、质粒的特点:1)质粒DNA的复制与染色体复制无关2)质粒DNA以超螺旋形式存在3)质粒DNA可以结合转移4)质粒的不相容性和不相容群5)质粒DNA的消除6)质粒的整合3、大肠杆菌质粒的复制:以RNAⅡ为引物合成,RNAⅠ与RNAⅡ结合可减少质粒的拷贝数,使RNAⅠ复制起点上游一个核苷酸处G突变为T,使得拷贝数增多。
4、质粒的不亲和性:在没有选择压力的情况下,两种亲缘关系密切的不同质粒,不能够在同一宿主细胞中稳定共存的现象。
主要是由于他们在复制功能之间的相互干扰造成。
5、λ噬菌体的结构特点:线性双链DNA病毒,具有末端互补的12个核苷酸,感染细菌后粘端互补成双链环状。
全长48.5kb。
6、热诱导表达:λcl ts857 ,可作为组件插入质粒DNA 内。
目的基因插在λcl ts857 下游,重组体的目的基因在42 ℃表达,30 ℃不表达。
7、λ噬菌体载体的缺点:基因组太大;酶切点太多;野生型只能接纳一定长度的DNA。
8、λ噬菌体载体的改造:切去非必须片段,加载目的基因去掉太多的酶切位点增加标记基因9、COS质粒载体的特点:在普通质粒载体中插入一个或两个来自λ的cos位点片段,双cos载体比单cos载体易于重组。
10、COS质粒载体的优点:容量大,用于基因簇的克隆;形成的重组DNA分子可进行体外包装,并能感染大肠杆菌细胞;操作简单,易于转化细胞;对重组DNA分子长度具有选择性包装。
11、噬粒载体(phagemid):在质粒载体中插入一段M13或fd的复制起点,其插入方向决定在噬菌体颗粒中形成正链还是负链。
基因操作的主要技术原理1、核酸分离提取的原则:保证核算的一级结构的完整性;排除其他分子的污染2、质粒载体分离的关键:如何使质粒与DNA与宿主染色体DNA分开依据:质粒DNA比染色体DNA小得多,在DNA提取过程中,染色体断裂成片段,而质粒DNA仍保持超螺旋构型3、变性法提取质粒DNA的原理:在变性条件(碱性或高温)下,线状染色体DNA变性成为单链而完全分开,而cccDNA虽然互补链之间的氢键断裂,但双螺旋主链骨架仍彼此缠绕在一起。
当变性条件恢复时,质粒DNA迅速复性恢复天然构型,染色体DNA难以复性,交联形成不溶性网状结构,与变性的蛋白质和RNA缠绕在一起,通过离心沉淀下来,而质粒DNA存在于上清液中。
4、RNA分离纯化的关键:防止内外源RNase的作用5、RNase的特点:抗酸抗碱;抗高温严寒;抗变性剂,酶活性不需要辅助因子,存在范围广。
因此操作时要进行高温灭菌或用焦碳酸二乙酯处理或强蛋白质变性剂等。
6、核酸的浓缩:沉淀法:可以除去溶液中某些可溶的盐离子和杂质。
7、核酸凝胶电泳的基本原理:核酸分子中的磷酸基团带负电荷,在电场中将向正极移动,通过凝胶的分子筛作用可以将不同大小和构型的核酸分子分离,分子量小的DNA,具有较紧密的构型,在凝胶中移动快;反之,分子量大的DNA移动慢。
8、核酸凝胶电泳常使用溴酚蓝作为指示剂、溴化乙锭作为染色剂9、脉冲场凝胶电泳原理:加在凝胶上至少有两个电场方向,使得DNA分子要不断地调整泳动方向,不同分子量大小的DNA分子用于改变泳动方向的时间不同,则可以得到分离10、双脱氧核苷酸终止法的原理:双脱氧(2',3')-核苷酸可以象2'-脱氧核苷酸那样直接掺入新合成的DNA链中,但因3’端不具OH基,DNA链合成至此中断。
由于双脱氧核苷酸在每个DNA分子中掺入的位置不同,故可根据不同长度的DNA 片段测定出核苷酸序列11、双脱氧核苷酸终止法的过程:制备单链DNA,与引物退火,分为4个反应体系,每个体系中加入dNTP和一种双脱氧核苷酸,DNA聚合酶定序反应,反应产物变性后电泳,凝胶干燥,放射自显影,根据条带读出碱基序列,再根据碱基互补配对原则写出DNA链的序列。
(注意:要自己写一个序列,然后写上每个体系中出现片段的序列,然后根据序列画出电泳图,考试考的可能性大,书上有步骤)12、Maxam-Gilbert化学法原理:DNA链上的不同碱基可以和碱基修饰剂发生反应,在碱性环境下硫酸二甲酯能使碱基G发生甲基化,在酸性环境下哌啶甲酸使A 和G脱嘌呤,碱性环境下肼使C和T发生开环,在高盐浓度下肼只使C开环。
然后发生1~2个碱基的脱落或取代,最后发生链断裂,不同位置断裂的DNA分子经凝胶电泳就可确定其核苷酸序列13、化学法测序的优点、不需要模板、引物和DNA聚合酶。
14、Southern杂交(Southern blot):用一种或多种限制性内切酶对基因组DNA 加以切割,通过琼脂糖凝胶电泳分离酶切片段,随后,使DNA在原位变性,并从凝胶转移至固相膜,用已知核苷酸片段加以标记作为探针,通过分子杂交来检测待测样品中是否存在互补的核酸序列。