乙醇精馏塔设计(1)资料

合集下载

乙醇精馏塔设计说明书

乙醇精馏塔设计说明书

乙醇精馏塔设计说明书乙醇精馏塔设计说明书一、背景介绍乙醇精馏是一种将含有乙醇和水的混合物分离出乙醇的工艺。

乙醇精馏是化工工业中广泛应用的分离技术之一,主要用于生产无水乙醇、饮料中酒精的浓度控制等。

乙醇精馏技术的核心设备就是乙醇精馏塔,其分离效果和操作稳定性直接影响到整个工艺过程的效率和安全性。

二、设计要求乙醇精馏工艺中的乙醇和水混合物会在乙醇精馏塔中进行分离,要求精度高、效率高、操作稳定。

因此,本次乙醇精馏塔的设计需要满足以下要求:1. 具有较高的分离效率和分离精度;2. 塔体和内部构件材质应选用耐腐蚀、耐高温的合金材料;3. 塔体结构应具有良好的耐压、耐腐蚀性能,对气液混合物的传质和干湿综合性能要求高;4. 具有比较广泛的操作靶点,以适应不同规模的生产需求;5. 具备高度的操作安全性和稳定性。

三、设计方案为满足以上设计要求,本文提出一种高效、稳定的乙醇精馏塔设计方案,具体如下:1. 采用反流式精馏工艺,即底部引入加热蒸气,使气液混合物在塔内进行分馏,分离后的乙醇从顶部出流管流出,水则从底部洛氏冷凝器中排出。

2. 塔体结构采用不锈钢材料,采用内塞式塔板进行分离。

内塞式塔板具有压降小、分离效率高、适应性强等优点,能够保证塔内物料充分分离。

3. 为提高分离效率和干湿综合性能,本方案在塔体上设置进液口和出液口、进气口和出气口等。

进液口通过操作调节,能够使物料的进入量和化学组成进行调节。

出液口则负责排出经过分馏后的乙醇。

进气口可以保证塔内气相的通畅,而出气口则能够将废气和杂质的气体排出。

4. 本方案采用内加热式蒸汽进行底部加热,可通过蒸汽的进入量来调整加热的温度和量,对塔内气相的传质起到重要作用。

相比外加热的方式,内加热可以供热均匀,减少冷凝器堵塞和热分解等问题的发生。

5. 本方案采用湿式冷凝器进行水的收集和回收,具有结构简单、运行可靠、操作维护方便等优点。

四、结论乙醇精馏工艺要求精度高、效率高、操作稳定,而乙醇精馏塔是其核心设备。

乙醇精馏塔设计手册

乙醇精馏塔设计手册

乙醇精馏塔设计手册乙醇精馏塔设计手册1. 引言乙醇精馏塔是工业生产中常见的设备,用于乙醇的提纯和分离。

本文将探讨乙醇精馏塔的设计原理和操作指南,并提供一些有关乙醇精馏的实用建议。

2. 基本原理乙醇精馏是利用乙醇和水之间的沸点差异进行分离的过程。

在乙醇精馏塔中,乙醇和水混合物首先进入塔顶,经过加热,液体汽化为气体,然后向下运行到塔底。

在这个过程中,乙醇和水以及其他杂质逐渐分离,纯度更高的乙醇会向塔顶方向移动,而水和杂质则会向塔底方向移动。

3. 设计要点乙醇精馏塔的设计需要考虑以下几个要点:3.1 塔板设计塔板是乙醇精馏塔中实现液体和气体传质的关键结构。

塔板的数量和间距将直接影响乙醇的分馏效果。

一般情况下,塔板数目越多,分离效果越好。

然而,添加过多的塔板会增加系统的压降,从而影响塔的性能。

在设计中需要进行合理的平衡。

3.2 温度控制乙醇精馏塔中的温度控制对于分馏效果非常关键。

过高的温度会导致醇汽过量,降低乙醇纯度;过低的温度则会造成不完全汽化,减少塔的分离效果。

需要通过控制塔底和塔顶的温度来达到最佳的分馏效果。

3.3 精馏剂的选择精馏剂在乙醇精馏中发挥重要的作用,它不仅可以提高系统的分馏效率,还可以降低系统的能耗。

常用的精馏剂包括乙醇、水和乙二醇等。

选择适当的精馏剂需要考虑乙醇和精馏剂之间的相容性以及经济性。

4. 操作指南在操作乙醇精馏塔时,需要注意以下几个方面:4.1 塔顶和塔底压力控制塔顶和塔底的压力控制是确保乙醇精馏正常运行的关键。

过高的塔顶压力会导致乙醇冷凝回流,降低乙醇的纯度;而过低的塔顶压力则会影响分馏效果。

塔底压力的控制对于去除水和杂质也是至关重要的。

4.2 进料流量控制进料流量的控制也会直接影响乙醇精馏的效果。

过大的进料流量可能导致过度充填塔板,而过小的进料流量可能会导致塔板间的不连续汽液流动。

需要根据实际情况选择合适的进料流量。

4.3 塔板温度和液位监控塔板温度和液位的监控对于乙醇精馏的稳定运行非常重要。

化工原理水-乙醇连续精馏塔设计

化工原理水-乙醇连续精馏塔设计

【设计计算】(一)设计方案的确定本设计任务为分离乙醇和水的混合物。

对于二元混合物的分离,应采用常压下的连续精馏装置。

本设计采用泡点进料,将原料液经过预热器加热至泡点后送入精馏塔内,塔顶上升蒸汽采用全凝气冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器后送入储罐。

该物系属不易分离物系,最小回流比较小,故操作回流比取最小回流比的1.6倍,塔釜采用直接加热蒸汽加热,塔底产品经冷却后送至储罐。

(二)工艺计算1、物料衡算:原料液及塔顶、塔底产品的摩尔分数如下。

M A =46kg/kmol (乙醇) M B =18kg/kmol (水)x F =18/60.046/40.046/40.0+=0.21x D =18/08.046/92.046/92.0+=0.82又M F =M A ×x F +(1-x F )×M B=46×0.21+(1-0.21)×18=23.88 M D =0.82×46+(1-0.82)×18=40.96 ∴ q n.D =18)82.01(4682.0)24330/(1078.1⨯-+⨯⨯⨯=55.48kmol/hη=F D x q x q F n D n ⨯⨯..=21.0.82.048.55⨯⨯F qn =0.99∴ q n.F =218.82kmol/hq n.D /q n.F =(x F -x W )/(x D -x W )即 55.48/218.82=wwx x --82.021.0∴ x w =0.00295q n.F ×x F =q n.D +q n.w ×x w218.82×0.21=55.48×0.82+q n.w ×0.00295 ∴ q n.w =155.46kmol2、R min 的确定0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.000.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.00yx24610246810图1乙醇—水体系为非理想体系,其平衡曲线有下凹部分,当操作线与q 线的交点尚未落在平衡线上之前,操作线已与平衡线相切,如图1。

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。

设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。

酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。

物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。

本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。

此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。

塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。

筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属不易分离物系,最小回流比较小,采用其1.5倍。

设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。

塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。

(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。

乙醇_水精馏塔设计说明

乙醇_水精馏塔设计说明

乙醇_水精馏塔设计说明
1.设备选型
2.工艺流程
(1)加热阶段:将乙醇_水混合物加热到沸点,使其部分汽化,进入下一个阶段。

(2)蒸馏阶段:乙醇和水在塔内进行汽液两相的分离,高纯度的乙醇向上升腾,低纯度的水向下流动。

(3)冷凝阶段:将高纯度的乙醇气体冷凝成液体,便于收集和储存。

(4)分离阶段:将冷凝后的液体进一步分离,得到纯度较高的乙醇和水。

3.操作参数
(1)温度控制:加热阶段需要将混合物加热到适当的沸点,通常控制在80-100摄氏度。

而在蒸馏阶段,控制塔顶和塔底的温度差异,有助于提高分离效果。

(2)压力控制:塔的进料和出料口通常需要控制一定的压力,以保证流量的稳定。

(3)流量控制:塔内液体的流速对塔的操作效果有较大影响,需保持适当的流速,通常通过调节塔顶和塔底的流量或液位来实现。

4.塔的结构及内件设计
乙醇_水精馏塔的结构包括塔壳、进料装置、分离器、冷凝器、再沸器、集液器等。

其中,塔内需要配置一些内件,如填料和板式塔板等,以
提高传质和传热效果。

填料可采用金属或塑料材料,板式塔板可选用槽式、波纹式等不同形式。

通过合理配置和设计这些内件,提高乙醇_水分离效果。

综上,乙醇_水精馏塔的设计需要综合考虑设备选型、工艺流程、操
作参数以及塔的内部结构等因素。

通过合理的设计和选择,可以实现高效
分离乙醇和水的目的。

分离乙醇水精馏塔设计(含经典工艺流程图和塔设备图)

分离乙醇水精馏塔设计(含经典工艺流程图和塔设备图)

分离乙醇-水的精馏塔设计设计人员:所在班级:化学工程与工艺成绩:指导老师:日期:化工原理课程设计任务书一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件(1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;(2)产品的乙醇含量不得低于90%;(3)塔顶易挥发组分回收率为99%;(4)生产能力为50000吨/年90%的乙醇产品;(5)每年按330天计,每天24小时连续运行。

(6)操作条件a)塔顶压强 4kPa (表压)b)进料热状态自选c)回流比自选d)加热蒸汽压力低压蒸汽(或自选)e)单板压降 kPa。

三、设备形式:筛板塔或浮阀塔四、设计内容:1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)塔板主要工艺尺寸的计算;6)塔板的流体力学验算;7)塔板负荷性能图;8)精馏塔接管尺寸计算;9)对设计过程的评述和有关问题的讨论;2、设计图纸要求;1)绘制生产工艺流程图(A2 号图纸);2)绘制精馏塔设计条件图(A2 号图纸);五、设计基础数据:1.常压下乙醇---水体系的t-x-y 数据;2.乙醇的密度、粘度、表面张力等物性参数。

一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;产品的乙醇含量不得低于90%;塔顶易挥发组分回收率为99%,生产能力为50000吨/年90%的乙醇产品;每年按330天计,每天24小时连续运行。

塔顶压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽压力低压蒸汽(或自选)单板压降≤0.7kPa。

三、设备形式:筛板塔四、设计内容:1)精馏塔的物料衡算:原料乙醇的组成 xF==0.1740原料乙醇组成 xD0.7788塔顶易挥发组分回收率90%平均摩尔质量 MF =由于生产能力50000吨/年,.则 qn,F所以,qn,D2)塔板数的确定:甲醇—水属非理想体系,但可采用逐板计算求理论板数,本设计中理论塔板数的计算采用图解法。

乙醇-水筛板精馏塔设计

乙醇-水筛板精馏塔设计

化工原理课程设计设计题目乙醇-水筛板精馏塔设计学生姓名学号班级指导教师设计时间完成时间 2化工原理课程设计任务书(一)设计题目:乙醇-水筛板精馏塔设计(二)设计任务完成精馏塔工艺优化设计、精馏塔结构优化设计以及有关附属设备的设计和选用,绘制带控制点的工艺流程图、精馏塔工艺条件图,并编制工艺设计说明书。

年产量: 10000t ;原料液浓度: 40% (乙醇质量分数);产品浓度: 93% (乙醇质量分数);乙醇回收率: 99% 。

(三)操作条件1.塔顶压强4 kPa(表压);2.进料热状况,泡点进料;;3.塔顶全凝器,泡点回流,回流比R=(1.1~2.0)Rmin4.塔釜加热蒸汽压力245 KPa(表压);5.单板压降不大于0.7 kPa;6.塔板类型筛板塔;7.工作日每年330天,每天24h连续运行;8.厂址:徐州地区。

(四)设计内容1.精馏塔的物料衡算;2.塔板数的确定;3.精馏塔的工艺条件及有关物性数据的计算;4.精馏塔的塔体工艺尺寸计算;5.塔板主要工艺尺寸的计算;6.塔板的流体力学验算;7.塔板负荷性能图;8.精馏塔接管尺寸计算,附属设备的确定;9.绘制带控制点工艺流程图(A2)、精馏塔工艺条件图(A2);10.符号说明;11.对设计过程的评述和有关问题的讨论;12.参考文献。

摘要精馏塔是进行精馏的一种塔式气液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可以分为连续精馏塔与间歇精馏塔。

化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中占有重要的地位。

为此,掌握气液平衡关系,熟悉各种塔形的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。

在本设计中我使用了筛板塔,筛板塔的突出优点是结构简单、造价低。

当有合理的设计和适当的操作,筛板塔能满足分离要求的操作弹性,而且效率高。

精馏是最常用的分离液液混合物方式之一,是组成化工生产过程的主要单元操作,也是典型的化工操作设备之一。

乙醇精馏塔设计(1)

乙醇精馏塔设计(1)

化工原理课程设计设计题目:乙醇精馏塔前言精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。

由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。

精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。

化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。

为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。

要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。

精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。

化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。

为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。

可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。

本次设计的筛板塔是化工生产中主要的气液传质设备。

此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。

本设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计设计题目:乙醇精馏塔前言精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。

由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。

精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。

化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。

为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。

要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。

精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。

化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。

为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。

可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。

本次设计的筛板塔是化工生产中主要的气液传质设备。

此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。

本设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。

通过对精馏塔的运算,调试出塔的工艺流程、生产操作条件及物性参数,以保证精馏过程的顺利进行并使效率尽可能的提高。

目录一、绪论 (3)1.1课程设计的目的 (3)1.2设计依据 (3)1.3设计内容及任务 (3)1.3.1设计题目 (3)1.3.2设计任务及条件: (3)1.4设计内容: (4)1.5设计成果 (4)二、塔的工艺计算 (4)2.1工艺过程 (4)2.1.1物料衡算 (4)2.1.2理论及实际塔板数的确定 (5)2.1.3 塔的结构的设计 (7)2.1.4 精馏塔塔径的计算 (7)2.2塔板主要工艺尺寸的计算 (13)2.2.1溢流装置计算 (13)2.2.2降液管 (14)2.2.3 塔板布置 (15)三、流体力学验算 (16)3.1 气体通过浮阀塔板的压力降(单板压降) (16)3.2液泛验算 (17)3.3. 雾沫夹带验算 (17)3.4 液体在降液管中的停留时间 (18)3.5 操作性能负荷图 (18)3.5.1 气相负荷下限图(漏液线) (18)3.5.2 过量液沫夹带线 (18)3.5.3 液相负荷下限线 (19)3.5.4 液相负荷上限线 (19)3.5.5 液泛线 (19)四、设备的计算及选型 (21)4.1冷凝器负荷 (21)4.2 再沸器热负荷 (22)五、浮阀塔工艺设计结果 (22)六、精馏塔设备设计 (24)6.1精馏塔塔体材料、内径、壁厚和强度校核 (24)6.1.1精馏塔塔体材料的选择 (24)6.1.2精馏塔的内径 (24)6.1.3壁厚的计算 (24)6.1.4强度校核 (25)6.2封头的选型依据,材料及尺寸规格 (25)6.2.1封头的选型依据 (25)6.2.2封头材料的选择 (25)6.2.3 尺寸规格 (26)6.2.4封头的高 (26)6.2.5封头的壁厚 (26)6.3精馏塔的塔板类型选择 (26)6.4塔板结构及与塔体的连接形式 (27)6.5降液管的形式 (27)6.6受液盘的设计 (27)6.7塔节的设计 (27)6.8塔体各部分高度设计 (28)6.9塔体各开孔补强设计 (28)6.9.1 开孔补强设计方法 (28)6.9.2开孔补强结构设计 (29)6.10塔体各接管设计(选型、尺寸、连接形式、是否补强) (29)6.11塔体手孔及人孔的设计 (31)6.12.除沫器的设计 (31)6.13.支座设计 (31)一、绪论1.1课程设计的目的课程设计是“化工原理”课程的一个总结性教学环节,是培养学生综合运用本门课程及有关先修课程的基础知识去解决某以设计任务的一次训练,在整个教学计划中起着培养学生独立工作能力的重要作用,通过课程设计就以下几方面要求学生加强训练。

(1)查阅资料选用公式和收集数据的能力。

(2)树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作上的劳动条件和环境保护的正确设计思路,在这种设计思路的指导下去分析和解决实际问题的能力。

(3)迅速准确的进行工程计算和计算机绘图的能力。

1.2设计依据课程设计方案选定所涉及的主要内容有:操作压力、进料状况、加热方式及其热能的利用。

(1)操作压力精馏常在常压,加压或减压下进行,确定操作压力主要是根据处理物料的性质,技术上的可行性和经济上的合理性来考虑的。

一般来说,常压精馏最为简单经济,若无聊无特殊要求,应尽量在常压下操作。

加压操作可提高平衡温度,有利于塔顶蒸汽冷凝热的利用,或可以使用较便宜的冷却剂,减少冷凝,冷却费用。

在相同的塔径下,适当提操作压力还可以提高塔德处理能力。

所以我们采用塔顶压力为1.03atm进行操作。

(2)进料状况进料状态有多种,但一般都是将料液预热到泡点或接近泡点才送入塔中,这样,进料温度不受季节,气温变化和前道工序波动的影响,塔的操作也比较好控制。

此外,泡点进料时,精馏段和提馏的塔径相同,设计制造比较方便。

(3)加热方式精馏塔通常设置再沸器,采用间接蒸汽加热,以提供足够的能量,若待分离的物系为某种轻组分和水的混合物,往往可采用直接蒸汽加热方式,但在塔顶轻组分回收率一定时,由于蒸汽冷凝水的稀释作用,使残液轻组分浓度降低,所需塔板数略有增加。

(4)热能的利用精馏过程的原理是多次进行部分汽化和冷凝,因此热效率很低,通常进入再沸器的能量仅有5%左右被利用。

塔顶蒸汽冷凝放出的热量是大量的。

但其位能较低,不可能直接用来做塔釜的热源,但可用作低温热源,供别处使用。

或可采用热泵技术,提高温度后在用于加热釜液。

1.3设计内容及任务1.3.1设计题目乙醇精馏塔1.3.2设计任务及条件:(1)、进料含乙醇38.2﹪,其余为水(均为质量分数,下同)(2)、生产乙醇含量不低于93.1﹪;(3)、釜残液中乙醇含量不高于0.01﹪;(4)、生产能力50000T/Y乙醇产品,年开工7200小时(5)、操作条件:a、间接蒸汽加热;b、塔顶压力:1.03atm(绝对压强)c、进料热状态:泡点进料;d、回流比:R=5 e、单板压降:75mm液注1.4设计内容:(1)、流程的设计与说明;(2)、塔板和塔径的计算;(3)、塔盘结构的设计:a、浮阀塔盘工艺尺寸及布置简图;b、流体力学验算;c、塔板负荷性能图。

(4)、其它:a、加热蒸汽消耗量;b、冷凝器的传热面积及冷却水的消耗量1.5设计成果(1)、设计说明书一份(2)、A4设计图纸包括:流程图、精馏塔工艺条件图。

二、塔的工艺计算2.1工艺过程2.1.1物料衡算W F=38.2﹪W D=93.1﹪W W=0.01﹪M乙醇=46g/mol M水=18g/molX F =18/618.046/382.046/382.0+=0.1948X D =18/069.046/931.046/931.0+=0.8408X W =18/9999.046/0001.046/0001.0+=0.0000396Q n,D =467200931.01050003⨯⨯⨯+187200069.01050003⨯⨯⨯=16.717kmol/h ①Q n,F =Q n,D +Q n,W ②Q n,F X F =Q n,D X D +Q n,W X W ③ 由①②③式可知 Q n,F =72.1804 kmol/h Q n,W =55.4634 kmol/h2.1.2理论及实际塔板数的确定a) 由相平衡方程式y=x a ax )1(1-+,可得a=)1()1(--y x x y根据乙醇-水体系的相平衡数据可以查得:Y 1=X D =0.8408 X 1=0.830 a D =1.0817 Y F =0.525 X F =0.1948 a F =4.569 Y W =0.00035 X W =0.0000396 a w =8.8411平均相对挥发度的求取:522.38411.80817.1569.433=⨯⨯==W F D a a a a 精馏段的平均相对挥发度的求取:312.2569.40817.11=⨯==F D a a a泡点进料:4353.11)1(11min =⎥⎦⎤⎢⎣⎡----=F D F D x x a x x a R 95.10373.81)1)(1(ln ln 12199.0002743.0591422.0545827.05941.0651min minmin min ==-⎥⎦⎤⎢⎣⎡--=+-==+-==-=+-=N x x x x a N N N N Y X X Y R R R R X W W D D 所以理论塔板数为N=11块确定适宜的进料板位置:YN N N x x x x a N F F D D =+-=-⎥⎦⎤⎢⎣⎡--=268.21)1)(1(ln ln 111min,111min,由上式知 N 1=3.84即第4层理论数为进料板b) 根据乙醇-水体系的相平衡衡数据可以查得:塔顶:8408.0=D x t D =78.27℃ 塔底:0000396.0=W x 9.99=w t ℃ 塔顶和塔釜的算术平均温度:085.8929.9927.782=+=+=W D t t t ℃ 由《化工原理》(第三版,化学化工出版社,王志魁)书中附表12查得: 在89.085℃下,smp s mp a a .30.0.40.0==水乙醇μμ根据公式iiLm x μμlg lg ∑=得[]s mp a Lm .317.0103.0lg )19480.01(4.0lg 1948.0==⨯-+⨯μ由奥康奈尔关联式:477.0)317.0522.3(49.0245.0=⨯=-T E球的实际塔板数96.20477.01111=-=-=T T E N N 取N=21 2.1.3 塔的结构的设计 2.1.4 精馏塔塔径的计算A. 查的有关乙醇与水的安托因方程:乙醇:⎥⎦⎤⎢⎣⎡+-=+-=+-=48.23105.162533827.701048.23146.165233827.7)/lg(t A a S p t C t B A kp P 得:水:Px p x p p p t C t B A kp p B B A A B A t Ba s p=+=+-=+-=⎥⎦⎤⎢⎣⎡+-000003.22746.165707406.70,1003.22746.165707406.7)/lg(代入将得:进行试差,求的塔顶、进料板、及塔釜的压力和温度:(1) 塔顶:a kP atm P 339.10403.11== ,63.8183.011===t x x A 试差得:℃ (2) 进料板位置:N F =4精馏段实际板层数:7289.6477.03≈==精N 每层塔板压降:a a kP kP O mmH 7355.0075.033.103.101752=⨯==∆P 进料板压力:a F kP P 4875.1097355.07339.104=⨯+=进料板:14.961948.04875.109====F F A a F t x x kP P 试差得,℃(3) 提馏段实际板层数:135786.12477.01-7≈==)(提N塔釜压力:a W kP P 049.119137355.04875.109=⨯+=塔釜:55.104049.1190000396.0====W a W W A t kP P x x 试差得,℃求得精馏段和提馏段的平均压力和温度:精馏段:am m kP P Ct 913.10624875.109339.104885.88214.9663.810=+==+=提馏段:345.100255.10414.96=+=m t ℃a m kP P 268.1142049.1194875.109=+=B.平均摩尔质量的计算: 塔顶:24.4118)83.01(4683.05424.4118)8408.01(468408.0=⨯-+⨯==⨯-+⨯=LDm VDm M M进料板:4544.2318)1948.01(461948.07.3218)525.01(46525.0=⨯-+⨯==⨯-+⨯=LFm VFm M M塔釜:0011.1818)0000396.01(460000396.00098.1818)00035.01(4600035.0=⨯-+⨯==⨯-+⨯=LWm VWm M M精馏段平均摩尔质量:kmolkg M M M kmolkg M M M LFm LDm LmVFm VDm Vm /3472.3224544.2324.412/1212.3727.325424.412=+=+==+=+=提馏段的平均摩尔质量:kmolkg M M M kmolkg M M M LWm LFm LmVWm VFm Vm /7278.2020011.184544.232/3549.2520098.187.322=+=+==+=+=表2 平均摩尔质量C.平均密度的计算:1)气相平均密度的计算:RTMVm P =ρ 精馏段气相平均密度计算:3/32.1)885.8815.273(314.81212.37913.106m kg RT M Vm m Vm =+⨯⨯=⨯P =ρ提馏段平均密度计算:3/933.0)345.10015.273(314.83549.25268.114m kg Vm =+⨯⨯=ρ2)液相平均密度计算:∑=iiLw ρρ1塔顶:3LD /21.75274.970069.087.739931.011931.018)8408.01(468408.0468408.0)1(/74.970,/87.739m kg w w M x M x M x w kmolkg kmol kg BBAAm B A A A A A A B A =+=+==⨯-+⨯⨯=-+===ρρρρρ得:进料板:333/52.85206.96162.087.71938.01382.018)1948.01(461948.0461948.0/06.961,/87.719m kg w m kg m kg LFm A B A =+==⨯-+⨯⨯===ρρρ得:塔釜:3LW 33/0.955033.9559999.087.7140001.010001.0180000396.01(460000396.0460000396.0/033.955,/87.714m kg w m kg m kg m A B A =+==⨯-+⨯⨯===ρρρ得:)精馏段液相平均密度:3/365.802252.85221.752m kg Lm =+=ρ提馏段液相平均密度:3/76.903295552.852m kg Lm =+=ρ液体平均表面张力按下式计算:Lm i ix σσ=∑塔顶:181.63t =0C ,由《化工原理》(第三版,化学工业出版社,王志魁)附录二十17.3/,62.285/A B mN m mN m σσ==11(1)0.8317.3(10.83)62.28524.95/LDm A B x x mN mσσσ=+-=⨯+-⨯=进料板:096.14F t C = 16/,59.578/A B mN m mN m σσ==(1)0.194816(10.1948)59.57851.1/LFm F A F B x x mN m σσσ=+-=⨯+-⨯=塔釜:104.55w t =℃,查附录:16/,59.578/A B mN m mN m σσ== 得:0.000039615(10.0000396)57.9757.97/LWm mN m σ=⨯+-⨯= 精馏段液体表面平均张力:24.9551.138.025/22LDm LFmLm mN m σσσ++===提馏段液体表面平均张力:51.157.9754.535/LWmLFm LmmN m σσσ++===E.液体平均黏度的计算液体平均黏度的计算按下式计算:lg lg Lm iix μμ=∑塔顶:181.63t =℃,查由《化工原理》(第三版,化学工业出版社,王志魁)附录十二0.41.A a mp s μ=,0.35.B a mp s μ=得:[]lg 0.83lg0.49(10.83)lg0.351810100.463.i ix LDm a mp s μμ+-∑===进料板:104.55FM t =℃,查附录:0.31.A a mp s μ=,0.25.B a mp s μ= 得:[]lg 0.1948lg0.31(10.1948)lg0.2510100.261.i ix LFm a mp s μμ+-∑===精馏段液体平均黏度:0.4630.2610.362.2Lm a mp s μ+==提馏段液体平均黏度:'0.230.2610.246.2Lm a mp s μ+==表5 液体平均黏度计算F.汽液相体积流率计算:精馏段气相体积流率:(1)616.717100.302/V R D kmol h =+=⨯=3100.30237.12120.784/36003600 1.32vm s vm VM V m s ρ⨯===⨯液相体积流率:4516.71783.585/83.58532.34729.361036003600802.365Lm S Lm L RD kmol hLM L ρ-==⨯=⨯===⨯⨯ 提馏段气相体积流率:'''''3'155.765455.4634100.302100.30225.35490.757/360036000.933vm svm V L W V M V m s ρ=-=-=⨯===⨯ 液相体积流率:''''43'83.585172.1804155.7654/155.765420.72789.9210/36003600903.76LmsLm L L qF kmol hLM L m s ρ-=+=+⨯=⨯===⨯⨯ 表6 汽液相体积流率计算G.塔径的计算塔径的确定,需求max u =,C 由下式计算:0.2120()20C C σ=,20C 由smith 图查取。

相关文档
最新文档