初中数学商品利润问题
初中数学精品试题:一元二次方程利润问题

专题06一元二次方程利润问题这类问题在考试中是必考内容,需要掌握的知识点也比较多,是一类非常重要的考题,需要掌握以下知识点:①总利润=单件利润×数量(销售量);②单件利润=售价-进价;③总利润与x是二次函数关系;④数量与x是一次函数关系;【1】降价问题(问题为降价多少元)①设应降价x元;②公式中“单利”为未降价前的单件利润,即单利=售价-进价;③公式中“基础数量”为降价前的销售量,题目中给出;④公式中“件数”为题目中说明的,降价“1元”,增加的数量;(注意必须是降价1元,不是1元的,转化为1元)⑤列出方程;(注意降价的范围)⑥解出方程;【2②公式中“单利”为未涨价前的单件利润,即单利=售价-进价;③公式中“基础数量”为涨价前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价“1元”,减少的数量;(注意必须是涨价1元,不是1元的,转化为1元)⑤列出方程;(注意涨价的范围)⑥解出方程;①设应定价x元;②公式中“进利”为题目中给出的进价;③公式中“基础数量”为价格改变前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价(或者降价)“1元”,增加(或者减少)的数量;(注意必须是涨价或降价1元,不是1元的,转化为1元)⑤公式中“售价”为题目中给出价格为改变前的销售价格;⑥列出方程;(注意x的范围)⑦解出方程;【4】数量为一次函数类型我们已经知道,数量与x(涨价,降价或者定价)是一次函数关系,因此我们可以用一次函数的待定系数法求出数量的表达式,再将一次函数表达式代入方程中即可;①设数量y=kx+b(k≠0);②在给出的函数图像上找两个已知坐标的点代入;③求出y的解析式;④总利润=单利×数量中,“数量”用求出的“kx+b”代替,列出方程;⑤注意x的取值范围;1.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为千克、销售利润为元;(2)若将这种水果每千克降价x元,则每天的销售量是千克(用含x的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?2.合肥百货大楼服装柜在销售发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?3.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,商场可售出多少件?(2)若商场每天的盈利要达到1200元,每件衬衫应降价多少元?4.某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?5.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1) 设每件商品降价x元,则商场日销售量增加件,每件商品盈利_________元(用含x的代数式表示);(2) 每件商品降价多少元时,商场日盈利可达到2000元?6.商场某种商品平均每天可销售30件,每件赢利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售出2件.(1)若某天,该商品每天降价4元,当天可获利多少元?(2)每件商品降多少元,商场日利润可达2100元?1.某商店将进价为30 元的商品按售价50 元出售时,能卖500 件.已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,且尽量减少库存,售价应为多少元?2.某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是袋;(用含x的代数式表示)(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?3.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x元(x为非负整数),每周的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?1.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价0.5元,那么每天就少售10件;如果每件降价0.5元,那么每天能多售出20件.为了使该商品每天销售盈利为1980元,每件定价多少元?2.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?3.平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少4.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?5.某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?6.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?7.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本).(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.1.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?2.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,该商店每天的销售利润为6480元?3.某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y;(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?4.某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?5.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y=kx+ b的图象上,如图:(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?6.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:x 时,用含x的代数式表示每台学习机的售价;(1)当40(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?7.某公司购进一批新产品进行销售,已知该产品的进货单价为8元/件,该公司对这批新产品上市后的销售情况进行了跟踪调查.销售过程中发现,该产品每月的销售量y(万件)与销售单价x(元)之间的关系满足下表.(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并求出y与x之间的函数关系式;(2)当销售单价为多少元时,该产品每月获得的利润为240万元?(3)如果该产品每月的进货成本不超过160万元,那么当销售单价为多少元时,该产品每月获得的利润最大?最大利润为多少万元?8.吴江区某桶装水经营部每天的房租、人员工资等固定成本为150元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1200元,求该桶装水的销售单价.9.为提高农民收入,某区一水果公园引进一种新型蟠桃,蟠桃进价为每公斤40元.上市后通过一段时间的试营销发现:当蟠桃销售单价在每公斤40元至90元之间(含40元和90元)时,每月的销售量y(公斤)与销售单价x(元/公斤)之间的关系可近似地看作一次函数,其图像如图所示.(1)求y与x的函数解析式,并写出定义域;(2)如果想要每月获得2400元的利润,那么销售单价应定为每公斤多少元?。
人教版初中数学九年级上册第二十二章22.3.2实际问题与二次函数——商品利润问题

人教版数学九年级上册某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价180006000为每件40元,则每星期销售额是元,销售利润元.数量关系(1)销售额= 售价×销售量;(2)利润= 销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.例1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10x y=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.60001.自变量x 的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.2.涨价多少元时,利润最大,最大利润是多少?y =-10x 2+100x +6000,当时,y =-10×52+100×5+6000=6250.10052(10)x =-=⨯-即定价65元时,最大利润是6250元.例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?降价销售①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售2030020-x300+18x y=(20-x)(300+18x)建立函数关系式:y=(20-x)(300+18x),即:y=-18x2+60x+6000.6000综合可知,应定价65元时,才能使利润最大.1.自变量x 的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤20.2.降价多少元时,利润最大,是多少?当时,6052(18)3x =-=⨯-即定价57.5元时,最大利润是6050元.即:y =-18x 2+60x +6000,25518()6060006050.33y =-⨯+⨯+=由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?某网络玩具店引进一批进价为20元/件的玩具,如果以单价30元出售,那么一个月内售出180件,根据销售经验,提高销售单价会导致销售量的下降,即销售单价每上涨1元,月销售量将相应减少10件,当销售单价为多少元时,该店能在一个月内获得最大利润?①每件商品的销售单价上涨x元,一个月内获取的商品总利润为y元,填空:单件利润(元)销售量(件)每月利润(元)正常销售涨价销售1018010+x180-10x y=(10+x)(180-10x)1800建立函数关系式:y=(10+x)(180-10x),即:y=-10x2+80x+1800.营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故180-10x ≥0,因此自变量的取值范围是x ≤18.③涨价多少元时,利润最大,最大利润是多少?y =-10x 2+80x +1800= -10(x-4)2+1960.当x =4时,即销售单价为34元时,y 取最大值1960元.答:当销售单价为34元时,该店在一个月内能获得最大利润1960元.②自变量x的取值范围如何确定?求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.例2 某商店试销一种新商品,新商品的进价为30元/件,经过一段时间的试销发现,每月的销售量会因售价的调整而不同.令每月销售量为y件,售价为x元/件,每月的总利润为Q元.(1)当售价在40~50元时,每月销售量都为60件,则此时每月的总利润最多是多少元?解:由题意得:当40≤x≤50时,Q = 60(x-30)= 60x-1800∵y= 60 > 0,Q随x的增大而增大= 50时,Q最大= 1200∴当x最大答:此时每月的总利润最多是1200元.(2)当售价在50~70元时,每月销售量与售价的关系如图所示,则此时当该商品售价x 是多少元时,该商店每月获利最大,最大利润是多少元?解:当50≤x ≤70时,设y 与x 函数关系式为y =kx +b ,∵线段过(50,60)和(70,20).50k +b =6070k +b =20∴∴y =-2x +160(50≤x ≤70)解得:k =-2b = 160∴y=-2x+160(50≤x≤70)∴Q=(x-30)y=(x-30)(-2x+ 160)=-2x2+ 220x-4800=-2(x-55)2+1250 (50≤x≤70)∵a = -2<0,图象开口向下,∴当x= 55时,Q= 1250最大∴当售价在50~70元时,售价x是55元时,获利最大,最大利润是1250元.解:∵当40≤x ≤50时,Q 最大= 1200<1218当50≤x ≤70时,Q 最大= 1250>1218∴售价x 应在50~70元之间.∴令:-2(x -55)2+1250=1218解得:x 1=51,x 2=59当x 1=51时,y 1=-2x +160=-2×51+160= 58(件)当x 2=59时,y 2=-2x +160= -2×59+160= 42(件)∴若4月份该商品销售后的总利润为1218元,则该商品售价为51元或59元,当月的销售量分别为58件或42件.(3)若4月份该商品销售后的总利润为1218元,则该商品售价与当月的销售量各是多少?变式:(1)若该商品售价在40~70元之间变化,根据例题的分析、解答,直接写出每月总利润Q与售价x的函数关系式;并说明,当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?解:Q与x的函数关系式为:60x-1800 (40≤x≤50 )Q =-2(x-55)2+ 1250 (50≤x≤70)由例3可知:若40≤x≤50,则当x=50时,Q= 1200最大= 1250若50≤x≤70,则当x=55时,Q最大∵1200<1250∴售价x是55元时,获利最大,最大利润是1250元.(2)若该商店销售该商品所获利润不低于1218元,试确定该商品的售价x 的取值范围;解:①当40≤x≤50时,= 1200<1218,∵Q最大∴此情况不存在.60x-1800 (40≤x≤50 )Q =-2(x-55)2+ 1250 (50≤x≤70)②当50≤x ≤70时,Q 最大= 1250>1218,令Q = 1218,得-2(x -55)2 +1250=1218解得:x 1=51,x 2=59由Q = -2(x -55)2+1250的图象和性质可知:当51≤x ≤59时,Q≥1218∴若该商品所获利润不低于1218元,则售价x 的取值范围为51≤x ≤59.x Q 055121859511250(3)在(2)的条件下,已知该商店采购这种新商品的进货款不低于1620元,则售价x为多少元时,利润最大,最大利润是多少元?解:由题意得:51≤x≤5930 (-2 x +160)≥1620解得:51≤x≤53∵Q =-2(x -55)2+1250的顶点不在51≤x ≤53范围内,又∵a =-2<0,∴当51≤x ≤53时,Q 随x 的增大而增大∴当x 最大= 53时,Q 最大= 1242∴此时售价x 应定为53元,利润最大,最大利润是1242元.x Q 055124253511.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x 元(20 ≤x ≤30)出售,可卖出(300-20x )件,使利润最大,则每件售价应定为元.252.进价为80元的某件定价100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y (件)与衬衣售价x (元)之间的函数关系式为.每月利润w (元)与衬衣售价x (元)之间的函数关系式为.(以上关系式只列式不化简).y =2000-5(x -100)w =[2000-5(x -100)](x -80)3.一工艺师生产的某种产品按质量分为9个档次.第1档次(最低档次)的产品一天能生产80件,每件可获利润12元.产品每提高一个档次,每件产品的利润增加2元,但一天产量减少4件.如果只从生产利润这一角度考虑,他生产哪个档次的产品,可获得最大利润?w =[12+2(x -1)][80-4(x -1)]=(10+2x )(84-4x )=-8x 2+128x +840=-8(x -8)2+1352.解:设生产x 档次的产品时,每天所获得的利润为w 元,则当x=8时,w 有最大值,且w 最大=1352.答:该工艺师生产第8档次产品,可使利润最大,最大利润为1352.xy 516O 74. 某种商品每天的销售利润y (元)与销售单价x (元)之间满足关系:y=ax 2+bx -75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?解:(1)由题中条件可求y =-x 2+20x -75∵-1<0,对称轴x =10,∴当x =10时,y 值最大,最大值为25.即销售单价定为10元时,销售利润最大,为25元;(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?(2)由对称性知y=16时,x=7和13.故销售单价在7 ≤x ≤13时,利润不低于16元.求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.。
初中数学二次函数的应用题型分类——商品销售利润问题13(附答案)

初中数学二次函数的应用题型分类——商品销售利润问题13(附答案)1.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系式(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?2.“互联网+”时代,网上购物备受消费者青睐,某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可售价100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?3.某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量y(件)与销售单价x(元/件)的关系如下表:x元/件⋯15 20 25 30 ⋯()件⋯550 500 450 400 ⋯y()设这种产品在这段时间内的销售利润为w(元),解答下列问题:(1)如y是x的一次函数,求y与x的函数关系式;(2)求销售利润w与销售单价x之间的函数关系式;(3)求当x为何值时,w的值最大?最大是多少?4.采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元.试销后发现每袋的销售价x(元)与日销售量y(袋)之间的关系如下表:x(元)15 20 30 …y(袋)25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式.(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?5.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?6.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:每个商品的售价x(元)⋯30 40 50 ⋯每天销售量y(个)⋯100 80 60 ⋯(1)求y与x之间的函数表达式;(2)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?7.某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:(1)请计算第几天该商品单价为25元/件?(2)求网店第几天销售额为792元?(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?8.我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,.设每件童装降价x 经市场调查发现,如果每件童装降价1元,那么平均可多售出2件x>时,平均每天可盈利y元.元(0)()1写出y与x的函数关系式;()2当该专卖店每件童装降价多少元时,平均每天盈利400元?()3该专卖店要想平均每天盈利600元,可能吗?请说明理由.9.有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.(1)设x天后每千克苹果的价格为p元,写出p与x的函数关系式;(2)若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;(3)该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?10.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w 元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?11.某产品每件成本10元,试销阶段每件产品的销售单价x (元/件)与每天销售量y (件)之间的关系如下表.(1)直接写出:y 与x 之间的函数关系 ;(2)按照这样的销售规律,设每天销售利润为w (元)即(销售单价﹣成本价)x 每天销售量;求出w (元)与销售单价x (元/件)之间的函数关系;(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?12.某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元? (2)若商场要获得最大利润,则应上涨多少元?13.某生产商存有1200千克A 产品,生产成本为150元/千克,售价为400元千克.因市场变化,准备低价一次性处理掉部分存货,所得货款全部用来生产B 产品,B 产品售价为200元/千克.经市场调研发现,A 产品存货的处理价格y (元/千克)与处理数量x (千克)满足一次函数关系(01000x <),且得到表中数据.(1)请求出处理价格y (元千克)与处理数量x (千克)之间的函数关系;(2)若B 产品生产成本为100元千克,A 产品处理数量为多少千克时,生产B 产品数量最多,最多是多少?(3)由于改进技术,B 产品的生产成本降低到了a 元/千克,设全部产品全部售出,所得总利润为W (元),若5001000x <≤时,满足W 随x 的增大而减小,求a 的取值范围.14.天猫商城某网店销售某款蓝牙耳机,进价为100元.在元旦即将来临之际,开展了市场调查,当蓝牙耳机销售单价是180元时,平均每月的销售量是200件,若销售单价每降低2元,平均每月就可以多售出10件.()1设每件商品降价x 元,该网店平均每月获得的利润为y 元,请写出y 与x 元之间的函数关系;()2该网店应该如何定价才能使得平均每月获得的利润最大,最大利润是多少元? 15.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量(个)与y 销售单价x(元)有如下关系:60(3060)y x x =-+≤≤,设这种双肩包每天的销售利润为w 元.(1)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?16.某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店,A B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72元/盒,售价120元/盒,B 种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元. (1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A 种湘莲礼盒售价每降3元可多卖1盒.若B 种湘莲礼盒的售价和销量不变,当A 种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?17.我校今年学生节期间准备销售一种成本为每瓶4元的饮料.据去年学生节试销情况分析,按每瓶5元销售,一天能售出500瓶;在此基础上,销售单价每涨0.1元,该日销售量就减少10瓶.针对这种饮料的销售情况,请解答以下问题:(1)设销售单价为每瓶x 元,当日销售量为y 元,求y 与x 的函数关系式(不写出x 的取值范围);(2)设该日销售利润为w 元,求w 与x 的函数关系式(不写出x 的取值范围); (3)该日销售利润为800元,求销售单价.18.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m =162﹣3x .(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.19.某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓,清仓时单价为40元.设第二个月单价降低x元,这批T恤总利润为y元.(1)求y与x之间的函数关系式;(2)若批发商希望通过销售这批T恤获利9000元,则第二月的单价应是多少元?20.2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x … 3 4 5 6 …售价y1/元…12 14 16 18 …(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?21.某玩具商店以每件60元为成本购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?22.某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件.(1)该店销售该商品原来一天可获利润元.(2)设后来该商品每件售价降价x 元,此店一天可获利润y 元.①若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?②求y 与x 之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值.23.某种进价为每件40元的商品,通过调查发现,当销售单价在40元至65元之间(4065x ≤≤)时,每月的销售量y (件)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y 与x 的函数关系式;(2)设每月获得的利润为P (元),求P 与x 之间的函数关系式;(3)若想每月获得1600元的利润,那么销售单价应定为多少元?(4)当销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?24.某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.小丽;如果以每千克10元的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以每千克13元的价格销售,那么每天可获取利润750元.(1)已知该水果每天的销售量y (千克)与销售单价x (元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y (千克)与销售单价x (元)之间存在怎样的函数关系,并求出这个函数关系式;(2)设该超市销售这种水果每天获取的利润为W (元),求W (元)与x (元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元? (3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?25.某水果超市经销一种进价为18元/kg 的水果,根据以前的销售经验,该种水果的最佳销售期为20天,销售人员整理出这种水果的销售单价y (元/kg )与第x 天(1≤x≤20)的函数图象如图所示,而第x 天(1≤x≤20)的销售量m (kg )是x 的一次函数,满足下表:x (天)1 2 3 … m (kg )20 24 28 …(1)请分别写出销售单价y (元/kg )与x (天)之间及销售量m (kg )是x (天)的之间的函数关系式(2)求在销售的第几天时,当天的利润最大,最大利润是多少?(3)请求出试销的20天中当天的销售利润不低于1680元的天数.26.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y (件)与销售单价x (元)的关系符合一次函数140y x =-+.()1直接写出销售单价x 的取值范围,()2若销售该服装获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价为多少元时,可获得最大利润,最大利润是多少元?27.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来积累利润S (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润S (万元)与时间t (月)之间的函数关系式;(2)求第8个月公司所获利润是多少万元?28.暑假期间,某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本)(1)若该纪念品的销售单价为45元时,则当天销售量为件.(2)当该纪念品的销售单价为多少元时,该纪念品的当天销售利润是2610元.(3)当该纪念品的销售单价定为多少元时,该纪念品的当天销售利润达到最大值?求此最大利润.29.某商家销售一种商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=30时,y=500;当x=35时,y=450.物价部门规定,该商品的销售单价不能超过48元/件,若该商品的定价为30元,实际按定价的8折出售,仍然可以获得20%的利润.(1)求该商品的成本价和每天获得的最大利润;(2)该公司每天需要人工、水电和房租支出共计b元,若考虑这一因素后公司对最大利润要控制在8000元至8500元之间(包含8000和8500),求出b的取值范围;(3)若该商品的进价改为a元,每天的销量与当天的销售单价的关系不变,当30≤x≤48时,该商品利润随x的增大而增大,求a的取值范围.30.某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?参考答案1.(1) 5元(2) y=12x+5(0≤x≤30);(3)0.5元/千克;(4)他一共带了70千克土豆. 【解析】试题分析:(1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.试题解析:(1)根据图示可得:农民自带的零钱是5元.(2)(20-5)÷30=0.5(元/千克) 答:降价前他出售的土豆每千克是0.5元.(3)(26-20)÷0.4+30=15+30=45(千克) 答:他一共带了45千克土豆.考点:一次函数的应用.2.(1)5500y x =-+;(2)当销售单价为70元时,最大利润4500元;(3)销售单价定为60元.【解析】【分析】(1)根据降价1元,销量增加5条,则降价()80x -元,销量增加()580-x 件,即可得出关系式;(2)根据总利润=每条利润×销量,可建立函数关系式,再根据二次函数最值的求法得到最大利润;(3)先求出利润为(3800+200)元时的售价,取符合题意的价格即可.【详解】解:(1)由题意可得:()100580y x =+-整理得5500y x =-+(2)()()405500w x x =--+ 2570020000x x =-+-()25704500x =--+ 50a =-<∴ 当70x =时,w 4500=最大值即当销售单价为70元时,最大利润4500元.(3)由题意,得:()257045003800200x --+=+解得:160x =,280x =抛物线开口向下,对称轴为直线70x = ∴当6080x ≤≤时,符合该网店要求而为了让顾客得到最大实惠,故60x =∴当销售单价定为60元时,即符合网店要求,又能让顾客得到最大实惠.【点睛】本题考查了二次函数的应用,熟练掌握销售问题的等量关系建立二次函数模型是解题的关键.3.(1)10700y x =-+;(2)(10)(10700)w x x =--+;(3)当40x =时,w 的值最大,最大值为9000元【解析】【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【详解】(1)设y 与x 的函数关系式为y=kx+b把(15,550)、(20,500)代入得5501550020k b k b =+⎧⎨=+⎩解得10700k b =-⎧⎨=⎩∴10700y x =-+(2)∵成本为10元,故每件利润为(x-10)∴销售利润(10)(10700)w x x =--+(3)(10)(10700)w x x =--+=210(40)9000x --+∵-10<0,∴当40x =时,w 的值最大,最大值为9000元.【点睛】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键. 4.(1) 40y x =-+;(2) 要使这种蜜枣每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【解析】【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y (袋)与销售价x (元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y =kx +b 得25152020k b k b ⎧⎨⎩=+=+,解得140k b -⎧⎨⎩== 故日销售量y (袋)与销售价x (元)的函数关系式为:y =−x +40(2)设利润为w 元,得(10)(40)w x x =--+250400x x =-+-2(25)225x =--+∵10-<∴当25x =时,w 取得最大值,最大值为225故要使这种蜜枣每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点睛】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.5.(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元【解析】【分析】(1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可.【详解】(1)()()()80802320w x y x x =-=--+,2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-;(2)()2224802560021203200w x x x =-+-=--+,2080160x -<≤≤,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元.(3)当2400w =时,()2212032002400x --+=.解得:12100140x x ,.== ∵想卖得快, 2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.6.(1)y 与x 之间的函数表达式是2160y x =-+;(2)当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800.【解析】【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润⨯销售量”可得函数解析式,将所得函数解析式配方成顶点式即可得最值情况.【详解】(1)设y 与x 之间的函数解析式为y kx b =+,则40805060k b k b +=⎧⎨+=⎩,解得:2160k b =-⎧⎨=⎩, 即y 与x 之间的函数表达式是2160y x =-+;(2)由题意可得:2(20)(2160)22003200w x x x x =--+=-+-,即22(50)1800w x =--+,2060x ,∴当2050x 时,w 随x 的增大而增大;当5060x 时,w 随x 的增大而减小;当50x =时,w 取得最大值,此时1800w =元.即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.7.(1)第10天时该商品的销售单价为25元/件;(2)网店第26天销售额为792元;(3)21155002y x x =-++;这30天中第15天获得的利润最大,最大利润是12252元. 【解析】【分析】(1)将m=25代入m=20+12x ,求得x 即可; (2)令120(50)7922x x ⎛⎫+-= ⎪⎝⎭,解得方程即可; (3)根据“总利润=单件利润×销售量”可得函数解析式,将所得函数解析式配方成顶点式后,根据二次函数的性质即可得.【详解】解:(1)当25m =时,120252x +=, 解得:10x =,所以第10天时该商品的销售单价为25元/件;(2)根据题意,列方程为: 120(50)7922x x ⎛⎫+-= ⎪⎝⎭,解得1226,16x x ==-(舍去)答:网店第26天销售额为792元.(3)(10)y n m =- 1(50)20102y x x ⎛⎫=-+- ⎪⎝⎭ 21155002y x x =-++; (4)21155002y x x =-++ 211225(15)22x =--+, ∴当15x =时,y 最大=12252, 答:这30天中第15天获得的利润最大,最大利润是12252元 【点睛】本题考查二次函数的应用等知识,解题的关键是学会构建函数,利用二次函数的性质解决问题,属于中考常考题型.8.(1)2220400y x x =-++;(2)10元:(3)不可能,理由见解析 【解析】【分析】()1根据总利润=每件利润⨯销售数量,可得y 与x 的函数关系式;()2根据()1中的函数关系列方程,解方程即可求解;()3根据()1中相等关系列方程,判断方程有无实数根即可得.【详解】解:()1根据题意得,y 与x 的函数关系式为()()22026040220400y x x x x =+--=-++; ()2当400y =时,2400220400x x =-++,解得110x =,20(x =不合题意舍去).答:当该专卖店每件童装降价10元时,平均每天盈利400元;()3该专卖店不可能平均每天盈利600元.当600y =时,2600220400x x =-++,整理得2101000x x -+=,2(10)411003000=--⨯⨯=-<,∴方程没有实数根,答:该专卖店不可能平均每天盈利600元.【点睛】本题主要考查二次函数的应用、一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.9.()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.10.(1)(30-x );10x ;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【解析】【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x 元,超市平均每天可多售出10x 件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w ,化为一般式后,再配方可得出结论.【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x 件;(2)设每件商品降价x 元时,利润为w 元根据题意得:w =(30-x )(100+10x )= -10x 2+200x +3000=-10(x -10)2+4000∵-10<0,∴w 有最大值,当x =10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【点睛】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w 关于x 的二次函数解析式是解题的关键.11.(1)y =﹣10x +400;(2)w =﹣10x 2+500x ﹣4000;(3)销售单价定为 25 元时,每天销售利润最大,最大销售利润 2250 元.【解析】。
初中数学二次函数的应用题型分类——商品销售利润问题(精选50题 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题(精选50题附答案)1.某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该产品的总开支(不含进价)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在如图所示的一次函数关系.(1)求y关于x的函数关系;(2)试写出该公司销售该种产品的年获利W(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支),当销售单价为何值时年获利最大?并求这个最大值.2.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(单位:元)与每件涨价x(单位:元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.3.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?你若是商场经理,为获得最大利润,每件衬衫应降价多少元,此时最大利润是多少?4.银隆百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.5.某商店销售一种商品,通过记录,发现该商品从开始销售至销售的第x天结束时(x 为整数)的总销量y(件)满足二次函数关系,销量情况记录如下表:(1)求y与x之间的函数关系式(不需要写自变量的取值范围);(2)求:销售到第几天结束时,该商品全部售完?(3)若第m天的销量为22件,求m的值.6.河西王府井销售一种T 恤衫,每件进价为40 元,经过市场调查,一周的销售量y 件与销售单价x 元/件满足某种函数关系:(1)请根据所学的知识,选择合适的函数模型,求出y 与x 的之间的函数关系式;(2)设一周的销售利润为w 元,请求出w 与x 的函数关系式,并确定当销售单价为多少时一周的销售利润最大,并求出最大利润;(3)商场决定将一周销售T 恤衫的利润全部捐给某村用于精准扶贫的水网改造项目,在商场购进该T 恤衫的资金不超过6000 元情况下,请求出该商场最大捐款数额是多少元?7.某产品成本为400元/件,由经验得知销售量y与售价x是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润W最大?最大利润是多少?8.某大型超市将进价为40 元的某种服装按50 元售出时,每天可以售出300 套,据市场调查发现,这种服装每提高1 元,销售量就减少5 套,如果超市将售价定为x 元,请你求出每天销售利润y 元与售价x 元的函数表达式.9.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之问存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助⑵中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?10.我市红领服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如表所示:时间t(天)0 5 10 15 20 25 30 日销售量y t0 25 40 45 40 25 0 (百件)(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的关系如图所示.求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y 与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.11.某旅游度假区内某个宾馆有120间标准房,当标准房价格为每间200元时,每天都客满,经市场调查,标准房价格与平均入住房数之间的关系如下:(1)若日平均入住房数y(间)与日平均每间房价x(元)之间成一次函数关系,求出y关于x的函数关系式:(2)如果不考虑其他因素,宾馆的标准房日平均每间房价为多少元时,客房的日营业收入最大,最大日营业额为多少元?12.某商品现在的售价为每件25元,每天可售出30件.市场调查发现,售价每上涨1元,每天就少卖出2件.已知该商品的进价为每件20元,设该商品每天的销售量为y 件,售价为每件x元(x为正整数)(1) 求y与x之间的函数关系式;(2) 该商品的售价定为每件多少元时,每天的销售利润P(元)最大,最大利润是多少元?(3) 如果物价部门规定该商品每件的售价不得高于32元,若要每天获得的利润不低168元,请直接写出该商品的售价x(元)的取值范围.13.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)14.某商场将进货价30元的书包以40元售出,平均每月能售出600个。
初中数学九年级下册商品利润最大问题

关系式为 y=2000-5(x-100) .每月利润w(元)与衬衣售价
x(元)之间的函数关系式为 w=[2000-5(x-100)](x-80) .(以
上关系式只列式不化简).
3. 某种商品的成本是120元,试销阶段每件商品的售价 x(元)与产品的销售量y(件)满足当x=130时,y=70, 当x=150时,y=50,且y是x的一次函数,为了获得最大 利润S(元),每件产品的销售价应定为( A ) A.160元 B.180元 C.140元 D.200元
②自变量x的取值范围如何确定? 营销规律是价格上涨,销量下降,因此只要考虑
销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的
取值范围是0 ≤x ≤30. ③涨价多少元时,利润最大,最大利润是多少?
y=-10x2+100x+6000,
100 5 当x 2 (10)
时,y=-10×52+100×5+6000=6250.
(2)销售单价在什么范围时,该种商品每天的销售
利润不低于16元? (2)由对称性知y=16时,x=7和13. 故销售单价在7 ≤x ≤13时,利润不低于16元.
课堂小结
建立函数 关 系 式
总利润=单件利润×销 售量或总利润=总售价总成本.
最大利 润问题
确定自变 量的取值 范 围
确定最大 利 润
涨价:要保证销售量≥0; 降件:要保证单;bx-75.其图象如图.
(1)销售单价为多少元时,该种商品每天的销售利润 最大?最大利润是多少元? 解:(1)由题中条件可求y=-x2+20x-75 ∵-1<0,对称轴x=10, ∴当x=10时,y值最大,最大值为25. 即销售单价定为10元时,销售利润最 大,为25元;
初中数学九年级上册解一元二次方程的实际应用——利润问题

某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配 合国家“家电下乡”政策的实施,商场决定采取合适的降价措施.调查表明:这 种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中 每天盈利4800元,同时又要使得百姓得到实惠,每台冰箱应降价多少元?
在利润问题中,常有销售量随销售价格的变化而变化的问题,在这些 问题中总存在着数量关系:“日利润=单件利润×日销售数量”,这类问 题通常可以列一元二次方程求解.
具体办法为:①分析题意,弄清题目中的数量关系,②设合适的未知
量为未知数,用含未知数的代数式分别表示出“单件利润”、“销售数量 ”等,③根据上述数量关系和题意列出方程,④解上述方程,⑤检验方程
解一元二次方程的实际应用-----利润问题
薄利多销是指低价低利扩大销售的策略.“薄利多销”中的“薄利”就是
降价,降价就能“多销”,“多销”就能增加总收益.
“日利润=单件利润×日销售数量”,由于降价或提价,造成销售量
随之变化,根据该数量关系通常可以列一元二次方程解决有关利润的问题.
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元?
设降价x元 单利润
原来 40
日利润总利润
800
现在
40-x
20+2x
1200
则(40-x)(20+2x)=1200
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元? 解:设降价x元, 则(40-x)(20+2x)=1200
初中数学二元一次方程组利润问题课件

问题探究
已知甲、乙两种商品的原价和为200元,因市场变化,甲商品降价10%,
乙商品提高10%,调价后甲、乙两种商乙两种商品的原单价分别是(A )
A. 50元,150元 B. 150元,50元 C. 80元,120元 D. 120元,80元
设甲、乙两种商品的原单价分别是x元与y元,
x y 200 (110%)x (110%) y 200 (1 5%)
x 50
y
150
所以甲、乙两种商品的原单价分别是50元与150元.
再见
设甲、乙两种商品的进价分别是x,y元 甲商品销售价为:(1-5%)x 乙商品销售价为:(1+5%)y (1-5%)x +(1+5%)y=300
x-y=20
问题探究
已知甲、乙两种商品的原价和为200元,因市场变化,甲商品降价10%, 乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%, 求甲、乙两种商品的原单价分别是( ) A. 50元,150元 B. 150元,50元 C. 80元,120元 D. 120元,80元
二元一次方程组 盈亏问题
问题思考
盈亏问题基本关系式 商品原价×(1±百分数)=现价 商品售价-进价=盈利 商品进价×利润率=利润
方法梳理
盈亏问题解答步骤
1.用代数式表示商品现价或者售价. 2.寻找等量关系. 3.列方程组.
问题探究
已知甲、乙两种商品的一共卖了300元,在销售过程中,甲商品亏5%, 乙商品赚了5%,已知甲商品比乙商品进价贵20元,求甲、乙两种商品 的进价分别是多少?可列方程组为 _(x_1__y5_%_)2_x0__(1_. 5%) y 300
初中数学利润计算问答题整合

年级利润问题专题训练1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。
(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x 元:(1)设平均每天销售量为y 件,请写出y 与x 的函数关系式.(2)设平均每天获利为Q 元,请写出Q 与x 的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +ab 2)2+a b ac 442 的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y 与x 的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x 表示床价,Y 表示该宾馆一天出租床位的纯收入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、利润问题
(1)利润=售价-进价
(2)利润率=进价利润=进价
进价售价- (3)打折销售中的售价=标价×10
折数 (4)售价=成本+利润+成本×(1+利润率)
(5)利润=利润率×成本
(6)利息=本金×利率
1.商店将进价为600元的商品按标价的8折销售,仍可获利120元,则商品的标价是多少元?
解析:售价=标价⨯打折
利润=售价-进价
设商品的标价是x 元
0.8x -600=120
x =900
答:商品的标价为900元
2.某商品的进价是2000元,标价为3000元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品? 解析:售价=标价⨯打折
利润=售价-进价
设可以打x 折出售
3000 ⨯10x -2000=2000 ⨯5% x =7
答:售货员最低可以打7折出售。