工业控制网络发展

工业控制网络发展
工业控制网络发展

工业控制系统的网络化发展及现状研究

发布: 2009-10-26 | 作者: | 来源:

0引言

随着计算机技术、通信技术和控制技术的发展,传统的控制领域正经历着一场前所未有的变革,开始向网络化方向发展。控制系统的结构从最初的CCS(计算机集中控制系统),到第二代的DCS(分散控制系统),发展到现在流行的FCS(现场总线控制系统)[1]。对诸如图像、语音信号等大数据量、高速率传输的要求,又催生了当前在商业领域风靡的以太网与控制网络的结合。这股工业控制系统网络化浪潮又将诸如嵌入式技术、多标准工业控制网络互联、无线技术等多种当今流行技术融合进来,从而拓展了工业控制领域的发展空间,带来新的发展机遇。

1计算机控制系统的发展

计算机及网络技术与控制系统的发展有着紧密的联系。最早在50年代中后期,计算机就已经被应用到控制系统中。60年代初,出现了由计算机完全替代模拟控制的控制系统,被称为直接数字控制(DirectDigitalControl,DDC)。70年代中期,随着微处理器的出现,计算机控制系统进入一个新的快速发展的时期,1975年世界上第一套以微处理为基础的分散式计算机控制系统问世,它以多台微处理器共同分散控制,并通过数据通信网络实现集中管理,被称为集散控制系统(DistributedControlSystem,DCS)。

进入80年代以后,人们利用微处理器和一些外围电路构成了数字式仪表以取代模拟仪表,这种DDC的控制方式提高了系统的控制精度和控制的灵活性,而且在多回路的巡回采样及控制中具有传统模拟仪表无法比拟的性能价格比。

80年代中后期,随着工业系统的日益复杂,控制回路的进一步增多,单一的DDC 控制系统已经不能满足现场的生产控制要求和生产工作的管理要求,同时中小型计算机和微机的性能价格比有了很大提高。于是,由中小型计算机和微机共同作用的分层控制系统得到大量应用。

进入90年代以后,由于计算机网络技术的迅猛发展,使得DCS系统得到进一步发展,提高了系统的可靠性和可维护性,在今天的工业控制领域DCS仍然占据着主导地位,但是DCS不具备开放性,布线复杂,费用较高,不同厂家产品的集成存在很大困难。

从八十年代后期开始,由于大规模集成电路的发展,许多传感器、执行机构、驱动装置等现场设备智能化,人们便开始寻求用一根通信电缆将具有统一的通信协议通信接口的现场设备连接起来,在设备层传递的不再是I/O(4~20mA/24VDC)信号,而是数字信号,这就是现场总线。由于它解决了网络控制系统的自身可靠性和开放性问题,现场总线技术逐渐成为了计算机控制系统的发展趋势。从那时起,一些发达的工业国家和跨国工业公司都纷纷推出自己的现场总线标准和相关产品,形成了群雄逐鹿之势。

2信息网络与控制系统的关系

从发展历程看,信息网络体系结构的发展与控制系统结构的发展有相似之处。企业信息网络的发展大体经历了如下几个发展阶段:

①基于主机的集中模式

由功能强大的主机完成几乎所有的计算和处理任务,用户和主机的交互很少。

②基于工作组的分层结构

微机和局域网技术的发展使工作性质相近的人员组成群体,共享某些公共资源,用户之间的交流和协作得到了加强。

③基于Internet/Intranet/Extranet的网络化企业组织

计算机网络技术的发展使它成为现代信息技术的主流,特别是Internet的发展和普及应用使它成为公认的未来全球信息基础设施的雏形。采用Internet成熟的技术和标准,人们提出了Intranet和Extranet的概念,分别用于企业内部网和企业外联网的实现,于是便形成了以Intranet为中心,以Extranet为补充,依托于Internet的新一代企业信息基础设施(企业网)。

计算机控制系统也是经历了集中控制、分层控制、基于现场总线的网络控制等几个发展阶段,它们的发展过程是非常相似的。

随着企业信息网络的深入应用与日臻完善,现场控制信息进入信息网络实现实时监控是必然的趋势。为提高企业的社会效益和经济效益,许多企业都在尽力建立全方位的管理信息系统,它必须包括生产现场的实时数据信息,以确保实时掌握生产过程的运行状态,

使企业管理决策科学化,达到生产、经营、管理的最优化状态。信息一控制一体化将为实现企业综合自动化CIPA(computerintegratedplantautomation)和企业信息化创造有利条件。

企业信息网络与控制系统在体系结构发展过程上的相似性不是偶然的。在计算机控制系统的发展过程中,每一种结构的控制系统的出现总是滞后于相应计算机技术的发展。实际上,大多数情况下,正是在计算机领域一种新技术出现以后,人们才开始研究如何将这种新技术应用于控制领域。鉴于两种应用环境的差异,其中的技术细节作了适当修改和补充,但关键技术的原理及实现上,它们有许多共同的地方。正是由于二者在发展过程中的这种关系,使得实现信息一控制一体化成为可能。

3现场总线技术的研究现状

在40年代,过程控制是基于3~15PSI的气动标准信号。其后,由于4~20mA 模拟信号的使用,使得模拟控制器得到了广泛应用,但是并不是所有的传感仪表和驱动装置都使用统一的4~20mA信号。70年代,由于在检测、模拟控制和逻辑控制领域率先使用了计算机,从而产生了集中控制。进入80年代,由于微处理器的出现,促使工业仪表进入了数字化和智能化的时代,4~20mA模拟信号传输逐步被数字化通信代替,加之分布式控制以及网络技术的迅速发展,促进了控制、调度、优化、决策等功能一体化的发展。然而由于检测、变送、执行等机构大都采用模拟信号连接,其传送方式是一对一结构,这使得接线复杂,工程费用高,维护困难,而信号传输精度底,易受干扰,仪表互换性差,这都阻碍了上层系统的功能发挥。另一方面,由于智能仪表的功能远远超过了现场模拟仪表,如对量程和零点进行远方设定,仪表工作状态实现自诊断,能进行多参数测量和对环境影响的补偿等。由此可见,智能仪表和控制系统的发展,都要求上层系统和现场仪表实现数字通信。

为了克服DCS系统的技术瓶颈,进一步满足现场的需要,现场总线技术应运而生,它实际上是连接现场智能设备和自动化控制设备的双向串行、数字式、多节点通信网络,也被称为现场底层设备控制网络(INFRANET)。和Internet、Intranet等类型的信息网络不同,控制网络直接面向生产过程,因此要求很高的实时性、可靠性、资料完整性和可用性。为满足这些特性,现场总线对标准的网络协议作了简化,省略了一些中间层,只包括

ISO/OSI7层模型中的3层:物理层、数据链路层和应用层。

现场总线在发展的最初,各个公司都提出自己的现场总线协议。IEC组织于1999年12月31日投票,确定了8大总线作为国际现场总线标准,其中包括CANBus、ProfitBus、

InterBus-S、ModBus、FOUNDA-TIONFieldbus等等。而在此基础上形成了新的现场总线控制系统(FieldbusControlSystemFCS)。它综合了数字通信技术、计算机技术、自动控制技术、网络技术和智能仪表等多种技术手段,从根本上突破了传统的“点对点”式的模拟信号或数字———模拟信号控制的局限性,构成一种全分散、全数字化、智能、双向、互连、多变量、多接点的通信与控制系统。相应的控制网络结构也发生了较大的变化。FCS 的典型结构分为3层:设备层、控制层和信息层。

虽然现场总线技术发展非常迅速,但也存在许多问题,制约其应用范围的进一步扩大。

(1)首先是现场总线的选择。虽然目前IEC组织已达成了国际总线标准,但总线种类仍然过多,而每种现场总线都有自己最合适的应用领域,如何在实际中根据应用对象,将不同层次的现场总线组合使用,使系统的各部分都选择最合适的现场总线,对用户来说,仍然是比较棘手的问题。

(2)系统的集成问题。由于实际应用中一个系统很可能采用多种形式的现场总线,因此如何把工业控制网络与数据网络进行无缝的集成,从而使整个系统实现管控一体化,是关键环节。现场总线系统在设计网络布局时,不仅要考虑各现场节点的距离,还要考虑现场节点之间的功能关系、信息在网络上的流动情况等。由于智能化现场仪表的功能很强,因此许多仪表会有同样的功能块,组态时选哪个功能块是要仔细考虑的;要使网络上的信息流动最小化。同时通信参数的组态也很重要,要在系统的实时性与网络效率之间做好平衡。

(3)存在技术瓶颈问题[2]。主要表现在:

a.当总线电缆截断时,整个系统有可能瘫痪。

用户希望这时系统的效能可以降低,但不能崩溃,这一点目前许多现场总线不能保证。

b.本安防爆理论的制约。现有的防爆规定限制总线的长度和总线上负载的数量。这就是限制了现场总线节省线缆优点的发挥。目前各国都在对现场总线本质安全概念(FISCO)理论加强研究,争取有所突破。

C.系统组态参数过分复杂。现场总线的组态

参数很多,不容易掌握,但组态参数设定得好坏,对系统性能影响很大。

4以太控制网络

控制网络的发展,其基本趋势是逐渐趋向于开放性、透明的通讯协议。上述出现的问题,根本原因在于现场总线的开放性是有条件的、不彻底的。以太网具有传输速度高、低耗、易于安装和兼容性好等方面的优势,由于它支持几乎所有流行的网络协议,所以在商业系统中被广泛采用。近些年来,随着网络技术的发展,以太网进入了控制领域,形成了新型的以太网控制网络技术。这主要是由于工业自动化系统向分布化、智能化控制方面发展,开放的、透明的通讯协议是必然的要求。目前的现场总线由于种类繁多,互不兼容,尚不能满足这一要求。而以太网的TCP/IP协议的开放性使得在工控领域通讯这一关键环节具有无可比拟的优势。

5目前存在的问题

通常我们考虑将控制系统网络化,主要将网络化与现场总线联系在一起。目前在控制领域较有影响的现场总线系统有:FF、LonWorks、Profibus、CAN、HART,以及RS485的总线网络等。现场总线基金会己经制定的统一标准((FF),其慢速总线标准Hl已得到通过成为国际标准,其高速总线标准H2还在制订中。但是由于商业利润、技术垄断等原因,目前现场总线产品仍然是百花齐放的局面,这对降低系统成本,扩大应用范围产生不利影响。

以太网已经得到广泛应用,目前主流产品的速度己经达到100Mbps,千兆以太网也己经投入使用,其网络产品和软件发展速度很快。以太网以成本低、组网方便、软硬件丰富、可靠性高等特点得到了广泛的认可。

Internet飞速发展的主要原因在于以太网和TCP/IP协议的广泛应用,TCP/IP

协议是极其灵活的,几乎所有的网络底层技术都可用于传输TCP/IP的通信。应用TCP/IP 的以太网已经成为最流行的分组交换局域网技术,同时也是最具开放性的网络技术。

由此,我们考虑将Internet及其相关技术集成到现有控制系统中,利用Internet 上开放的、并且己经成熟的技术对现有的控制系统进行升级改造,加快工业企业的信息一控制一体化进程,不失为一种较为可行的问题解决方案。

6总结

从目前趋势来看,工业以太网进入现场控制级毋庸置疑。但至少现在看来,它还难以完全取代现场总线,作为实时控制通信的单一标准。已有的现场总线仍将继续存在,最有可能的是发展一种混合式控制系统。

工业控制网络结构的发展趋势

2006-3-20 来源:机电商情网收藏此信息推荐给好友

1前言

随着网络技术的发展,Internet正在把全世界的计算机系统、通信系统逐渐集成起来,形成信息高速公路,形成公用数据网络。在此基础上,传统的工业控制领域也正经历一场前所未有的变革,开始向网络化方向发展,形成了新的控制网络。控制系统的结构从最初的CCS(计算机集中控制系统),到第二代的DCS (集散控制系统),发展到现在流行的FCS(现场总线控制系统)。而新一代的工业Ethernet控制系统又将引起工控领域新的变革。

2工业控制系统的回顾

本世纪六十年代,数字计算机进入控制领域,产生了第一代控制系统CCS(计算机集中控制系统),其结构如图2—1所示。

在CCS中,数字计算机取代了传统的模拟仪表,从而能够使用更为先进的控制技术,例如复杂控制算法和协调控制。从而使自动控制发生了质的飞跃。但由于控制简单,直接面向控制对象,并未形成控制网络体系。CCS在集中控制的同

时也集中了危险,系统可靠性很低。由于只有一个CPU工作,实时性差。系统越大,上述缺点越突出。

真正意义的工业控制网络体系是七十年代出现的第二代计算机控制系统:分散型控制系统DCS(也称集散控制系统),其结构如图2—2所示。目前所使用的D CS有环形、总线形和分级式几种,其中分级式应用最为普遍。

典型的DCS可分为操作站级、过程控制级和现场仪表3级。这种控制系统的特点是“集中管理,分散控制”。其基本控制功能在过程控制级中,工作站级的主要作用是监督管理。分散控制使得系统由于某个局部的不可靠而造成对整个系统的损害降到很低的程度,加之各种软硬件技术不断走向成熟,极大地提高了整个系统的可靠性,因而迅速成为工业自动控制系统的主流。

然而DCS的缺点也是十分明显的。首先其结构是多级主从关系,底层相互间进行信息传递必须经过主机,从而造成主机负荷过重,效率低下,并且主机一旦

发生故障,整个系统就会“瘫痪”。其次它是一种数字——模拟混合系统,DCS 的现场仪表仍然使用传统的4~20mA电流模拟信号,传输可靠性差,成本高。再有各厂家的DCS自成标准,通讯协议封闭,极大的制约了系统的集成与应用。

3现场总线控制网络系统

为了克服DCS系统的技术瓶颈,进一步满足现场的需要,现场总线技术应运而生,它实际上是连接现场智能设备和自动化控制设备的双向串行、数字式、多节点通信网络,也被称为现场底层设备控制网络(INFRANET)。和Internet、Int ranet等类型的信息网络不同,控制网络直接面向生产过程,因此要求很高的实时性、可靠性、资料完整性和可用性。为满足这些特性,现场总线对标准的网络协议作了简化,省略了一些中间层,只包括ISO/OSI7层模型中的3层:物理层、数据链路层和应用层。

现场总线在发展的最初,各个公司都提出自己的现场总线协议。IEC组织于1999年12月31日投票,确定了8大总线作为国际现场总线标准,其中包括CA N Bus、Profit Bus、InterBus S、Mod Bus、FOUNDATION Fieldbus等等。

而在此基础上形成了新的现场总线控制系统(Fieldbus Control System FC S)。它综合了数字通信技术、计算机技术、自动控制技术、网络技术和智能仪表等多种技术手段,从根本上突破了传统的“点对点”式的模拟信号或数字——模拟信号控制的局限性,构成一种全分散、全数字化、智能、双向、互连、多变量、多接点的通信与控制系统。相应的控制网络结构也发生了较大的变化。

以太网已成为工业控制网络的发展方向

1 现场总线控制系统的优缺点

1.1现场总线控制系统的优越性

现场总线控制系统使工业过程控制发生了很大变化,它具有如下优越性:

(l)现场总线使得智能变送器中安装的微处理器能够直接与数字控制系统通信,而不要I/O转换,节约了费用;

(2)现场总线可以取代每个传感器到控制器的单独布线,大大减少了连线费用;

(3)现场总线可以将一些先进功能,如线性化、工程量转换以及报警处理等赋予现场总线仪表,提高了现场仪表的精度和可靠性;

(4)现场总线提高了控制精度,这意味着应用数字信号所受到的限制将主来自传感器的精度:

(5)现场总线可提供控制装置与传感器、执行器之间的双向通信,方便了操作员

与被控设备之间的交互。

(6)现场总线使得专门根据现场总线开发的现场仪表的使用成为可能,并将最终取代单变量模拟仪表,减少了仪表的购置、安装与维修费用;

(7)现场总线的开放性将使用户有可能对备仪表厂商的产品任意进行选择,井组成系统,而不必考虑接口是否匹配。

1.2现场总线的不足

现场总线有其突出的优点,但也有其明显的不足之处,主要表现在以下两点

(l)现场总线没有单一的国际标准

各类现场总线制定了各自不同的体系结构和标准。而经14年的纷争, 2000年初8种现场总线成为IEC现场总线国际标准子集。这一结果令人失望,也违背了制定世界上单一现场总线标准的初衷。尽管基金会现场总线试图推出中立和公正、防止任何技术垄断、广泛性的体系结构和标准,但至今仍有一些标准未能取得一致通过,并且迟迟未见产品问世。现场总线真正实现开放性任重而道远。在这种情况下,多种现场总线并存,共存于一个系统已成为客观事实。

(2)现场总线的系统开发困难,开放性有一定的局限性

FF, Lon Works, CAN等现场总线均有自己的协议,要构成一个控制系统,必须采用相应的开发工具、平台、软件包。这需要较昂贵的代价,往往只有开发商、研究机构才能有这类开发工具,一般用户则无能为力。这说明现场总线的开放性仍有一定的局限性。许多技术人员正致力于现场总线图形化节点软件开发工具的研究工作。

当现场总线由于以上不足而停滞不前时,人们开始寻找新的出路,以太网进入了人们的视线。

2 工业以太网的产生及发展现状

以太网是目前应用最广泛的通信网络之一。90年代中期,当现场总线大战正浓时,传统用于办公室和商业的以太网开始进入工业控制领域

2.1 以太网技术

以太网是在1972年发明的。由于种种原因,Xerx、Dec、Intel等公司联合起来开发以太网产品;1979年9月Xerox、Dec、Intel等公司联合推出了“以太网,一种局域网:数据链路层和物理层规范1.0版”,这就是著名的以太网蓝皮书,也称为DIX

版以太网 1.0规范。最初的以太网采用10MbpS速率和带有冲突检测的多路载波侦听协议(CSMA/CD)。在DIX开展以太网标准化工作的同时,世界性专业组织IEEE也组成了一个定义与促进工业LAN标准的委员会——IEEE802委员会。1981年 6月,IEEE802委员会决定成立 8023分委员会,以产生基于DIX工作成果的国际公认标准。1983年,新的IEEE802.3草稿标准最终以 IEEE 10BASES面世,它包括。别参考模型的物理层和数据链路层。这是第一个以太网规范。此后,各大公司相继推出了自己的以太网产品,并且随着个人计算机迅速占领市场而得到了迅速的发展。

当前,以太网结合TCP/IP是目前应用最广泛的局域网技术之一。以太网最初是作为非实时通信网络出现的,采用带有冲突检测的多路载波侦听协议(CSMCD)和二进

制指数回退算法(Bim Expohential Back-off)处理冲突。以太网具有通信速度最高可达1GbitlS,开发和生产成本低(工业需求量大),开放性好(持多种网络协议),技术发展进步速度快等优点。这使以太网在办公自动化和IT行业取得了广泛的应用,已经成为最受欢迎的通信网络之一。

2.2 以太网已成为工业控制网络的发展方向

以以太网为代表的COTS(commercial offthe shelf) 信息网络通信技术却以其协议简单、完全开放、稳定性和可靠性好而获得了全球的技术支持。与现场总线相比,以太网具有以下优点:

(1)应用广泛

Ethernet 的应用开发,如Java ,Visual C以太网是目前应用最为广泛的计算机网技术,受到广泛的技术支持。几乎所有的编程语言都支持+ + 及Visual Basic等。这些编程语言由于广泛使用,并受到软件开发商的高度重视,具有很好的发展前景。因此,如果采用以太网作为现场总线,可以保证多种开发工具、开发环境供选择。

(2)成本低廉

由于以太网的应用最为广泛,因此受到硬件开发与生产厂商的高度重视与广泛支持,有多种硬件产品供用户选择。而且由于应用广泛,硬件价格也相对低廉。目前以太网网卡的价格只有Profibus ,FF 等现场总线的十分之一,并且随着集成电路技术的发展,其价格还会进一步下降。

(3)通信速率高

数据传输率很高。以太网支持的数据传输速率包括 10MbS,100MbPS和 IGfoS,比目前任何一种现场总线都快;以太网从扁平的总线共享模式发展到结构化的交换模式后,任意终端之间的通信通过交换机实现透明的转发,由于每个端口都是独立的冲突域(Collision Domain),不存在信道共享引起的竞争问题,系统的通信容量成倍增加。相同通信量的条件下,通信速率的提高意味着网络负荷的减轻,而网络负荷的减轻则意味着提高确定性。

(4)软硬件资源丰富

由于以太网已应用多年,人们对以太网的设计、应用等方面有很多的经验,对其技术也十分熟悉。大量的软件资源和设计经验可以显著降低系统的开发和培训费用,从而可以显著降低系统的整体成本,并大大加快系统的开发和推广速度。

(5)可持续发展潜力大

由于以太网的广泛应用,使它的发展一直受到广泛的重视和吸引大量的技术投入。并且,在这信息瞬息万变的时代,企业的生存与发展将很大程度上依赖于一个快速而有效的通信管理网络,信息技术与通信技术的发展将更加迅速,也更加成熟,由此保证了

以太网技术不断地持续向前发展。

(6)易于与Internet 连接,能实现办公自动化网络与工业控制网络的信息无缝集成

(7) Web技术和以太网技术的结合,将实现生产过程的远程监控、远程设备管理、远程软件维护和远程设备诊断。

(8)以太网支持多种传输介质,包括同轴电缆、双绞线、光缆、无线等,使用户可根据带宽、距离、价格等因素作多种选择。以太网支持总线型和星型拓扑结构,可扩展性强,同时可采用多种冗余连接方式,提高网络的性能。

因此,工业控制网络采用以太网,就可以避免其发展游离于计算机网络技的发展主

流之外,从而使工业控制网络与信息网络技术互相促进,共同发展,并保证技术上的可

持续发展,在技术升级方面无需单独的研究投入。

诚然,以太网由于采用了CSMA/ CD 介质访问控制机制,各个节点采用BEB(binary exponential back2off) 算法处理冲突,具有排队延迟不确定的缺陷,无法保证确定的排队延迟和通信响应确定性,使之无法在工业控制中得到有效的使用。

随着IT 技术的发展,以太网的发展也取得了本质的飞跃,先后产生了高速以太网(100M) 和千兆以太网产品和国际标准,10G以太网也在研究之中。针对以太网的排队延迟不确定性,以太网又增加了全双工通信技术、交换技术、信息优先级等来提高实时性,并改进了容错技术。其中交换式以太网避免了交换机各端口之间的碰撞,全双工通信又避免了各节点发送和接收报文之间的冲突,从根本上解决了以太网通信传输延迟存在

不确定性的问题。

更为重要的是,广大工控专家通过研究发现,通信负荷在30%以下时,10M以太网的通信响应实时性要好于215M的ARCnet (一种曾被广泛用于工业控制网络的令牌总

线) 。而负荷在10 %以下时,以太网几乎不发生碰撞,或者说,因碰撞而引起的传输延迟几乎可以忽略不计。另一方面,在工业控制网络中,传输的信息多为周期性测量和控制数据,报文小,信息量少,信息流向也具有明显的方向性,变送器传向控制器;由控制器

传向执行机构。在拥有6000个I/O的典型工业控制系统中,通信负荷为10M以太网的5 %左右,即使有操作员信息传输(如设定值的改变,用户应用程序的下载等),10M 以太网

的负荷也完全可以保持在10 %以下。

因此,通过采用适当的系统设计和流量控制技术,以太网完全能用于工业控制网络。事实也是如此,20世纪90 年代中后期,国内外各大工控公司纷纷在其控制系统中采用以太网,推出了基于以太网的DCS ,PLC、数据采集器,以及基于以太网的现场仪表、显示仪表等产品。

以太网应为用于工业控制网络发展的首选。

工业控制网络复习重点

工业控制网络 题型: 填空(15*1’) 选择(10) 分析(2) 简答(5) 操作(10’) 第一章 1.现场总线 定义:国际电工委员会制定的国际标准IEC61158对现场总线(fieldbus)的定义: 安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、串行、多点通信的数据总线称为现场总线。 现场总线——控制网络 现场总线——工业电话线 现场总线——底层控制网络 2.输入输出设备 总线上的数据输入设备:包括按钮、传感器、接触器、变送器、阀门等,传输其位置状态、参数值等数据;总线上的输出数据用于:驱动信号灯、接触器、开关、阀门等。 3.现场总线特点 ?适应工业应用环境。 ?要求实时性强,可靠性高,安全性好。 ?多为短帧传送。(短帧传输体现实时性) ?通信的传输速率相对较低。 4.几种现场总线 ?Foundation Fieldbus,FF ?LonWorks ?Profibus ?ControlNet ?DeviceNet ?CAN ?Hart 5.现场总线系统组成与组织结构 ?硬件: ◆总线电缆,又称为通信线、通信介质(媒体/媒介/介体)。 ◆连接在通信线上的设备称为总线设备,亦称为总线装置、节点(主节点、从节点)、站点 (主站、从站)。 软件包括: ?系统平台软件:为系统构建、运行以及为系统应用软件编程而提供环境、条件或工具的基础软件。 包括组态工具软件、组态通信软件、监控组态软件和设备编程软件。 ?系统应用软件:为实现系统以及设备的各种功能而编写的软件,包括系统用户程序软件、设备接口通信软件和设备功能软件。 6.在现场总线控制系统中,总线设备主要分为6类 ?变送器/传感器(输入设备);

工业控制的应用现状和发展趋势

现代工业控制总线的发展趋势 前言 随着计算机、通信、自动控制、微电子等技术的发展,大量智能控制芯片和智能传感器的不断出现,以及在传感器、通信和计算机领域所取得的巨大成就使人们对系统综合性能尤其是安全性能提出了越来越高的要求:希望能对系统设备的工作状况进行实时监测和控制,并在此基础上实现设备的智能维护。对企业自动化设备而言,对其工作状况进行远程监测和控制,不仅可方便设备管理者随时了解设备工作状态,设备出现异常时主动报警,便于及时维修,还可拓宽设备服务范围,提高工作性能,延长使用寿命。这一目标的实现对控制网络在开放性、互连性、分散性等方面提出了更高要求。 一分散控制系统(DCS) 当前工业控制计算机的应用范围仍以大系统、分散对象、连续生产过程(如冶金、石化、电力)为主,采用分布式系统结构的分散控制系统仍在发展。由于开放结构和集成技术的发展,进一步扩展了大型分散控制系统的应用。 1. 应用现状 DCS自1975年问世以来,大约有3次比较大的变革,70年代操作站的硬件、操作系统、监视软件都是专用的,由各DCS厂家自己开发并没有动态流程图,通信网络基本上是轮询方式;80年代通信网络较多使用令牌方式;90年代操作站出现了通用系统,90年代末通信网络有的部分遵循TCP/IP协议,有的开始采用以太网。20多年来,DCS已广泛应用于各工业领域并趋于成熟,成为工业控制系统的主流。 虽以现场总线为基础的FCS发展很快,最终将取代传统DCS,但其发展仍面临一些问题,如统一标准、仪表智能化等。而传统控制系统的维护和改造还需DCS,因此FCS完全取代传统DCS尚有较长过程。现DCS的新产品的特点为:系统开放、管控一体化及带有先进控制软件,DCS生产厂家也从事FCS的研发、生产和推广应用。

工业控制网络作业题

工业控制网络作业题

————————————————————————————————作者: ————————————————————————————————日期:

工业控制网络作业题 一、现场总线技术 1.现场总线的定义。 安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、串行、多点通信的数据总线称为现场总线。 2.现场总线网络的特点。 1)适应工业应用环境。 2)要求实时性强,可靠性高,安全性好。 3)多为短帧传送。 4)通信的传输速率相对较低。 3.现场总线系统的组成。 4.在现场总线控制系统中,总线设备主要分为6类。 1)输入设备(变送器/传感器); 2)输出设备(执行器等); 3)控制器; 4)监控/监视计算机; 5)网络互联设备(网桥/网关/中继器/集线器/交换机/路由器); 6)其他现场总线设备(HMI)。 5.现场总线上的数据输入设备有哪些?输出数据用于什么? ●总线上的数据输入设备:包括按钮、传感器、接触器、变送器、阀门等,传 输其位置状态、参数值等数据; ●总线上的输出数据用于:驱动信号灯、接触器、开关、阀门等。

6.几种有影响的现场总线 基金会现场总线(FF总线)、CAN、PROFIBUS、LonWorks、 ControlNet、DeviceNet、Hart 7.请给出现场总线的技术特点。 1)现场通信网络 2)数字通信网络 3)系统的开放性 4)现场设备互连网络 5)系统结构和功能的高度分散性 6)互操作性与互换性网络 8.请给出5个现场总线的优点。 1)导线和连接附件大量减少 2)仪表和输入/输出转换器(卡件)大量减少 3)设计、安装和调试费用大大降低 4)维护开销大幅度下降 5)提高了系统的可靠性 6)提高了系统的测量与控制精度 7)系统具有优异的远程监控功能 8)系统具有强大的(远程)故障诊断功能 9)用户具有高度的系统集成主动权 10)现场设备更换和系统扩展更为方便 11)为企业信息系统的构建创造了重要条件 9.请列举现场总线的一些应用领域。 ●连续、离散制造业,如电力、石化、冶金、纺织、造纸,过程自动化仪表;火 车、汽车、轮船、机器人、数控机床;智能传感器 ●楼宇自控、仓储; ●智能交通、环境监测(大气、水污染监测网络) ●农、林、水利、养殖等 二、数据通信基础 10.工业数据通信系统的基本组成:发送设备、接收设备、传输介质、传输报文、 通信协议 有效性指标:数据传输速率;比特率;波特率;频带利用率;协议效率;通信效率 可靠性指标: 误码率 11.数据传输方式: 根据代码的传输顺序可分为串行传输、并行传输 根据数据信号传输时的同步方式可分为同步传输、异步传输 12.请说明数据通信方式(通信线路的工作方式)都有哪几种,并简单说明其不 同之处。 数据通信方式有单工、半双工、全双工3种。 1)单工通信:指所传送的信息始终朝着一个方向,而不进行与此相反方向的传 送

工业控制网络发展

工业控制系统的网络化发展及现状研究 发布: 2009-10-26 | 作者: | 来源: 0引言 随着计算机技术、通信技术和控制技术的发展,传统的控制领域正经历着一场前所未有的变革,开始向网络化方向发展。控制系统的结构从最初的CCS(计算机集中控制系统),到第二代的DCS(分散控制系统),发展到现在流行的FCS(现场总线控制系统)[1]。对诸如图像、语音信号等大数据量、高速率传输的要求,又催生了当前在商业领域风靡的以太网与控制网络的结合。这股工业控制系统网络化浪潮又将诸如嵌入式技术、多标准工业控制网络互联、无线技术等多种当今流行技术融合进来,从而拓展了工业控制领域的发展空间,带来新的发展机遇。 1计算机控制系统的发展 计算机及网络技术与控制系统的发展有着紧密的联系。最早在50年代中后期,计算机就已经被应用到控制系统中。60年代初,出现了由计算机完全替代模拟控制的控制系统,被称为直接数字控制(DirectDigitalControl,DDC)。70年代中期,随着微处理器的出现,计算机控制系统进入一个新的快速发展的时期,1975年世界上第一套以微处理为基础的分散式计算机控制系统问世,它以多台微处理器共同分散控制,并通过数据通信网络实现集中管理,被称为集散控制系统(DistributedControlSystem,DCS)。 进入80年代以后,人们利用微处理器和一些外围电路构成了数字式仪表以取代模拟仪表,这种DDC的控制方式提高了系统的控制精度和控制的灵活性,而且在多回路的巡回采样及控制中具有传统模拟仪表无法比拟的性能价格比。 80年代中后期,随着工业系统的日益复杂,控制回路的进一步增多,单一的DDC 控制系统已经不能满足现场的生产控制要求和生产工作的管理要求,同时中小型计算机和微机的性能价格比有了很大提高。于是,由中小型计算机和微机共同作用的分层控制系统得到大量应用。 进入90年代以后,由于计算机网络技术的迅猛发展,使得DCS系统得到进一步发展,提高了系统的可靠性和可维护性,在今天的工业控制领域DCS仍然占据着主导地位,但是DCS不具备开放性,布线复杂,费用较高,不同厂家产品的集成存在很大困难。

2016级《工业控制组网与组态技术》

《工业控制组网与组态技术》教学大纲 课程代码:01ANN803 适用专业:自动化专业 教学时数:56 学时其中实践56 学时 一、课程简介及基本要求 本课程主要是现场总线/工业以太网的网络通讯基本原理,面向底层PLC控制,构建控制网络,人机交互界面HMI(Human Machine Interface)实现远程监视及优化控制,并以工程实践为例,从整体上掌握现代大中型自动化系统的实施过程。 二、课程实验目的要求 通过课程的教学与实践使学生掌握大中型自动化系统的控制网络基本原理、设计方法、实施方法;掌握HMI的设计方法;结合S7-300 PLC工程实例,达到一定运用能力。 三、主要仪器设备 I/A S小型集散控制系统、过程控制实验装置 四、实验方式与基本要求 1、试验方式:综合设计 2、基本要求:掌握大中型自动化系统的控制网络基本原理、设计方法、实施方法 五、考核与报告(小四号黑体字) 1、考核方式:以平时考核(考勤、课堂组织纪律、课堂讨论发言)、平时实训完成度和期末考试(大作业)相结合的方式进行,综合评价学生的学习成绩 2、成绩评定:平时成绩(20%)+实训操作成绩(30%)+期末成绩(50%) 3、报告填写要求:不少于6次 六、实验项目设置与内容(小四号黑体字) 序号实验名称内容提要 实验 学时 每组 人数 实验 属性 开出 要求 备注 1 集散控制系统的组 态 1、掌握软件组态 2、学习集散控制方法 8 6 验证必做 2 基于DCS的温度控制 系统的设计与实施 1、系统设计、硬件连接 2、组态和实现控制 8 6 综合必做 3 基于DCS的液位控制 系统的设计与实施 1、掌握系统设计、硬件连接 2、验证组态和实现控制 8 6 综合选做 4 基于FCS的温度控制 系统的设计与实施 1、掌握系统设计、硬件连接 2、验证组态和实现控制 8 6 综合必做 5 基于FCS的液位控制 系统的设计与实施 1、掌握系统设计、硬件连接 2、验证组态和实现控制 8 6 综合必做 6 PROFIBUS-DP应用1、掌握网络系统故障及诊断 2、掌握STEP7使用方法 8 6 综合选做 7 HMI组态软件 1、掌握HMI的使用 2、完成基本PLC功能 8 6 综合选做 七、教材及实践指导书 1、使用教材:陈在平.《工业控制网络与现场总线技术》第三版.机械工业出版社.2006年. 2、参考教材: 杨卫华.《工业控制网络与现场总线技术》.机械工业出版社,2008. 何衍庆,俞金寿.《工业数据通信与控制网络》.化学工业出版社.2002年.

工业控制网络复习题 --电子科技大学

《工业控制网络》复习题 一、概念题 1、现场总线:安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、串行、多点通信的数据总线称为现场总线。 2、模拟数据编码:分别用模拟信号的不同幅度、不同频率、不同相位来表达数据的0、1状态的,称为模拟数据编码。 3、数字数据编码:用高低电平的矩形脉冲信号来表达数据的0、1状态的,称为数字数据编码。 4、单极性码:信号电平是单极性的数字数据编码。 5、双极性编码:信号电平为正、负两种极性的数字数据编码。 6、归零码(RZ):在每一位二进制信息传输之后均返回零电平的数字数据编码。 7、非归零码(NRZ):在整个码元时间内维持有效电平的数字数据编码。 8、差分码:用电平的变化与否来代表逻辑“1”和“0”的数字数据编码。 9、基带传输:就是在数字通信的信道上按数据波的原样进行传输,不包含有任何调制。 10、载波传输:采用数字信号对载波进行调制后实行传输。 11、单工通信:指传送的信息始终是一个方向,而不进行与此相反方向的传送。 12、半双工通信:指信息流可在两个方向上传输,但同一时刻只限于一个方向传输。 13、全双工通信:指能同时作双向通信。 14、广播式网络:仅有一条通信信道,由网络上的所有机器共享。短的消息,即按某种语法组织的分组或包,可以被任何机器发送并被其它所有的机器接收。分组的地址字段指明此分组应被哪台机器接收。一旦收到分组,各机器将检查它的地址字段。如果是发送给它的,则处理该分组,否则将它丢弃。 15、点到点网络:由一对机器之间的多条连接构成。为了能从源到达目的地,这种网络上的分组可能必须通过一台或多台中间机器。 16、类:一组表示同种系统组件的对象。一个类是一个对象的一种概括。一个类中所有的对象在形式和行为上是相同的,但是它们可以包含不同的属性值。 17、实例:一个对象的一个明确的真实(物理)事件。 18、属性:一个对象的一个外部可视特性或特点的一种描述。

级工业控制组网与组态技术

级工业控制组网与组态技 术 The latest revision on November 22, 2020

《工业控制组网与组态技术》教学大纲 课程代码:01ANN803适用专业:自动化专业 56学时其中实践56学时 教学时 数: 一、课程简介及基本要求 本课程主要是现场总线/工业以太网的网络通讯基本原理,面向底层PLC控制,构建控制网络,人机交互界面HMI(HumanMachineInterface)实现远程监视及优化控制,并以工程实践为例,从整体上掌握现代大中型自动化系统的实施过程。 二、课程实验目的要求 通过课程的教学与实践使学生掌握大中型自动化系统的控制网络基本原理、设计方法、实施方法;掌握HMI的设计方法;结合S7-300PLC工程实例,达到一定运用能力。 三、主要仪器设备 I/AS小型集散控制系统、过程控制实验装置 四、实验方式与基本要求 1、试验方式:综合设计 2、基本要求:掌握大中型自动化系统的控制网络基本原理、设计方法、实施方法 五、考核与报告(小四号黑体字) 1、考核方式:以平时考核(考勤、课堂组织纪律、课堂讨论发言)、平时实训完成度和期末考试(大作业)相结合的方式进行,综合评价学生的学习成绩 2、成绩评定:平时成绩(20%)+实训操作成绩(30%)+期末成绩(50%) 3、报告填写要求:不少于6次 七、教材及实践指导书

1、使用教材:陈在平.《工业控制网络与现场总线技术》第三版.机械工业出版社.2006年. 2、参考教材: 杨卫华.《工业控制网络与现场总线技术》.机械工业出版社,2008. 何衍庆,俞金寿.《工业数据通信与控制网络》.化学工业出版社.2002年.

石油化工行业工业控制网络安全

石油化工行业工业控制网络 安全 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

石油化工行业工业控制网络安全 石油化工企业是典型的资金和技术密集型企业,生产的连续性很强,装置和重要设备的意外停产都会导致巨大的经济损失,因此生产过程控制大多采用DCS等先进的控制系统,DCS控制系统的供应商主要有霍尼韦尔、艾默生、横河电机、中控科技等。 1. 石油化工行业网络安全分析 石油化工企业是典型的资金和技术密集型企业,生产的连续性很强,装置和重要设备的意外停产都会导致巨大的经济损失,因此生产过程控制大多采用DCS等先进的控制系统,DCS控制系统的供应商主要有霍尼韦尔、艾默生、横河电机、中控科技等。 在早期,由于信息化程度水平有限,控制系统基本上处于与信息管理层处于隔离状态。因此,石化企业的信息化建设首先从信息层开始,经过10多年的建设积累,石化&化工行业信息层的信息化建设已经有了较好的基础,涉及到了石油勘探、开发、炼油、化工、储运、销售、数据管理等诸多研究领域,企业在管理层的指挥、协调和监控能力,提高上传下达的实时性、完整性和一致性都有很大提升,相应的网络安全防护也有了较大提高。与其他行业一样,在信息管理层面,石化石化企业大量引入IT技术,同时也包括各种 IT 网络安全技术,包括如防火墙、IDS、VPN、防病毒等常规网络安全技术,这些技术主要面向商用网络应用,应用也相对成熟。 与此同时,在信息技术不断发展的推动下,石化&化工企业的生产管理理念和技术也在不断发展,DCS发展到今天,已经进入了第四代,新一代DCS呈现的一个突出特点就是开放性的提高。石化&化工企业普遍开始采用基于ERP/SCM、MES和PCS三层架构的的管控一体化信息模型思想,随着两化融合政策的推进,越来越多的石化企业实施MES系统,使管理实现了管控一体化。

《工业控制网络》课程教学大纲

《工业控制网络》课程教学大纲 课程编码:T1060260 课程中文名称:工业控制网络 课程英文名称:INDUSTRIAL CONTROL NETWORK 总学时:40讲课学时:28 实验学时:12学分: 2.5 授课对象:电气工程及其自动化专业 先修课程:电路集成电子技术嵌入式系统原理及应用 一、课程教学目的 工业控制网络即现场总线是3C(Computer,Communication and Control)技术发展汇集成的结合点,是信息技术、数字化智能化网络发展到现场的结果。现场总线是自动化及电气工程领域当前和今后的发展热点。现场总线已在国民经济各个领域和国防领域中获得了广泛应用,而且应用得越来越普遍。例如,对于电气工程领域,在现代电机驱动与控制装置(如变频器)中、在数字化变电站、配电系统/继电保护装置中、在智能电器中、在楼宇自动化装置中,几乎均要求配置现场总线通信接口;对于国防领域,在航空航天设备、舰船、装甲车辆中均使用了现场总线系统。 本课程以现场总线基本技术及其节点设计为主要内容,目的是使学生掌握现场总线通信与网络基本知识,学会阅读并理解现场总线协议/规范,能够设计一般设备的现场总线通信接口,掌握典型现场总线系统的基本应用技术,并为学生进行现场总线系统设计和现场总线分析奠定一定的基础。 二、教学内容及基本要求 本课程的主要内容包括计算机网络与现场总线的基础知识、国际标准现场总线及其它主流现场总线协议/规范、现场总线节点设计以及现场总线系统应用技术基础。 第1章绪论 现场总线的发展历程、概念、组成、技术特点与优点,标准及应用领域。 第2章数据通信与计算机网络基础 数据编码方式、信号传输方式、通信方式等数据通信基础知识;网络拓扑结构、传输介质、硬件组成与介质访问控制方式等计算机网络基础知识;协议分层、接口和服务、服务原语等计算机网络基本理论;OSI参考模型和TCP/IP参考模型及其优缺点,OSI参考模型与TCP/IP参考模型的比较。 第3章控制器局域网——CAN CAN总线的产生及其发展历程,CAN总线的技术特点,CAN节点的分层结构,CAN的一些基本概念,报文传送及其帧类型,错误类型及其界定,位定时要求,CAN总线基本技术阐释与分析,CAN控制器及接口芯片:SJA1000、82C250,CAN节点设计,CAN系统应用实例。 第4章DeviceNet DeviceNet简介,DeviceNet的连接(CAN标识符区的DeviceNet使用、连接建立概述、预定义主/从连接组、客户机和服务器的连接终点),DeviceNet信息协议(显式信息、输入/输出信息、分段/ 重组、重复MAC ID检测协议),DeviceNet通信对象类,网络访问状态机制,预定义主/从连接组,构建DeviceNet网络的步骤及所需的硬件和软件,DeviceNet节点设计、DeviceNet系统应用实例。 第5章ControlNet

工业控制网络

哈尔滨工业大学远程教育学院 2011年秋季学期 工业控制网络试题纸(开卷,时间:90分钟) (所有答案必须写在答题纸上) 一、名词解释(共8分,每题1分) 1、DCS 答:集散控制系统/分散控制系统/分布式控制系统 2、CAN 答:控制器局域网。 3、CSMA/CD 答:载波监听多路访问/冲突检测。 4、PDU 答:PDU:协议数据单元。 5、半双工通信答:信息流可在两个方向上传输,但同一时刻只限于一个方向传输。 6、ODV A 答:开放式设备网供货商协会; 7、UCMM 答:未连接报文管理器; 8、MAC 答:介质访问控制 二、填空题(共22分,每空0.5分) 1、安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、串行、多点通信通信的数据总线称为现场总线。 2、现场总线控制系统软件包括:组态工具软件、组态通信软件、监控组态软件、设备编程软件、系统用户程序软件、设备接口通信软件和设备功能软件 1、现场总线(系统)硬件包括(通信线)和(连接在通信线上的设备),软件包括(组态工具软件)、(组态通信软件)、(监控组态软件)和(设备编程软件)系统用户程序软件、设备接口通信软件和设备功能软件。等。 3、进入“工业控制系统用现场总线”国际标准IEC61158(第4版)20种现场总线中的4种类型:、、、。答:IEC/TS61158、CIP、PROFIBUS、P-NET 、FF HSE、SwiftNet、WorldFIP、INTERBUS、FF H1、PROFINET、TCnet、EtherCAT、Ethernet Powerlink、EPA、MODBUS-RTPS、SERCOS-Ⅰ,Ⅱ、VNET/IP 、CC-Link、SERCOS-Ⅲ、HART二十种现场总线中写出5种即可。 给出进入国际标准IEC62026中的2种现场总线类型:(AS-i)、(DeviceNet)。

工业控制网络考试题汇总

1,自动控制系统的发展及其体系结构 模拟仪表控制系统(分散的) 直接数字控制系统(集中的) 集散控制系统(分散控制,集中管理) 现场总线控制系统 2,DCS的结构:分散过程控制装置部分;集中操作和管理系统部分;通信部分 特点:分散控制,集中管理 3,现场总线的基本概念 现场总线定义为应用在生产现场,在微机化测量控制设备之间实现双向、串行、通信系统,也被称为开放式,数字式,多点通信的底层控制网络。 国际ISEC61158对现场总线的定义:安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式,串行,多点通信的数据总线称为现场总线。 4,在现场总线控制系统中,总先设备分为:变送器,传感器,执行器,驱动器,控制器,控制监控器,网络互联设备,其他现场总线设备。 5现场总线控制系统的技术特点:系统的开放性;互可操作性与互用性;现场设备的智能化与功能的自治化;系统结构的高度分散性;对现场环境的适应性。6·IEC61158第二版现场总线标准类型:IEC61158TS; ControlNet Tm;profibus Tm p-Net; FF HSE ; SwiftNet Tm WorldFIP Interbus 7·通信系统的组成:信息源;(发送、接收)设备;信息接受者;传输介质 8·数据编码的编码方式:数字编码、模拟编码 9·通信网络的拓扑结构机器优缺点:(1)星型结构:缺点:可靠性低 (2)环形结构:优点:键路控制简化缺点:节点数量较多时会影响通信速度,另外,环是封闭的不便于扩展。 (3)总线型结构:优点:结构简单,便于扩展缺点:通信距离短。 10·传输介质:双绞线、同轴电缆、光缆11·ISO/OSI模型将各种协议分为七层:物理层、键路层、网络层、传输层、会话层、表示层、应用层。 12·RS-232与RS485的区别: RS-232:她规定数据信号按照负逻辑进行工作,采用全双工工作方式。25针的接口插件,最高的传输速率为s,最大传输距离为15m,主要用于只有一个发送器和接收器的通信线路,采用MAX232芯 RS-485:它可以在一条通信线路上接多个发送器和接收器,(最多可接受32个),9针D型插头连接器,半双工工作方式,最大传输速率为10mbps,最大传输距离为

工业控制网络

1、工业控制网络技术的特点:(1)具有实时性和时间确定性(2)、信息多为短帧结构且交换频繁 3可靠性和安全性较高 4网络协议简单实用 5网络结构具有分散性 6易于实现与信息网络的集成 1、工业控制网络技术包括:1.现场总线技术:一种应用于生产现场,在现场设备之间,现场设备与控制装置之间实行双向串行多节点数字通信的技术 2.工业以太网技术:采用与商用以太网兼容的技术,选择适应工业现场环境的产品构建的工业网络 2、自动控制系统的发展主要经历了那几个阶段:1 气动信号控制阶段 2 模拟信号控制阶段3 集中式数字控制 4 集散式数字控制 5网络控制 3、网络控制系统的优点;1结构简单、安装维护方便 2 信息集成度高3 现场设备测控功能强 4 易于实现远程控制 4、控制网络与信息网络的区别:1 控制网络具有较高的数据传输实时性和系统响应实时性2控制网络具有较强的环境适应性和较高的可靠性 3 控制网络必须解决多家公司产品和系统在同一网络中的相互兼容问题 5、控制网络和信息网络集成的实现方式:1 采用硬件实现 2采用DDE实现 3采用统一的协议标准实现 4采用数据库访问技术实现 5采用OPC实现 第二章CAN (控制器局域网) 1、CAN总线特点:1.AN为多主方式工作 2.AN网络上的节点信息分成不同的优先级3.CAN 采用非破坏性总线仲裁技术 4.采用报文滤波 5.直接通信距离可达10km 6结点取决于总线驱动电路 7.采用短帧结构传输时间段抗干扰能力强,有较好的检错结果 8.每次信息都有CRC检验及其他检错措施 9.通信介质可为双绞线,同轴电缆或光线选择灵活 10.CAN节点在错误严重的情况下具有自动关闭输出功能 2、CAN通信模型:遵循ISO/OSI标准模型,分为数据链路层和物理层。数据链路层包括逻辑链路控制子层和媒体访问控制子层 3、报文传送类型:数据帧、远程帧、错误帧和超载帧 4、报文结构:1.帧的组成:由7个不同位场组成:帧起始、仲裁场、控制场、数据场、CRC 场、应答场、帧结束 5、错误类型:位错误、填充类型、CRC错误、格式错误、应答错误 6、正常位时间组成:分为几个互不重叠的时间段,包括:同步段、传播段、相位缓冲段1、相位缓冲段2 7、显性隐性类:显性“0”状态以大于最小阀值的差分电压表示隐形“1” 8、CAN通信控制器:(1)sja1000通信控制器实现了can总线物理层和数据链路成的所有功能。其功能组成:接口管理逻辑(iml)、发送缓冲器(txb)、接受缓冲器(rxb、rxfifo,b字节) 工作模式:basiccan模式、elican模式。 (2)tn82527can通信控制器。(3)内嵌can控制器的p8xc591。 10,CAN总线io器件:82c150 主要功能:can接口功能io功能。 11,节点设计 CAN总线系统有两类节点:不带微处理器的非智能节点和带微处理器的智能节点,1.硬件电路设计:采用898c51作为节点的微处理器,在can总线通信接口中,can 通信控制器采用sja1000,can总线收发器采用82c250 2.软件设计:三部分 can节点初始化,报文发送和报文接收。 第三章 Profibus(国际现场总线标准) 1.profibus分为哪三部分,个部分结构主要用途是什么? 答:profibus--FMS:用于解决车间一级通用性通信任务。 Profibus--DP:用于解决设备一级的告诉数据通信。

工业控制网络的区别

AB用Ethernet IP网络。
SIEMENS则是PROFINET网络,还有TCP/IP网络,
请问3者有什么区别 Ethernet/IP(以太网工业协议)是主推ControlNet现场总线的Rockwell Automation公司对以太网进入自动化领域做出的积极响应。Ethernet/IP网络采用商业以太网通信芯片、物理介质和星形拓扑结构,采用以太网交换机实现各设备间的点对点连接,能同时支持10Mbps 和100Mbps以太网商用产品,Ethernet/IP的协议由IEEE 802.3物理层和数据链路层标准、TCP/IP协议组和控制与信息协议CIP(Control Information Protocol)等3个部分组成,前面两部分为标准的以太网技术,其特色就是被称作控制和信息协议的CIP部分。Ethernet/IP 为了提高设备间的互操作性,采用了ControlNet和DeviceNet控制网络中相同的CIP,CIP 一方面提供实时I/O通信,一方面实现信息的对等传输,其控制部分用来实现实时I/O通信,信息部分则用来实现非实时的信息交换。 profinet:(实时以太网)基于工业以太网,具有很好的实时性,可以直接连接现场设备(使用PROFINET IO),使用组件化的设计,PROFINET支持分布的自动化控制方式(PROFINET CBA,相当于主站间的通讯).PROFINET同样是西门子SIMATIC NET中的一个协议,具体说是众多协议的集合,其中包括PROFINET IO RT, CBA RT, IO IRT等等的实时协议。 所以说PROFINET和工业以太网不能比,只能说PROFINET是工业以太网上运行的实时协议而以。不过现在常常称有些网络是PROFINET网络,那是因为这个网络上应用了PROFINET协议而已。 TCP/IP:不过对于Step7 TCP的连接可以有两种方式,一种是通过Open IE的方法,通过功能块确定Server/Client的关系来实现动态的一种连接,也可以断开这个连接。PLC对于这个连接个数同样是有限制的。另外一种就是在NetPro中建立TCP连接,当下载组态后,连接自动建立,但这个资源不能动态释放。连接一旦建立,数据就开始通讯了。不过每个包数据的大小并不是我们决定的,而是TCP的滑动窗口算法决定的。所以使用TCP协议时,速度的快慢不是我们所能把握的。 Ethernet/IP、Profinet、Modbus TCP/IP三种协议的区别在协议层不同而已。取个例子,以太网就像高速公路,Ethernet/IP、Profinet、Modbus TCP/IP分别像高速公路上的宝马、奔驰、奥迪车,都可以从一个城市把物品运送到另一城市。但是每个车上安装的零件无法和另一车上的零件进行更换。 Ethernt/IP属于ODVA组织,Rockwell只是其中一个推广力度比较大的公司而已。施耐德也是ODVA组织的成员,施耐德所有PLC都可以支持Ethernt/IP协议。Ethernt/IP协议是十大总线之一,和Controlnet、Devicenet一起称为CIP总线。可以实现协议间路由,但是需要Rslinx软件进行配置。通讯时需要设置RPI参数,没有任何客户端的反馈信息,因此不管现场客户端是否收到数据,数据一致由服务器不断的发,缺少相应的检测。 Profinet也是十大总线之一,由西门子主推,Profinet在很多方面比Ethernet/IP、Modbus TCP/IP要强,比如同步,安全总线等方面,也是为了保证数据的可靠性和安全性,在开放性方面较差一些。 Modbus TCP/IP由Modbus IDA组织提出,有施耐德旗下的Modicon公司主推,在目前施耐德所有PLC产品中都支持,同时也支持Ethernet/IP协议,Modbus TCP/IP是免费的、全开放协议,可以用VB等高级编程语言调用winsock控件即可实现与PLC的数据通讯,因此,很多产品都支持该协议。同时利用该协议进行通讯时,可以得到客户端的数据校验返回,因此可靠性和安全性较高,当然牺牲了数据量。 1; 这几种协议有什么区别和优势。

工业控制网络的发展综述

2014 ~ 2015 学年第2 学期 《工业控制网络》 课程报告 题目:工业控制网络的发展综述 电气工程学院 2015年5月25 日 工业控制网络的发展综述 1.引言 工业控制网络在提高生产速度、管理生产过程、合理高效加工以及保证安全

生产等工业控制及先进制造领域起到越来越关键的作用。图1总结了工业控制网络的4大主要类型:传统控制网络、现场总线、工业以太网以及无线网络。传统控制网络现在已经很少使用,目前广泛应用的是现场总线与工业以太网,而工业以太网关键技术的研究是目前工业控制网络研究的热点。 图1 工业控制网络的主要分类 2.现场总线 现场总线控制系统FCS是在基地式气动控制信号控制系统、电动单元组合式模拟仪表控制系统、直接数字控制系统DDC、集散控制系统DCS之后发展起来的新一代控制系统,它将DCS 中集中与分散相结合的模式变成了新型的全分布式控制模式,控制功能彻底下放到现场,现场控制设备通过总线与管理信息层交换信息,代表了工业控制网络技术的发展方向。 2.1现场总线主要技术特点 现场总线打破了传统控制系统的结构形式,图2为现场总线控制系统与传统控制系统的结构对比。在传统模拟控制系统中采用一对一的设备连线,按控制回路分别进行连接,位于现场的测量变送器与位于控制室的控制器之间,控制器与位于现场的执行器、开关、马达之间均为一对一的物理连接;而在FCS中,所有的设备作为网络节点连接到总线上,不仅节省了电缆,而且还方便了布线。

图2 现场总线控制系统与传统控制系统的结构对比 2.3 主流现场总线的比较 目前现场应用比较广泛的现场总线主要有FF、Profibus-DP、CAN 总线等,这些现场总线在技术上各有特色,目前它们还不能相互代替而应用到所有的领域,几种总线的特性和应用对比见表1。 表1 几种现场总线的比较

工业控制网络的发展前景

工业控制网络课程论文论文题目:工业控制网络的发展前景所在学院控制工程学院 专业电气工程及其自动化082 姓名赵宇涛 学号 2008072053 2011-10-30

工业控制网络的发展前景 姓名:赵宇涛学号:2008072053 摘要信息技术和工业自动化的发展,带动了整个社会生产向自动控制、智能控制方面转型。工业控制网络作为二十一世纪工业生产的一个重要标志,逐渐应用于工业生产的各个方面,在工业通信及先进制造领域起到关键性作用。本文首先对工业控制网络的概念以及现场总线技术做了一下简单的介绍,回顾了工业控制网络的发展历程,接着列举出了一些工业控制网络的特点,然后进行探讨工业控制网络的未来发展前景以及具体如工业以太网的介绍。最后得出工业控制网络未来发展前景的结论。 关键词发展,工业通信,先进制造领域,现场总线,工业以太网 The prospect of the development of industrial control network Abstract Information technology and industrial automation development, drive the whole society is produced to automatic control, intelligent control aspect transformation. Industrial control network in the 21 st century as the industrial production an important sign, has been used in industrial production of aspects in the industrial communication and advanced manufacturing field plays an important role. In this paper, first, the concept of industrial control network and fieldbus technology

综述工业控制网络发展现状

综述工业控制网络发展现状 工业控制网络在工业通信及先进制造领域起到关键性作用。回顾工业控制网络的发展历程,简要介绍了目前国际上已经应用的几种主要的控制网络:现场总线、工业以太网以及无线网络。最后对控制网络的发展趋势进行了展望。 工业控制网络在提高生产速度、管理生产过程、合理高效加工以及保证安全生产等工业控制及先进制造领域起到越来越关键的作用。工业控制网络从最初的计算机集成控制系统CCS到集散控制系统DCS,发展到现场总线控制系统。近年来,以太网进入工业控制领域,出现了大量基于以太网的工业控制网络。同时,随着无线技术的发展,基于无线的工业控制网络的研究也已开展。工业控制网络可以总结为四大类型:传统控制网络、现场总线、工业以太网及无线网络。传统控制网络现在已经很少使用,目前广泛应用的是现场总线与工业以太网,而工业以太网关键技术的研究是目前工业控制网络研究的热点。 现场总线 现场总线控制系统FCS是在基地式气动控制信号控制系统、电动单元组合式模拟仪表控制系统、直接数字控制系统、集散控制系统之后发展起来的新一代控制系统,他将DCS中集中与分散相结合的模式变成了新型的全分布式控制模式,控制功能彻底下放到现场,现场控制设备通过总线与管理信息层交换信息,代表了工业控制网络技术的发展方向。 现场总线是综合运用微处理技术、网络技术、通信技术和自动控制技术的产物,他在现场控制设备和测量仪器中嵌入微处理器,使他们具有数字计算和数字通信的能力,构成能独立承担某些控制、通信任务的网络节点。 按照国际电工委员会IEC61158标准的定义,现场总线是“安装在生产过程区域的现场设备、仪表与控制室内的自动控制装置、系统之间的一种串行、数字式、多点通信的数据总线”。 现场总线发展现状 由于各个国家各公司的利益之争,虽然早在1984年国际电工技术委员会/国际标准协会(IEC/ISA)就开始着手定制现场总线的标准,但至今统一的标准仍未完成。很多公司也推出其各自的现场总线技术,但彼此的开放性和互操作性还难以统一。 目前现场总线的特点是:①各种现场总线都有其应用的领域;②每种现场总线都有国际组织支持的背景;③多种总线成为国家和地区标准;④设备制造商参与多个现场总线组织; ⑤各个现场总线彼此协调共存。

工业控制网络信息安全事件案例

工业控制网络信息安全案例 一、澳大利亚马卢奇污水处理厂非法入侵事件 2000年3月,澳大利亚昆士兰新建的马卢奇污水处理厂出现故障,无线连接信号丢失, 污水泵工作异常,报警器也没有报警。本以为是新系统的磨合问题,后来发现是该厂前工程师 VitekBoden因不满工作续约被拒而蓄意报复所为。 这位前工程师通过一台手提电脑和一个无线发射器控制了150个污水泵站;前后三个多月,总计有100万公升的污水未经处理直接经雨水渠排入自然水系,导致当地环境受到严重破坏。 二、美国Davis-Besse核电站受到Slammer蠕虫攻击事件 2003年1月,美国俄亥俄州Davis-Besse核电站和其它电力设备受到SQLSlammer蠕虫病毒攻击,网络数据传输量剧增,导致该核电站计算机处理速度变缓、安全参数显示系统和过程控制 计算机连续数小时无法工作。 经调查发现,一供应商为给服务器提供应用软件,在该核电站网络防火墙后端建立了一个 无防护的T1链接,病毒就是通过这个链接进入核电站网络的。这种病毒主要利用SQLServer2000中1434端口的缓冲区溢出漏洞进行攻击,并驻留在内存中,不断散播自身,使得网络拥堵,造成SQLServer无法正常工作或宕机。实际上,微软在半年前就发布了针对SQLServer2000这个漏洞的补丁程序,但该核电站并没有及时进行更新,结果被Slammer病毒乘虚而入。 三、美国BrownsFerry核电站受到网络攻击事件 2006年8月,美国阿拉巴马州的BrownsFerry核电站3号机组受到网络攻击,反应堆再循环泵和冷凝除矿控制器工作失灵,导致3号机组被迫关闭。 原来,调节再循环泵马达速度的变频器(VFD)和用于冷凝除矿的可编程逻辑控制器(PLC)中都内嵌了微处理器。通过微处理器,VFD和PLC可以在以太局域网中接受广播式数据通讯。但是,由于当天核电站局域网中出现了信息洪流,VFD和PLC无法及时处理,致使两设备瘫痪。 四、美国Hatch核电厂自动停机事件 2008年3月,美国乔治亚州的Hatch核电厂2号机组发生自动停机事件。 当时,一位工程师正在对该厂业务网络中的一台计算机(用于采集控制网络中的诊断数据)进行软件更新,以同步业务网络与控制网络中的数据信息。当工程师重启该计算机时,同步程序重置了控制网络中的相关数据,使得控制系统以为反应堆储水库水位突然下降,自动关闭了整个机组。 五、震网病毒攻击美国Chevron、Stuxnet等四家石油公司 2012年,位于美国加州的Chevron石油公司对外承认,他们的计算机系统曾受到专用于 攻击伊朗核设施的震网病毒的袭击。不仅如此,美国BakerHughes、ConocoPhillips和Marathon 等石油公司也相继声明其计算机系统也感染了震网病毒。他们警告说一旦病毒侵害了真空阀,就会造成离岸钻探设备失火、人员伤亡和生产停顿等重大事故。 虽然美国官员指这种病毒不具有传播用途,只对伊朗核设施有效,但事实证明,震网病毒 已确确实实扩散开来。 六、Duqu病毒(Stuxnet变种)出现 2011年安全专家检测到Stuxnet病毒的一个新型变种—Duqu木马病毒,这种病毒比Stuxnet病毒更加聪明、强大。与Stuxnet不同的是,Duqu木马不是为了破坏工业控制系统,而是潜伏并收集攻击目标的各种信息,以供未来网络袭击之用。前不久,已有企业宣称他们的设施中已 经发现有Duqu代码。目前,Duqu僵尸网络已经完成了它的信息侦测任务,正在悄然等待中……。 没人知晓下一次攻击何时爆发。 七、比Suxnet强大20倍的Flame火焰病毒肆虐中东地区 Flame火焰病毒具有超强的数据攫取能力,不仅袭击了伊朗的相关设施,还影响了整个中 东地区。据报道,该病毒是以色列为了打聋、打哑、打盲伊朗空中防御系统、摧毁其控制中心而实

关于工业控制网络的发展现状及趋势的研究

关于工业控制网络的发展现状及趋势的研究 传感器技术、通信技术和计算机技术是现代信息技术的三大基础。随着这些技术不断被应用,工业控制网络凭借其速度快,紧跟时代的步伐,具有较好的开放性等优点深受大家喜爱,这就奠定了工业控制网络的重要位置,目前很多通信和先进的行业中,我们都可以发现工业控制网络的影子。文章重点讨论工业控制网络的特点及其发展趋势,以及对工业以太网的研究。工业控制网络就是将自控系统与设备之间建立联系,让它们之间可以沟通信息,通过网络来对它们进行管理,这就给管理带来很大的便利,这一连接构成了企业网络的主体。随着工信行业的发展,使整个社会生产发生转型,发展方向是自动控制、智能控制,这样就可以很好地早办公室里就可以通过网络控制工业自动化,目前使用的最普遍的就是以太网,现场总线的类型已经不能满足现在的需要。工业控制网络作为一种新技术去适应新形势。工业控制网络的出现,推动着控制技术的前进,将这个领域推动到另一个新的台阶。 标签:工业控制网络;以太网;现状;发展趋势 1 工业控制网络的研究现状 以前的工业控制网络计算机系统为集散控制系统DCS,已经弃用了原始的计算机集成系统CCS,后来又升级到现场总线控制系统,一步一个脚印,到现在以太网步入工业控制领域,使大量的起源于以太网的工业控制网络应运而生。同时,随着无线技术的快速发展,这个技术也运用在工业控制网络方面,二者的结合,使得工业控制网络更加完善化,是其使用更加方便,还节省了电缆量,使得安装更加简便。国外关于以太网控制网络的研究已经到达开发阶段,已告别了理论阶段。NETsilicon公司使用NET+ARM体系,这个体系能够生产嵌入式Ethernet/Internet 芯片;能运行FTP/HT TP/TCP/ UDP 协议,并服务于传感器、驱动器等现场设备的具有10-Base T 以太网接口嵌入式以太网控制器,由惠普公司应用IEEE 1451. 2 标准生产。 2 工业控制网络及其特点 2.1 工业控制网络 在现场总线技术的基础上发展了工业控制网络,它是用具有数字通信能力并能大量分散在生产现场的测量控制仪表作为网络节点而构成的。工业网络具有很高的公开性,对于通信协议的要求也很高。它的运作主要是把现场的设备之间的信息可以自由交流,在这样就更容易完成控制系统的任务,完成速度更快,与工业控制网络相比,现场总线就不能很好地完成这个任务。 2.2 工业控制网络的特点 工业控制网络同时具有诸多特点。它具有实现互连设备间、系统间的信息传

相关文档
最新文档