高三 直线与圆专题

合集下载

高三复习课——直线与圆的位置关系

高三复习课——直线与圆的位置关系

2.设双曲线x42-y22=1 的左、右焦点分别为 F1,F2,过 F1 的直 线 l 交双曲线左支于 A,B 两点,则|BF2|+|AF2|的最小值为 ________.
解析:由双曲线的标准方程为x42-y22=1,得 a=2,由双曲线 的定义可得|AF2|-|AF1|=4,|BF2|-|BF1|=4,所以|AF2|-|AF1| +|BF2|-|BF1|=8.因为|AF1|+|BF1|=|AB|,当|AB|是双曲线 的通径时,|AB|最小,所以(|AF2|+|BF2|)min=|AB|min+8=2ab2+ 8=10. 答案:10
系是( A ) A.相交
B.相切
C.相离
D.不确定
(3)若直线 x+my=2+m 与圆 x2+y2-2x-2y+1=0 相交,则
实数 m 的取值范围为( D )
A.(-∞,+∞)
B.(-∞,0)
C.(0,+∞)
D.(-∞,0)∪(0,+∞)
判断直线与圆的位置关系常见的方法 (1)几何法:利用 d 与 r 的关系. (2)代数法:联立方程后利用 Δ 判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判 断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动 直线问题.
相切
Δ_=_0 d=__r
相交
Δ_>_0 d<__r
只需要判断位置关系:几何法; 需要求交点坐标:代数法
(1).教材习题改编 直线 l:x+ 3y-4=0 与圆 C:x2+y2=4 的
位置关系是( C )
A.相交过(2)直线 l:mx-y+1-m=0 与圆 C:x2+(y-1)2=5 的位置关
二、求切线方程 例题二:已知圆C:x2 y2 1 ,

直线与圆、圆与圆的位置关系 高三数学一轮复习

直线与圆、圆与圆的位置关系 高三数学一轮复习

位置关系 相交
相切
几何法 d___<_____r d___=_____r
Байду номын сангаас
代数法 Δ____>____0 Δ___=_____0
相离
d___>_____r
Δ____<____0
2.圆与圆的位置关系 已知两圆C1:(x-x1)2+(y-y1)2=r12, C2:(x-x2)2+(y-y2)2=r22,
解析:x2+y2-2x-2y+1=0,则(x-1)2+(y-1)2=1,圆心为(1,1),半径r=1, 弦长为2,则直线过圆心,即1-2+a=0,解得a=1.
题后师说
角度二 切线问题 例3(1)[2024·河北张家口模拟]过点P(1,1)作圆E:x2+y2-4x+2y=0 的切线,则切线方程为( ) A.x+y-2=0 B.2x-y-1=0 C.x-2y+1=0 D.x-2y+1=0或2x-y-1=0
(2)若直线l:x- 3y+a=0与圆C:(x-2)2+y2=1有公共点,则实数 a的最小值是___-__4___.
解析:由于直线l:x- 3y+a=0与圆C:(x-2)2+y2=1有公共点, 因此圆心C(2,0)到直线l:x- 3y+a=0的距离d= 2+a ≤1,
12+ − 3 2
于是|2+a|≤2,解得a∈[-4,0],因此实数a的最小值是-4.
答案:C
(2)[2024·广东深圳模拟]若过点M(2,1)的直线l与圆O:x2+y2=8交
于A,B两点,则弦AB最短时直线l的方程为( )
A.2x-y-3=0
B.x+y-3=0
C.x+2y-4=0
D.2x+y-5=0
答案:D
解析: 当AB最短时,直线l⊥OM, 所以kl·kOM=-1. 又kOM=12,所以kl=-2, 所以l的方程为y-1=-2(x-2),即2x+y-5=0.故选D.

高三数学二轮专题复习第1讲 直线与圆

高三数学二轮专题复习第1讲 直线与圆

∴切线方程为
y=±
3x-2,和直线 y=2
的交点坐标分别为-4
3
3,2,4
3
3,2.
故要使视线不被⊙O
挡住,则实数

的取值范围是-∞,-4
3
3∪4
3
3,+∞.
答案 (1)-53 (2)B
考法2 圆的弦长相关计算 【例3-2】 (2017·全国Ⅲ卷)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B
归纳总结 思维升华
探究提高 1.求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参数 的值后,要注意代入检验,排除两条直线重合的可能性. 2.求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑 直线斜率不存在的情况是否符合题意.
【训练1】 (1)(2018·贵阳质检)已知直线l1:mx+y+1=0,l2:(m-3)x+2y-1=0,
但m=-1时,直线l1与l2重合.
当m=-7时,l1的方程为2x-2y=-13,直线l2:2x-2y=8,此时l1∥l2.
∴“m=-7或m=-1”是“l1∥l2”的必要不充分条件. (2)设 l 的方程为ax+by=1(a>0,b>0),则1a+2b=1. ∵a>0,b>0,∴1a+2b≥2 a2b.则 1≥2 a2b, ∴ab≥8(当且仅当1a=2b=12,即 a=2,b=4 时,取“=”). ∴当a=2,b=4时,△OAB的面积最小. 此时 l 的方程为2x+4y=1,即 2x+y-4=0. 答案 (1)B (2)A
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)过点(1,2)的直线l与两坐标轴的正半轴分别交于A、B两点,O为坐标原点,当

高三直线和圆知识点

高三直线和圆知识点

高三直线和圆知识点直线和圆是高中数学中的重要知识点,对于理解几何图形的性质和解题能力起着至关重要的作用。

本文将为大家详细介绍高三直线和圆的相关知识。

一、直线的定义和性质直线是由无数个点按照同一方向延伸而成的图形。

直线的特点是无限延伸,并且上面的任意两点都可以用直线段相连接。

直线的性质有以下几点:1. 直线上的任意两点可以确定一条直线。

2. 直线上的任意一点,都在直线上。

二、圆的定义和性质圆是由平面上与某一点的距离相等的所有点组成的图形。

这个距离称为圆的半径,通常用字母r表示。

圆心是与所有这些点距离相等的点。

直径是通过圆心的两个点,并且是圆的最长的一条线段,长度等于半径的两倍。

圆的性质有以下几点:1. 圆上所有点到圆心的距离都相等。

2. 圆的直径是圆的最长直线段,且等于半径的两倍。

3. 圆的周长公式为C=2πr,其中C表示周长,r表示半径。

4. 圆的面积公式为A=πr²,其中A表示面积,r表示半径。

三、直线和圆的关系直线和圆是几何图形中经常会出现的组合。

它们之间的关系有以下几种情况:1. 直线与圆的位置关系:a) 直线与圆相切:直线与圆只有一个交点,此时交点为切点。

b) 直线与圆相离:直线与圆没有交点。

c) 直线与圆相交:直线与圆有两个交点。

2. 圆上的点到直线的距离:a) 圆心到直线的距离:圆心到直线的距离等于直线的垂直距离,即圆心到直线的距离是最短的。

b) 圆上任意一点到直线的距离:圆上的任意一点到直线的距离都等于它到直线的垂直距离。

3. 直线和圆的方程:a) 直线的方程:直线的方程可以用斜截式、一般式、点斜式等形式表示,根据题目给定的条件来确定具体的方程形式。

b) 圆的方程:圆的方程可以用标准方程和一般方程来表示,其中标准方程为(x-a)²+(y-b)²=r²,一般方程为Ax²+By²+Cx+Dy+E=0,其中a、b为圆心的坐标,r为半径。

直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习
, 到直线: − − = 的距离 =


≤ + ,解得−


≤≤

.

−−
+
=

+
≤ ,即
考点二 直线与圆位置关系的应用
角度1 圆的切线问题(链接高考)
例2 (2023·新课标Ⅰ卷)过点 , − 与圆 + − − = 相切的两条直
(2)过圆 + = 外一点 , 作圆的两条切线,则两切点所在
直线方程为 + = .
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线 + + = 与圆 + + + + = 交点的圆系方
(其中不含圆 ,所以注意检验 是否满足题意,以防丢解).
1.若经过点 −, − 的直线与圆 + = 相切,则该直线在轴上的截
距为(

A.

)


C.−

B.5
解析:选C.因为 −

+ −

D.−
= ,所以点在圆上,
所以切线方程为− − = ,令 = 得 =
+ − − = 相交.
方法三:圆的方程可化为 −

+ = ,
所以圆的圆心为 , ,半径为3.
圆心到直线 − + − = 的距离为
+−
+
=

+
≤ < ,所以直线与圆相交.故选C.

高三数学直线与圆的位置关系试题答案及解析

高三数学直线与圆的位置关系试题答案及解析

高三数学直线与圆的位置关系试题答案及解析1.已知圆C:x2+(y-3)2=4,过A(-1,0)的直线l与圆C相交于P,Q两点,若|PQ|=2,则直线l的方程为()A.x=-1或4x+3y-4=0B.x=-1或4x-3y+4=0C.x=1或4x-3y+4=0D.x=1或4x+3y-4=0【答案】B【解析】当直线l与x轴垂直时,易知x=-1符合题意;当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),过圆C作CM⊥PQ,垂足为M,由于|PQ|=2,可求得|CM|=1.由|CM|==1,解得k=,此时直线l的方程为y= (x+1).故所求直线l的方程为x=-1或4x-3y+4=0.故选B.2.已知两点A(0,-3),B(4,0),若点P是圆x2+y2-2y=0上的动点,则△ABP面积的最小值为()A.6B.C.8D.【答案】B【解析】如图,过圆心C向直线AB做垂线交圆于点P,这时△ABP的面积最小.直线AB的方程为+=1,即3x-4y-12=0,圆心C到直线AB的距离为d==,∴△ABP的面积的最小值为×5×(-1)=.3.如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E,则()A.CE·CB=AD·DB B.CE·CB=AD·ABC.AD·AB=CD2D.CE·EB=CD2【答案】A【解析】由切割线定理可知CE·CB=CD2.又由平面几何知识知△ADC∽△CDB,得相似比=,即AD·DB=CD2,∴CE·CB=AD·DB.故选A.4.如图,⊙O中弦AB、CD相交于点F,AB=10,AF=2.若CF∶DF=1∶4,则CF的长等于()A. B.2 C.3 D.2【答案】B【解析】∵CF∶DF=1∶4,∴DF=4CF.∵AB=10,AF=2,∴BF=8.∵CF·DF=AF·BF,∴CF·4CF=2×8,∴CF=2.5.如图,半径为2的⊙O中,∠AOB=90°,D为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为()A.B.C.D.【答案】C【解析】延长BO交圆O于点F,由D为OB的中点,知DF=3,DB=1,又∠AOB=90°,所以AD=,由相交弦定理知AD·DE=DF·DB,即3×1=×DE,解得DE=.6.如图所示,AD,AE,BC分别与圆O切于点D,E,F,延长AF与圆O交于另一点G.给出下列三个结论:①AD+AE=AB+BC+CA;②AF·AG=AD·AE;③△AFB∽△ADG.其中正确结论的序号是()A.①②B.②③C.①③D.①②③【答案】A【解析】逐个判断:由切线定理得CE=CF,BD=BF,所以AD+AE=AB+BD+AC+CE=AB+AC+BC,即①正确;由切割线定理得AF·AG=AD2=AD·AE,即②正确;因为△ADF∽△AGD,所以③错误.故选A.7.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF∶FB∶BE=4∶2∶1,若CE与圆相切,则线段CE的长为________.【答案】【解析】因为AF∶FB∶BE=4∶2∶1,所以可设AF=4x,FB=2x,BE=x.由割线定理,得AF·FB=DF·FC,即4x×2x=×,解得x=.所以AF=2,FB=1,BE=.由切割线定理,得EC2=BE·EA,即EC2=×(+3),解得EC=.8.如图,△ABO三边上的点C、D、E都在⊙O上,已知AB∥DE,AC=CB.(1)求证:直线AB是⊙O的切线;(2)若AD=2,且tan∠ACD=,求⊙O的半径r的长.【答案】(1)见解析(2)3【解析】解:(1)证明:∵AB∥DE,∴=,又OD=OE,∴OA=OB.如图,连接OC,∵AC=CB,∴OC⊥AB.又点C在⊙O上,∴直线AB是⊙O的切线.(2)如图,延长DO交⊙O于点F,连接FC.由(1)知AB是⊙O的切线,∴弦切角∠ACD=∠F,∴△ACD∽△AFC.∴tan∠ACD=tan∠F=,又∠DCF=90°,∴=.∴==,而AD=2,得AC=4.又AC2=AD·AF,∴2·(2+2r)=42,于是r=3.9.若圆O:x2+y2=4与圆C:x2+y2+4x-4y+4=0关于直线l对称,则直线l的方程是() A.x+y=0B.x-y=0C.x-y+2=0D.x+y+2=0【答案】C【解析】圆x2+y2+4x-4y+4=0,即(x+2)2+(y-2)2=4,圆心C的坐标为(-2,2).直线l过OC的中点(-1,1),且垂直于直线OC,易知k=-1,故直线l的斜率为1,直线l的方程为yOC-1=x+1,即x-y+2=0.故选C.10.(5分)(2011•重庆)过原点的直线与圆x2+y2﹣2x﹣4y+4=0相交所得的弦长为2,则该直线的方程为.【答案】2x﹣y=0【解析】用配方法将圆的方程转化为标准方程,求出圆心坐标和半径,设直线方程为y=kx,求出圆心到直线的距离,利用直线和圆相交所成的直角三角形知识求解即可.解:直线方程为y=kx,圆x2+y2﹣2x﹣4y+4=0即(x﹣1)2+(y﹣2)2=1即圆心坐标为(1,2),半径为r=1因为弦长为2,为直径,故y=kx过圆心,所以k=2所以该直线的方程为:y=2x故答案为:2x﹣y=0点评:本题考查直线和圆的相交弦长问题,属基础知识的考查.注意弦长和半径的关系.11.如图,是圆的直径,点在圆上,延长到使,过作圆的切线交于. 若,,求的长.【答案】【解析】由题中所给是圆的直径且,根据等腰三角形的性质可得:,再由直线为圆的切线,易得,可引入辅助线使得:,运用三角形知识即可求出:,进而得到:.是圆的直径且,,连,为圆的切线,,记是圆的交点,连,,,,,. 10分【考点】1.圆的几何性质;2.三角形的知识12.已知圆C的方程为:x2+y2-2mx-2y+4m-4=0(m∈R).(1)试求m的值,使圆C的面积最小;(2)求与满足(1)中条件的圆C相切,且过点(1,-2)的直线方程.【答案】(1)当m=2时,圆的半径有最小值1,此时圆的面积最小.(2)x=1或4x-3y-10=0.【解析】圆C的方程:(x-m)2+(y-1)2=(m-2)2+1.(1)当m=2时,圆的半径有最小值1,此时圆的面积最小.(2)当m=2时,圆的方程为(x-2)2+(y-1)2=1,设所求的直线方程为y+2=k(x-1),即kx-y-k-2=0,由直线与圆相切,得=1,k=,所以切线方程为y+2=(x-1),即4x-3y-10=0,又因为过点(1,-2)且与x轴垂直的直线x=1与圆也相切,所以所求的切线方程为x=1或4x-3y-10=0.13.圆x2+y2+2x=0和x2+y2﹣4y=0的公共弦的长度为()A.B.C.D.【答案】C【解析】联立,解得或.∴两圆的交点P(0,0),Q.∴|PQ|==.故选C.14.过点(-1,2)的直线l被圆截得的弦长为,则直线l的斜率为.【答案】或【解析】设过点的直线方程为,即.即,由已知得,,解得,直线的斜率为或.【考点】直线与圆的位置关系,点到直线的距离公式.15.设圆的一条切线与轴、轴分别交于点, 则的最小值为( )A.4B.C.6D.8【答案】【解析】设切线方程为,即,由圆心到直线的距离等于半径得所以令,即,则,得即最小值为4故选.【考点】点到直线的距离;基本不等式.16.已知圆,点在直线上,若过点存在直线与圆交于、两点,且点为的中点,则点横坐标的取值范围是.【答案】【解析】法一:数形结合法:设,由题意可得,即,解之得.法二:设点,,则由条件得A点坐标为,,从而,整理得,化归为,从而,于是由得。

高三关于圆的试题及答案

高三关于圆的试题及答案

高三关于圆的试题及答案试题:1. 已知圆的方程为 \((x-2)^2 + (y-3)^2 = 9\),求圆心坐标和半径。

2. 圆 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 与直线 \(y = 2x + 3\)相交,求交点坐标。

3. 已知圆 \(x^2 + y^2 = 25\) 和圆 \(x^2 + y^2 - 8x - 6y + 24= 0\),求两圆的公共弦所在的直线方程。

4. 已知圆 \(x^2 + y^2 = 25\) 上一点 \(P(3,4)\),求过点 \(P\)且与圆相切的切线方程。

5. 已知圆 \(x^2 + y^2 = 4\),求圆内接矩形的最大面积。

答案:1. 圆心坐标为 \((2,3)\),半径为 \(3\)。

2. 将直线 \(y = 2x + 3\) 代入圆的方程 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 得到 \(x^2 + (2x + 3)^2 - 4x - 6(2x + 3) + 9 = 0\),化简后解得交点坐标。

3. 两圆方程相减得到公共弦所在的直线方程 \(8x + 6y - 24 = 0\)。

4. 切线斜率为 \(-\frac{1}{k_{OP}}\),其中 \(k_{OP} = \frac{4-0}{3-0} = \frac{4}{3}\),所以切线斜率为 \(-\frac{3}{4}\),切线方程为 \(y - 4 = -\frac{3}{4}(x - 3)\)。

5. 圆内接矩形的对角线即为圆的直径,所以最大面积为\(\frac{1}{2} \times 2 \times 2 \times \sin(90^\circ) = 2\)。

高三数学《直线与圆》专题测试题含答案

高三数学《直线与圆》专题测试题含答案

高三数学《直线与圆》专题测试题含答案第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0 B .3x -y +4=0 C .3x -y -4=0 D .x -3y -4=03.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-34C.3D .24.过点P (-2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条5.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A .3x +y -5=0B .x -2y =0C .x -2y +4=0D .2x +y -3=0 6.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0C .x +y +1=0 D .x +y =07.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.438.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=59.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( )A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ]10.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .26B .4 C.6D .211.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离12.已知两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A .1B .3 C.19D.49第Ⅱ卷(非选择题 共90分)二、填空题:本大题共四小题,每小题5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆高考定位 高考对本内容的考查重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题),此类问题难度属于中等,一般以填空题的形式出现,有时也会出现解答题,多考查其几何图形的性质或方程知识.多为B 级或C 级要求.真 题 感 悟1.(2015·江苏卷)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为________. 解析 直线mx -y -2m -1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r =(1-2)2+(0+1)2=2. 故所求圆的标准方程为(x -1)2+y 2=2. 答案 (x -1)2+y 2=22.(2017·江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若PA →·PB →≤20,则点P 的横坐标的取值范围是________. 解析 设点P (x ,y ),且A (-12,0),B (0,6),则PA →·PB→=(-12-x ,-y )·(-x ,6-y )=x (12+x )+y (y -6)≤20,又x 2+y 2=50,∴2x -y +5≤0,则点P 在直线2x -y +5=0上方的圆弧上(含交点).联立⎩⎨⎧y =2x +5,x 2+y 2=50,解得x =-5或x =1, 结合图形知,-52≤x ≤1.故点P 横坐标的取值范围是[-52,1]. 答案 [-52,1]3.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程; (3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25, 圆心M (6,7),半径r =5,由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0). 且(6-6)2+(b -7)2=b +5.解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1. (2)∵k OA =2,∴可设直线l 的方程为y =2x +m , 即2x -y +m =0.又BC =OA =22+42=2 5.由题意,圆M 的圆心M (6,7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫BC 22=25-5=2 5.即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15.∴直线l 的方程为y =2x +5或y =2x -15. (3)由TA →+TP →=TQ →,则四边形AQPT 为平行四边形, 又∵P ,Q 为圆M 上的两点,∴PQ ≤2r =10. ∴TA =PQ ≤10,即(t -2)2+42≤10, 解得2-221≤t ≤2+221.故所求t 的范围为[2-221,2+221].考 点 整 合1.两直线平行或垂直(1)两条直线平行:对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在且l 1与l 2不重合时,l 1∥l 2.(2)两条直线垂直:对于两条直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.特别地,当l 1,l 2中有一条直线的斜率不存在,另一条直线的斜率为零时,l 1⊥l 2. 2.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r . (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径为r =D 2+E 2-4F 2;对于二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是⎩⎨⎧B =0,A =C ≠0,D 2+E 2-4AF >0.3.直线方程的五种形式中只有一般式可以表示所有的直线.在利用直线方程的其他形式解题时,一定要注意它们表示直线的局限性.比如,根据“在两坐标轴上的截距相等”这个条件设方程时一定不要忽略过原点的特殊情况.而题中给出直线方程的一般式,我们通常先把它转化为斜截式再进行处理.4.处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如弦心距、半径、弦长的一半构成直角三角形经常用到,利用圆的一些特殊几何性质解题,往往使问题简化.5.直线与圆中常见的最值问题(1)圆外一点与圆上任一点的距离的最值.(2)直线与圆相离,圆上任一点到直线的距离的最值. (3)过圆内一定点的直线被圆截得弦长的最值.(4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值问题.(5)两圆相离,两圆上点的距离的最值.热点一直线与圆的基本问题[命题角度1] 求圆的方程【例1-1】(2016·天津卷)已知圆C的圆心在x轴的正半轴上,点M(0,5)在圆C上,且圆心到直线2x-y=0的距离为455,则圆C的方程为________.解析因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d=2a5=455,解得a=2,所以圆C的半径r=CM=4+5=3,所以圆C的方程为(x-2)2+y2=9.答案(x-2)2+y2=9探究提高求具备一定条件的圆的方程时,其关键是寻找确定圆的两个几何要素,即圆心和半径,待定系数法也是经常使用的方法,在一些问题中借助平面几何中关于圆的知识可以简化计算,如已知一个圆经过两个点时,其圆心一定在这两点连线的垂直平分线上,解题时要注意平面几何知识的应用.[命题角度2] 圆的切线问题【例1-2】 (1)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为________.(2)若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是________.解析(1)由题意可知以线段AB为直径的圆C过原点O,要使圆C的面积最小(D 为切点),只需圆C的半径或直径最小,又圆C与直线2x+y-4=0相切,所以由平面几何知识,当OC所在直线与l垂直时,OD最小(D为切点),即圆C的直径最小,则OD=|2×0+0-4|5=45,所以圆的半径为25,圆C的面积的最小值为S=πr2=45π.(2)依题意得△OO 1A 是直角三角形, ∴OO 1=5+20=5,S △OO 1A =12·AB 2·OO 1=12·OA ·AO 1,因此AB =2·OA ·AO 1OO 1=2×5×255=4.答案 (1)45π (2)4探究提高 (1)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式. (2)过圆外一点求解切线长转化为圆心到圆外点距离,利用勾股定理处理. [命题角度3] 与圆有关的弦长问题【例1-3】 (2015·全国Ⅰ卷改编)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则MN =________.解析 由已知,得AB →=(3,-1),BC →=(-3,-9), 则AB →·BC→=3×(-3)+(-1)×(-9)=0, 所以AB →⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径, 得其方程为(x -1)2+(y +2)2=25, 令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26, 所以MN =|y 1-y 2|=4 6. 答案 4 6探究提高 涉及直线被圆截得的弦长问题,一般有两种求解方法:一是利用半径r ,弦心距d ,弦长l 的一半构成直角三角形,结合勾股定理d 2+⎝ ⎛⎭⎪⎫l 22=r 2求解;二是若斜率为k 的直线l 与圆C 交于A (x 1,y 1),B (x 2,y 2)两点,则AB =1+k 2|x 1-x 2|.【训练1】 (2016·全国Ⅰ卷)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =23,则圆C 的面积为________.解析 圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),半径r =a 2+2,C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由AB =23,得⎝⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π. 答案 4π热点二 直线与圆、圆与圆的位置关系【例2】 已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 解 (1)由x 2+y 2-6x +5=0,得(x -3)2+y 2=4, 所以圆C 1的圆心坐标为(3,0).(2)设线段AB 的中点M 的坐标为(x ,y ), ①当线段AB 不在x 轴上时,有C 1M ⊥AB , 则k C 1M ·k AB =-1,即yx -3·yx=-1,整理得⎝⎛⎭⎪⎫x -322+y 2=94,又当直线l 与圆C 1相切时,易求得切点的横坐标为53.所以此时M 的轨迹C 的方程为⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x <3.②当线段AB 在x 轴上时,点M 的坐标为(3,0),也满足式子⎝ ⎛⎭⎪⎫x -322+y 2=94.综上,线段AB 的中点M 的轨迹C 的方程为 ⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x ≤3.(3)由(2)知点M 的轨迹是以C ⎝⎛⎭⎪⎫32,0为圆心,r =32为半径的部分圆弧EF (如图所示,不包括两端点),且E ⎝ ⎛⎭⎪⎫53,253,F ⎝ ⎛⎭⎪⎫53,-253. 又直线L :y =k (x -4)过定点D (4,0),当直线L 与圆C 相切时, 由⎪⎪⎪⎪⎪⎪k ⎝ ⎛⎭⎪⎫32-4-0k 2+(-1)2=32,得k =±34,又k DE =-k DF =-0-⎝ ⎛⎭⎪⎫-2534-53=-257,结合如图可知当k ∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-34,34∪⎣⎢⎡⎦⎥⎤-257,257时,直线L :y =k (x -4)与曲线C只有一个交点.探究提高 此类题易失分点有两处:一是不会适时分类讨论,遇到直线问题,想用其斜率,定要注意斜率是否存在;二是数形结合求参数的取值范围时,定要注意“草图不草”,如本题,画成轨迹C 时,若把端点E ,F 画出实心点,借形解题时求出的斜率就会出错.【训练2】 (1)(2016·山东卷改编)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是________.(2)(2017·南京、盐城模拟)在平面直角坐标系xOy 中,已知点P 为函数y =2lnx 的图象与圆M :(x -3)2+y 2=r 2的公共点,且它们在点P 处有公切线,若二次函数y =f (x )的图象经过点O ,P ,M ,则y =f (x )的最大值为________. 解析 (1)圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2,由题意,d =a2,所以有a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=22,圆心距为2,半径和为3,半径差为1,所以两圆相交.(2)设P (x 0,2ln x 0),x 0>0,则函数y =2ln x 在点P 处的切线斜率为2x 0,则2x 0·2ln x 0x 0-3=-1,即为4ln x 0=-x 0(x 0-3) ①.由二次函数y =f (x )的图象经过点O 和M 可设f (x )=ax (x -3),代入点P (x 0,2ln x 0),x 0>0,得2ln x 0=ax 0(x 0-3) ②.由①②比较可得a =-12,则f (x )=-12x (x -3),则f (x )max =f ⎝ ⎛⎭⎪⎫32=-12×32×⎝ ⎛⎭⎪⎫-32=98. 答案 (1)相交 (2)98热点三 直线、圆与其他知识的交汇问题【例3】 如图,在平面直角坐标系xOy 中,已知点A 为椭圆x 29+2y 29=1的右顶点,点D (1,0),点P ,B 在椭圆上,BP →=DA →. (1)求直线BD 的方程;(2)求直线BD 被过P ,A ,B 三点的圆C 截得的弦长;(3)是否存在分别以PB ,PA 为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.解 (1)因为BP →=DA →且A (3,0),所以BP =DA =2,而B ,P 关于y 轴对称,所以点P 的横坐标为1,从而得P (1,2),B (-1,2), 所以直线BD 的方程为x +y -1=0.(2)线段BP 的垂直平分线方程为x =0,线段AP 的垂直平分线方程为y =x -1,所以圆C 的圆心为(0,-1),且圆C 的半径为r =10,又圆心(0,-1)到直线BD 的距离为d =2,所以直线BD 被圆C 截得的弦长为2r 2-d 2=4 2. (3)假设存在这样的两个圆M 与圆N ,其中PB 是圆M 的弦,PA 是圆N 的弦,则点M 一定在y 轴上,点N 一定在线段PA 的垂直平分线y =x -1上,当圆M 和圆N 是两个相外切的等圆时,一定有P ,M ,N 在一条直线上,且PM =PN . 设M (0,b ),则N (2,4-b ), 根据N (2,4-b )在直线y =x -1上,解得b =3.所以M (0,3),N (2,1),PM =PN =2,故存在这样的两个圆,且方程分别为x 2+(y -3)2=2,(x -2)2+(y -1)2=2.探究提高 求圆中弦长问题,多用垂径定理,先计算圆心到直线的距离,再利用弦长公式AB =2r 2-d 2;求圆的方程问题常见于找出圆心和半径,对于两圆的位置关系则多借助于几何关系进行判定.【训练3】 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解 (1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bca ,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2,①依题意,点A ,B 关于圆心M (-2,1)对称,且AB =10,设A (x 1,y 1),B (x 2,y 2),则x 21+4y 21=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2,得-4(x 1-x 2)+8(y 1-y 2)=0, 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1-y 2x 1-x 2=12, 因此直线AB 的方程为y =12(x +2)+1,代入①得x 2+4x +8-2b 2=0, 解方程后易得:x 1,2=-2±2b 2-4, 于是AB =1+⎝ ⎛⎭⎪⎫122|x 1-x 2|=10(b 2-2).由AB =10,得10(b 2-2)=10,解得b 2=3, 故椭圆E 的方程为x 212+y 23=1.1.由于直线方程有多种形式,各种形式适用的条件、范围不同,在具体求直线方程时,由所给的条件和采用的直线方程形式所限,可能会产生遗漏的情况,尤其在选择点斜式、斜截式时要注意斜率不存在的情况.2.确定圆的方程时,常用到圆的几个性质:(1)直线与圆相交时应用垂径定理构成直角三角形(半弦长、弦心距、圆半径);(2)圆心在过切点且与切线垂直的直线上; (3)圆心在任一弦的中垂线上;(4)两圆内切或外切时,切点与两圆圆心三点共线;(5)圆的对称性:圆关于圆心成中心对称,关于任意一条过圆心的直线成轴对称.3.直线与圆中常见的最值问题圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题. 4.两圆相交,将两圆方程联立消去二次项,得到一个二元一次方程即为两圆公共弦所在的直线方程.一、填空题1.圆心为(1,1)且过原点的圆的方程是________.解析 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2. 答案 (x -1)2+(y -1)2=22.(2014·江苏卷)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 解析 圆心为(2,-1),半径r =2. 圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-⎝ ⎛⎭⎪⎫3552=2555.答案25553.(2017·南京、盐城模拟)过点P (-4,0)的直线l 与圆C :(x -1)2+y 2=5相交于A ,B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为________. 解析 设AB 的中点为点D ,则CD ⊥AB ,设CD =d ,AD =x ,则PA =AB =2x ,在直角三角形ACD 中,由勾股定理得d 2+x 2=r 2=5.在直角三角形PDC 中,由勾股定理得d 2+9x 2=CP 2=25,解得d 2=52.易知直线l 的斜率一定存在,设为k ,则l :y =k (x +4),圆心C (1,0)到直线l 的距离为d =|5k |k 2+1=102,解得k 2=19,k =±13,所以直线l 的方程为y =±13(x +4),即为x ±3y +4=0. 答案 x ±3y +4=04.(2017·宿迁模拟)已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:(x -3)2+(y -4)2=1上的动点,则|PA →+PB →|的取值范围为________. 解析 设AB 的中点为C ,由垂径定理可得CC 1⊥AB ,则CC 1=1-⎝ ⎛⎭⎪⎫322=12,即点C 的轨迹方程是x 2+y 2=14,C 1C 2=32+42=5,则PC max =5+1+12=132,PC min=5-1-12=72,所以|PA →+PB →|=|2PC →|∈[7,13].答案 [7,13]5.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则PM +PN 的最小值为________. 解析 由条件可知,两圆的圆心均在第一象限,先求PC 1+PC 2的最小值,作点C 1关于x 轴的对称点C 1′(2,-3),则(PC 1+PC 2)min =C 1′C 2=5 2. 所以(PM +PN )min =52-4. 答案 52-46.(2016·全国Ⅲ卷)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若AB =23,则CD =________.解析 设AB 的中点为M ,由题意知,圆的半径R =23,AB =23,所以OM =3,解得m =-33,由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3, 3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以CD =4. 答案 47.(2017·江西七校第二次联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=14a 2的切线,切点为E ,直线EF 交双曲线右支于点P ,若OE →=12(OF →+OP →),则双曲线的离心率是________.解析 如图,∵OE →=12(OF →+OP →),∴E 为FP 的中点,又O 为FF ′的中点,∴OE 为△PFF ′的中位线, ∴OE ∥PF ′,OE =12PF ′,∵OE =12a ,∴PF ′=a ,∵PF 切圆O 于E ,∴OE ⊥PF ,∴PF ′⊥PF , ∵FF ′=2c ,PF -PF ′=2a , ∴PF =2a +a =3a ,∴由勾股定理得a 2+9a 2=4c 2, ∴10a 2=4c 2,∴e =c a =102. 答案1028.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最小值为________.解析 根据题意画出图形,如图所示,过点O 作OC⊥AB 于C ,因为△AOB 为等腰直角三角形,所以C 为弦AB 的中点,又OA =OB =1,根据勾股定理得AB =2,∴OC =12AB =22.∴圆心到直线的距离为12a 2+b 2=22,即2a 2+b 2=2,即a 2=-12b 2+1≥0.∴-2≤b ≤ 2.则点P (a ,b )与点(0,1)之间距离d =(a -0)2+(b -1)2=a 2+b 2-2b +1=12b 2-2b +2. 设f (b )=12b 2-2b +2=12(b -2)2,此函数为对称轴为b =2的开口向上的抛物线,∴当-2≤b ≤2<2时,函数为减函数.∵f (2)=3-22,∴d 的最小值为3-22=(2-1)2=2-1. 答案2-1二、解答题9.(2015·全国Ⅰ卷)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN . 解 (1)由题设,可知直线l 的方程为y =kx +1,因为l 与C 交于两点, 所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0. 解方程易得:x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8.由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以MN =2.10.(2013·江苏卷)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围. 解 (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO , 所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4, 所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3. 整理得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125.11.已知双曲线x 2-y 23=1.(1)若一椭圆与该双曲线共焦点,且有一交点P (2,3),求椭圆方程.(2)设(1)中椭圆的左、右顶点分别为A ,B ,右焦点为F ,直线l 为椭圆的右准线,N 为l 上的一动点,且在x 轴上方,直线AN 与椭圆交于点M .若AM =MN ,求∠AMB 的余弦值;(3)设过A ,F ,N 三点的圆与y 轴交于P ,Q 两点,当线段PQ 的中点为(0,9)时,求这个圆的方程.解 (1)∵双曲线焦点为(±2,0),设椭圆方程为x 2a 2+y 2b2=1(a >b >0).则⎩⎨⎧a 2-b 2=4,4a 2+9b 2=1.∴a 2=16,b 2=12.故椭圆方程为x 216+y 212=1. (2)由已知,A (-4,0),B (4,0),F (2,0),直线l 的方程为x =8.设N (8,t )(t >0).∵AM =MN ,∴M ⎝⎛⎭⎪⎫2,t 2.由点M 在椭圆上,得t =6. 故所求的点M 的坐标为M (2,3).所以MA →=(-6,-3),MB →=(2,-3),MA →·MB →=-12+9=-3. cos ∠AMB =MA →·MB→|MA →|·|MB →|=-336+9·4+9=-6565.(3)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),将A ,F ,N 三点坐标代入,得⎩⎨⎧16-4D +F =0,4+2D +F =0,64+t 2+8D +Et +F =0,得⎩⎪⎨⎪⎧D =2,E =-t -72t ,F =-8. 圆的方程为x 2+y 2+2x -⎝ ⎛⎭⎪⎫t +72t y -8=0,令x =0,得y 2-⎝⎛⎭⎪⎫t +72t y -8=0.设P (0,y 1),Q (0,y 2),则y 1,2=t +72t±⎝⎛⎭⎪⎫t +72t 2+322.由线段PQ 的中点为(0,9),得y 1+y 2=18,t +72t=18,此时,所求圆的方程为x 2+y 2+2x -18y -8=0.。

相关文档
最新文档