九年级数学期中试题

合集下载

江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析)

江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析)

2023—2024学年度第一学期期中九年级数学试题2023.11满分:140分,时间:90分钟)一、选择题(本大题共8小题,每小题3分,共24分.四个选项中只有一个正确选项)1. 已知的半径为,点在内,则的长可能是()A. B. C. D.答案:D解析:解:∵的半径为,点在内,∴,即的长可能是.故选:D.2. 用配方法解方程,下列配方正确的是()A. B. C. D.答案:D解析:解:因为所以则即故选:D3. 给出下列说法:①经过平面内的任意三点都可以确定一个圆;②等弧所对的弦相等;③长度相等的弧是等弧;④相等的弦所对的圆心角相等.其中正确的是()A. ①③④B. ②C. ②④D. ①④答案:B解析:解:①经过平面内不共线的三点确定一个圆,故①不符合题意;②等弧所对的弦相等,正确,故②符合题意;③长度相等的弧不一定是等弧,故③不符合题意;④在同圆或等圆中,相等的弦所对的圆心角相等,故④不符合题意,∴其中正确的是②.故选:B.4. 函数与在同一平面直角坐标系中的图像大致是()A. B.C. D.答案:C解析:解:A、二次函数的开口方向向上,即,反比例函数经过第一、三象限,即,因为的对称轴,故该选项是不符合题意;B、二次函数的开口方向向上,即,反比例函数经过第二、四象限,即,此时互相矛盾,故该选项是不符合题意;C、二次函数的开口方向向下,即,反比例函数经过第二、四象限,即,因为的对称轴,故该选项是符合题意;D、二次函数的开口方向向下,即,反比例函数经过第一、三象限,即,此时互相矛盾,故该选项是不符合题意;故选:C5. 有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?经过计算,你的结论是:长比宽多( )A. 12步B. 24步.C. 36步D. 48步答案:A解析:设矩形田地的长为步,则宽为步,根据题意得,,整理得,,解得或(舍去),所以.故选A.6. 如图,是的切线,切点为,的延长线交于点,若,则的度数为()A. B. C. D.答案:A解析:解:如图所示,连接,∵,∴,∵是的切线,∴,∴,∴的度数为.故选:A.7. 以正六边形的顶点为旋转中心,按顺时针方向旋转,使得新正六边形的顶点落在直线上,则正六边形至少旋转的度数为( )A. B. C. D.答案:B解析:解:连接,∵正六边形的每个外角,∴正六边形的每个内角,∴,,∵∴∴∴正六边形至少旋转的度数为故选:B.8. 二次函数的图像如图所示,若关于的一元二次方程(为实数)的解满足,则的取值范围是()A. B. C. D.答案:C解析:解:方程的解相当于与直线的交点的横坐标,∵方程(为实数)的解满足,∴当时,,当时,,又∵,∴抛物线的对称轴为,最小值为,∴当时,则,∴当时,直线与抛物线在的范围内有交点,即当时,方程在的范围内有实数解,∴的取值范围是.故选:C.二、填空题(本大题共10小题,每小题4分,共40分)9. 已知关于的方程的一个根是,则_______.答案:解析:解:∵关于的方程的一个根是,∴,解得:,故答案为:.10. 请在横线上写一个常数,使得关于的方程_______.有两个相等的实数根.答案:9解析:解:,故答案为:9.11. 方程的两根为、,则_______.答案:3解析:解:移项得:,,故答案为:3.12. 圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.答案:15解析:解:圆锥的侧面积=•2π•3•5=15π.故答案为15π.13. 某学习机的售价为2000元,因换季促销,在经过连续两次降价后,现售价为1280元,设平均每次降价的百分率为,根据题意可列方程为________.答案:解析:解:依题意得:,故答案为:.14. 已知拋物线经过点、,则________(填“”“ ”或“”).答案:解析:解:依题意得:抛物线的对称轴为:,关于对称点的坐标为:,,且抛物线开口向下,,故答案为:.15. 已知二次函数的图象与坐标轴有三个公共点,则k的取值范围是__.答案:且解析:解:由题意可知:且,解得:且,故答案为:且.16. 如图是二次函数的图像,给出下列结论:①;②;③;④.其中正确的是________(填序号)答案:①②④解析:解:∵抛物线与轴有两个不同交点,∴,故结论①正确;∵对称轴为直线,∴,∴,故结论②正确;由图像知,当时,,∴,故结论③不正确;∵抛物线开口向上,∴,∴,∵抛物线与轴的交点在负半轴,∴,∴,故结论④正确;∴正确的是①②④.故答案为:①②④.17. 如图,在中,,,则能够将完全覆盖的最小圆形纸片的半径是_______.答案:4解析:解:要使能够将完全覆盖的最小圆形纸片,则这个小圆形纸片是的外接圆,作的外接圆,连接,,作交于,如图:,,,,,在中,,,,故答案为:4.18. 如图,的半径为,点是半圆的中点,点是的一个三等分点(靠近点),点是直径上的动点,则的最小值_______.答案:解析:解:如图,作点关于直径的对称点,则点在圆上,连接,交直径于点,∴,则的最小值是的长,∵点是半圆的中点,的半径为,∴等于半圆的一半,∴,∵点是的一个三等分点(靠近点),∴等于的,∴,∵点与点关于直径的对称,∴,∴,∴,,∴,∵,∴,∴,∴,∴,即的最小值是.故答案为:.三、解答题(本大题共8小题,共76分.要求写出解答或计算过程)19. 解方程:(1);(2).答案:(1)或(2)或小问1解析:解:则那么或即或小问2解析:解:则故所以即或20. 下表是二次函数的部分取值情况:根据表中信息,回答下列问题:(1)二次函数图象的顶点坐标是_______;(2)求的值,并在平面直角坐标系中画出该二次函数的图象;(3)观察图象,写出时的取值范围:_______.答案:(1)(2),作图见解析(3)小问1解析:∵抛物线的对称轴为直线,∴二次函数图象的顶点坐标为,故答案为:;小问2解析:把代入中,得:,解得:,如图,小问3解析:由(2)知:二次函数的解析式为,当时,,解得:,,∴抛物线与轴的交点坐标为,,由图可知:当时,二次函数的图象在轴的上方,即,∴时的取值范围为.故答案为:.21. 如图,在中,,点是的中点,以为直径的交于点.请判断直线与的位置关系,并说明理由.答案:直线与相切,理由见解析解析:解:直线与相切.理由:连接、,则,∴,∵是的直径,∴,∴,∵点是的中点,,∴,∴,∴,∴,∵是的半径,∴直线是的切线,∴直线与相切.22. 某商店经销一种手提包,已知这种手提包成本价为50元/个.市场调查发现,这种手提包每天的销售量(单位:个)与销售单价(单位:元)有如下关系:.设这种手提包每天的销售利润为元.(1)当这种手提包销售单价定为多少元时,该商店每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种手提包的销售单价不得高于68元,该商店销售这种手提包每天要获得200元的销售利润,销售单价应定为多少元?答案:(1)当这种手提包销售单价定为65元时,该商店每天的销售利润最大,最大利润是元(2)该商店销售这种手提包每天要获得200元的销售利润,销售单价应定为60元小问1解析:解:依题意得:,整理得:,当时,有最大值为,答:当这种手提包销售单价定为65元时,该商店每天的销售利润最大,最大利润是元.小问2解析:当时,,解得:,,,,答:该商店销售这种手提包每天要获得200元的销售利润,销售单价应定为60元.23. 如图,一座石桥的主桥拱是圆弧形,某时刻测得水面宽度为8米,拱高(弧的中点到水面的距离)为2米.(1)求主桥拱所在圆的半径;(2)若水面下降1米,求此时水面的宽度(保留根号).答案:(1)主桥拱所在圆的半径长为5米(2)此时水面的宽度为米小问1解析:∵点是的中点,,∴经过圆心,设拱桥的桥拱弧所在圆的圆心为,连接,设半径,在中,,解得.答:主桥拱所在圆的半径长为5米;小问2解析:设与相交于点,连接,∴,∴,在中,,答:此时水面的宽度为米.24. 定义:若、是方程的两个整数根,且满足,则称此类方程为“自然方程”.例如:是“自然方程”.(1)下列方程是“自然方程”是_______;(填序号)①;②;③.(2)若方程是“自然方程”,求的值.答案:(1)③(2)或小问1解析:解:①,解得:,,则该方程的解不是整数,故此选项不符合题意;②,,∵,∴,则该方程的解不是整数,故此选项不符合题意;③,,或,解得:,,∴,故此选项符合题意;故答案为:③;小问2解析:,,或,解得:,,∵方程“自然方程”,∴,解得:或,∴的值为或.25. 据《尔雅·释器》记载:“好倍肉,谓之瑗(yuàn).”如图1,“好”指中间的孔,“肉”指中孔以外的边(阴影部分),“好倍肉”指中孔和环边比例为.(1)观察:“瑗”的主视图可以作两个同心圆,根据图1中的数据,可得小圆与大圆的半径之比是_______;(2)联想:如图2,在中,,,平分交于点,则_______;(3)迁移:图3表示一个圆形的玉坯,若将其加工成玉瑗,请利用圆规和无刻度的直尺先确定圆心,再以题(2)的知识为作图原理作出内孔.(不写作法,保留作图痕迹)答案:(1)(2)(3)作图见解析小问1解析:解:如图1,小圆半径是:,大圆半径是:,∴小圆与大圆的半径之比是:,故答案:;小问2解析:∵在中,,,∴,∵平分,∴,∴,,∴,∴,,∴,,故答案为:;小问3解析:作直线交圆于点,,作的垂直平分线交圆于点,,作的垂直平分线交圆于点,,交于点,过点作,以点为圆心,为半径画弧交圆于点,连接并延长交于点,作的平分线交于点,以点为圆心,为半径画圆,∵垂直平分,是圆的弦,∴线段为圆的直径,∵垂直平分于点,∴点为大圆的圆心,,∵以点为圆心,为半径画弧交圆于点,∴,∴为等边三角形,∴,∴,∵,∴,∵平分,由(2)知:,,则小即为所作.26. 如图1,已知抛物线的图象经过点,,,过点作轴交抛物线于点,点是抛物线上的一个动点,连接,设点的横坐标为.(1)填空:_______,_______,_______;(2)在图1中,若点在轴上方的拋物线上运动,连接,当四边形面积最大时,求的值;(3)如图2,若点在抛物线的对称轴上,连接,是否存在点使为等腰直角三角形?若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.答案:(1)(2)(3)点的坐标是或或或或或小问1解析:将点代入得,,解得,∴抛物线的解析式:,令,则,解得或1,∴,∴,故答案为:;小问2解析:连接,∵轴交抛物线于点,∴点的纵坐标为,,解得或4,∴,∵点的横坐标为,∴,∴,∵,∴当时,有最大值,∴的值为;小问3解析:∵,∴抛物线的对称轴为直线,∴点的横坐标为2,分三种情况:①当为直角顶点时,,如图2,过作轴,过作于,过作于,∴,∵是等腰直角三角形,且,∴,∴,∴,∴,∵,点的横坐标为2,∴,解得或,∴点的坐标为或(;②当为直角顶点时,,如图3,过作轴,过作于,过作于,同理,∵,点的横坐标为2,∴,解得或,∴点的坐标为或,;③当为直角顶点时,,如图4,过作于,过作于,同理,∵,点的横坐标为2,∴,解得或5,∴点的坐标为或;综上所述,点的坐标是或或或或或.。

九年级上册数学期中考试试卷

九年级上册数学期中考试试卷

九年级上册数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 5D. 2x - 3 = 52. 已知等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 103. 函数y = 2x + 3的图像经过哪个象限?A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限4. 以下哪个是完全平方数?A. 16B. 18C. 20D. 225. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个6. 计算以下表达式的值:(2x - 3)(x + 2)。

A. 2x^2 - x - 6B. 2x^2 + x - 6C. 2x^2 - x + 6D. 2x^2 + x + 67. 以下哪个是一元二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. 2x - 3 = 0D. x^2 - 4 = 08. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π9. 以下哪个是正比例函数?A. y = 3x + 2B. y = 2xC. y = x^2D. y = 1/x10. 计算以下表达式的值:(a + b)(a - b)。

A. a^2 - b^2B. a^2 + b^2C. 2abD. a^2 + 2ab + b^2二、填空题(每题2分,共20分)11. 已知一个等差数列的首项是3,公差是2,那么第5项的值是_________。

12. 一个直角三角形的两直角边长分别为6和8,那么斜边的长度是_________。

13. 计算以下表达式的值:(3x + 2)(3x - 2) = _________。

14. 一个数的立方根是它本身的数有_________个。

15. 函数y = -x + 5与x轴的交点坐标是(_________, 0)。

山东省菏泽市郓城县2023-2024学年九年级上学期期中数学试题(含解析)

山东省菏泽市郓城县2023-2024学年九年级上学期期中数学试题(含解析)

2023-2024学年度九年级数学期中试题....A .B .47.如图所示,点是线段A .3.5B AC 222AC AB BC =+12.如图所示,是等腰三角形;④13.如图,线段的值是.AB AC =∠,ABD △CBD AB 、15.(1)用配方法解方程:;(2)公式法解方程:.16.已知:关于x 的方程,有两个不相等的实数根,(1)求实数m 的取值范围,(2)若方程的两个实数根满足,求出符合条件的m 的值.17.某商店将进价为8元的商品按每件元售出,每天可售出件,如果这种商品每件的销售价每提高元,其销售量就减少件.(1)该店主将每件售价定为多少元时,才能使该商品每天的利润为元,同时要让利于顾客?(2)店主想要使该商品每天的利润为元,小红同学认为不可能.你同意小红同学的说法吗?(说明理由)18.2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有________人,估计该校800名学生中“比较了解”的学生有________人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A 1,A 2,A 3,1名女生B ,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人叹才禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.19.如图是由7个同样大小棱长为1的小正方体搭成的几何体,(1)请分别画出它的主视图、左视图和俯视图.(2)这个组合几何体的表面积为________个平方单位(包括底面积);2210x x --=22730x x -+=()228440x m x m --+=12x x ,1212x x x x +=⋅102000.510640800(1)求证:(2)若的面积为22.某学校的校门是伸缩电动门(如图形的内角度数为60°23.如图所示,矩形中,,于点,试问当点在上运动时,的值是否发生变化?若不变,请求出定值.24.已知,如图1,ADE △∽ABC ABCD 3040AB AD ==,P N P BC PM PN +(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的说明理由.(3)树状图如下所示(2)解:1×1=1,这个组合几何体的表面积为(平方单位);故这个组合几何体的表面积为26个平方单位;()5352126++⨯⨯=【点睛】本题考查了菱形的性质及等边三角形的判定与性质,解题的关键是注意准确作出辅助线.23.当点在上运动时,【分析】本题考查了矩形的性质、勾股定理、三角形的面积,根据勾股定理求出的面积,根据三角形面积公式得出,∵在矩形中,P BC ABCD(3)解:如图2,∵CF =-1,BH =CF∴BH =-1,①当BH =BP 时,则BP =22【点睛】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定和性质,熟练掌握性质定理是解题的关键.。

河北省石家庄市正定县2023-2024学年九年级上学期期中数学试题(含答案)

河北省石家庄市正定县2023-2024学年九年级上学期期中数学试题(含答案)

正定县2023-2024学年度第一学期期中质量检测九年级数学试卷一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.服装销售商在进行市场占有情况的调查时,最应该关注的是已售出服装型号的( )A .中位数B .平均数C .众数D .最小数2.方程的解为( )A .B .C .D .,3.已知线段a ,b ,c ,其中c 是a ,b 的比例中项,若,,则线段c 的长为( )A .B .C .D .4.如图,在中,,,则()4题图A.B .3CD5.某社区青年志愿者小分队队员的年龄情况如下表:年龄岁1819202122人数25221则这12名队员年龄的众数、中位数分别是( )A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁6.用配方法解一元二次方程,将其化成的形式,则变形正确的是( )A .B .C .D .7.若关于x 的方程存在实数根,则a 的取值范围是( )A .B .C .D .8.如图,,直线m ,n 与直线a ,b ,c 分别交于点A ,C ,E 及点B ,D ,F ,,,,则的长为( )223x x =0x =32x =32x =-10x =232x =3cm a =27cm b =81cm9cm9cm-9cm±Rt ABC △90C ∠=︒3BC AC =tan B =132810x x -+=()2x a b +=()2415x +=()2417x -=()2815x -=()2415x -=220x x a ++=1a <1a >1a ≤1a ≥////abc 4AC =6CE =2.4BD =BF8题图A .5B .5.6C .6D .6.59.如图,在中,D ,E ,F 分別是边,,上的点,,,且,那么等于( )9题图A .B .C .D .10.某校举办了以“展礼仪风采,树文明形象”为主题的比赛.已知某位选手的礼仪服装、语言表达、举止形态这三项的得分分别为90分,80分,80分,若依次按照30%,45%,25%的百分比确定成绩,则该选手的成绩是( )A .86分B .85分C .84分D .83分11.方程的两根和是,则k 的值是( )A .2B .C .3D .412.如图,一块材料的形状是锐角三角形,边长,边上的高为,把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,则这个正方形零件的边长是()12题图A .B .C .D .13.某一时刻,与地面垂直的长的木杆在地面上的影长为.同一时刻,树的影子一部分落在地面上,一部分落在坡角为45°的斜坡上,如图所示.已知落在地面上的影长为.落在斜坡上的影长为.根据以上条件,可求出树高为().(结果精确到)ABC △AB AC BC //DE BC //EF AB :1:2AD DB =:CF CB 1:22:12:32:5()2160x k x ++-=3-4-ABC BC 12cm BC AD 6cm BC AB AC 4cm5cm6cm7cm2m 1m AB AC 2m CD 2m AB 0.1m13题图A .B .C .D .14.如图,,,,利用此图可求得的值为()14题图A .B .CD15.如图1,中,,点以每秒的速度从点出发,沿折线运动,到点停止,过点作,垂足为,的长与点的运动时间(秒)的函数图像如图2所示.当的长是时,点运动的时间为()图1图2A .1.5秒B .3秒C .5秒D .1.5秒或5秒16.对于不相等的两实数p ,q,我们用符号表示p ,q 两数中较小的数,如;.若,则( )A .3B .C .D .3或二、填空题(本大题共4小题,17-18每小题3分,19题每空1分,20题每空2分,共13分,请把答案填在题中的横线上)17.已知等腰三角形的一边长为5,另一边长为一元二次方程的根,则该等腰三角形的周长为______.18.如图,,是两堵高度不同的墙,两墙之间的距离为.小明将一架木梯故在距处的处,当他将木梯靠向墙时,木梯有部分伸出强外;当他将木梯绕点旋转90°靠向墙时,木梯刚好达到墙的顶端.若墙高,则墙高______,4.0m4.2m8.0m8.2m90C ∠=︒30DBC ∠=︒AB BD =tan75︒2-2+21+Rt ABC △90ACB ∠=︒P 1cm A AC CB -B P PD AB ⊥D PD ()cm y P x PD 1.2cm P {}min ,p q {}min 1,21={min =(){}22min 1,4x x --x =1-2-2-2680x x -+=AB CD BD 7m B 2m E AB E CD AB 2.5m CD m18题图19.如图是钉板示意图,每相邻4个钉点是边长为1个单位长度的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点,则(1)与是否垂直?______(填“是”或“否”).(2)______.(3)______.19题图20.如图,,,,,点是线段上一动点,若点从点开始向点运动.(1)当时,______;(2)设为线段的中点,在点的运动过程中,的最小值是______.20题图三、解答题(本大题共6小题,共55分.解答应写出必要的文字说明、证明过程或演算步骤)21.(本题共10分,每小题5分)(1)(222.(本小题满分8分)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现.满意度从低到高为1分、2分、3分、4分、5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图所示为根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)监榃人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数E AB CD cos ACE ∠=AE =ABC ADE ∽△△90BAC DAE ∠=∠=︒3AB =4AC =D BC D B C 2BD =CE =P DE D CP ()2353x x x -=-26tan30cos 45-︒-︒︒的平均数大于3.55分,则监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.如图,在中,,于,作于,是中点,连接交于点.(1)求证:;(2)若,,求的值.24.(本小题满分8分)超速行驶被称为“马路第一杀手”.为了让驾驶员自觉遵守交通规则,公路检测中心在一事故多发地段安装了一个测速仪器,如图所示.已知检测点设在距离公路20m 的A 处,测得一辆汽车从B 处行驶到C 处所用时间为.已知,.(1)求B ,C 之间的距离(结果保留根号).(2)如果此地限速为,那么这辆汽车是否超速?请说明理由.)25.(本小题满分10分)“阳光攻瑰”是一种优质的葡萄品种.正定县某葡萄种植基地2020年年底已经种植“阳光玫瑰”300亩,到2022年年底“阳光玫瑰”的种植面积达到432亩.(1)求该基地“阳光玫瑰”种植面积的年平均增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/kg 时,每天能售出300kg ;销售单价每降低1元,每天可多售出50g ,为了减少库存,该基地决定降价促销.已知该基地“阳光玫瑰”的平均成本为10元/kg ,若要使销售“阳光玫瑰”每天获利3150元,则销售单价应降低多少元?26.(本小题满分11分)ABC △AB AC =AD BC ⊥D DE AC ⊥E F AB EF AD G 2AD AB AE =⋅4AB =3AE =DG 2.7s 45B ∠=︒30C ∠=︒70km/h 1.7≈ 1.4≈如图,在四边形中,,,,,,点在边上,且.将线段绕点按顺时针方向旋转到,的平分线所在直线交折线于点,设点在该折线上运动的路经长为,连接,.(1)如图①,当点在上时,若点到的距离为1,求的值.(2)当时,在图②中画出图形,并求的值;(3)当时,请直接写出点到直线的距离(用含的式子表示).图① 图②备用图ABCD 4AB=BC =6CD =3DA =90A ∠=︒M AD 1DM =MA M ()0180n n ︒<≤MA 'A MA ∠'MP AB BC -P P ()0x x >A P 'BD P AB P BD tan A MP ∠'180n =x 04x <≤A 'AB x九年级数学参考答案一、选择题1-5CDBAD6-10DCCCD11-16AADBDD二、填空题17.12或13或14 18.419.(1)是(2(320.(1)(2)2三、解答题:21.(本题共10分)解:(1)……(2分)……(3分)或……(5分)(2……(8分)……(9分)83()2353x x x -=-()()3530x x x ---=()()350x x --=30x -=50x -=13x =25x =2606tan 30cos 45︒-︒-︒26=-3122=--……(10分)22.(本题共8分)解:(1)中位数为:(分)……(2分)平均数为:(分)……(3分)∴该部门不需要整改……(4分)(2)设监督人员抽取的问卷评分为x 分∴监督人员抽取的问卷评分为5分……(6分)中位数发生了变化,……(7分)因为加入这个数据后新的中位数为4分……(8分)23.(本题共8分)(1)证明:∵,∴∵∴∴……(2分)∴∴……(4分)(2)连接DF∵,∴D 为BC 中点……(5分)∵F 为AB 中点∴DF 为△ABC 中位线∴,∴∴……(7分)由(1)得∴∴(8分)1=-343.52+=()1123364555 3.520+⨯+⨯+⨯+⨯=3.520 3.55201x⨯+>+4.55x >AB AC =AD BC ⊥BAD DAE ∠=∠DE AC⊥90ADB AED ∠=∠=︒ABD ADE ∽△△AB ADAD AE=2AD AB AE =⋅4AB AC ==AD BC ⊥//DF AC 122DF AC ==DGF AGE ∽△△23DG DF AG AE ==23412AD AB AE =⋅=⨯=AD =25DG AD ==24.(本题共8分)解:(1)作,则……(1分)在Rt △ABD 中,∴……(2分)在中,∴∴……(4分)∴……(5分)(2)这辆汽车超速……(6分)……(7分)∴这辆汽车超速……(8分)25.(本题共10分)(1)设年平均增长率为x……(2分)(舍去)答:年平均增长率为20%……(4分)(2)设销售单价应降低y 元……(7分)……(9分)∵要减少库存∴取……(10分)答:销售单价应降低3元.26.(本题共11分)解:(1)作,则∵∴……(2分)∴AD BC ⊥20AD =45B ∠=︒20BD AD ==Rt ACD △30C ∠=︒20tan 30AD CD CD ︒===CD =(20m BC BD CD =+=+()2020 1.720m/s 2.7+⨯≈=20m/s 72km/h 70km/h=>()23001432x +=10.2x =2 2.2x =-()()2010300503150y y --+=2430y y -+=11y =23y =3y =PQ BD ⊥1PQ =90BQP BAD ∠=∠=︒PBQ DBA∠=∠BPQ BDA ∽△△BP PQ BD DA=即∴……(3分)∴……(4分)(2)当时,如图,设PM 交BD 于点N ……(5分)∵MP 平分 ∴∴ ∴∴即 ∴,∴……(6分)∵ ∴ ∴即 ……(7分)∴……(8分)(4)……(11分)153BP =53BP =57433AP =-=773tan tan 26AP A MP AMP AM '∠=∠===180n =A MA '∠90PMA A '∠=︒=∠//PM AB DNM DBA∽△△DN DM MNDB DA AB ==1534DN MN ==53DN =43MN =510533BN =-=90PBN DMN ∠=∠=︒PNB DNM∠=∠PBN DMN △∽△PB BNDM MN=103413PB=52PB =513422x AB PB =+=+=2244x x +。

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

高新区2024-2025学年第一学期九年级数学期中学业水平测试试题(满分150分时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,一个实木正方体内部有一个圆锥体空洞,它的左视图是( )A. B. C. D.2.若a4=b3,则ab的值是( )A.34B.43C.12D.1123.对于反比例函数y=﹣6x的图象,下列说法正确的是()A.它的图象分布在一、三象限B.它的图象与坐标轴可以相交C.它的图象经过点(-4,-1.5)D.当x<0时,y的值随x的增大而增大4.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则sinB=( )A.35B.45C.√74D.34(第4题图)(第5题图)(第7题图)5.如图,DE∥BC,且EC:BD=2:3,AD=6,则AE的长为()A.1B.2C.3D.46.函数与y=kx与y=kx-k(k≠0)在同一平面直角坐标系中的大致图象是( )7."今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?"这是我国古代数学著作《九章算术》中的"井深几何"问题,它的题意可以由如图所示(单位:尺),已知井的截面图为矩形ABCD ,设井深为x 尺,下列所列方程中,正确的是( )A.5x =0.45B.x5+x=50.4C.x5﹣x=0.45D.x5+x=0.45A. B. C. D.9.根据图①所示的程序,得到了y与x的函数图象,如图②.若点M是y轴正半轴上任意一点,过点;②△OPO的面积为定M作PQ平行x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=2x值;③x>0时,y随x的增大而增大;④MQ=2PM;⑤∠POO可以等于90°。

其中正确结论是()A.①②⑤ B.②④⑤ C.③④⑤ D.②③⑤(第9题图)(第10题图)10.如图,正方形ABCD中,点E是CD边上一点,连结BE,以为对角线BE作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF ⊥BD;④2BG2=BH·BD,你认为其中正确的有()A.1个B.2个C.3个D.4个二.填空题:(本大题共5个小题,每小题4分,共20分。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

九年级期中数学试卷及答案

九年级期中数学试卷及答案

九年级期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则下列哪个选项一定成立?A.ac>bcB.a+c>b+cC.ac>bcD.a/c>b/c(c≠0)答案:A2.下列哪个是无理数?A.√9B.√16C.√3D.π答案:C3.若x^25x+6=0,则x的值为?A.2或3B.1或6C.-2或-3D.-1或-6答案:A4.下列哪个函数是增函数?A.y=-2x+3B.y=x^2C.y=1/xD.y=-x^2答案:A5.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为?A.26B.28C.30D.32答案:C6.下列哪个图形不是正多边形?A.矩形B.菱形C.正五边形D.正六边形答案:A7.若一个数的算术平方根是3,则该数为?A.9B.6C.12D.18答案:A二、判断题(每题1分,共20分)8.若a>b,则ac>bc。

(c>0)答案:错误9.两个无理数的和一定是无理数。

答案:错误10.两个等腰三角形的面积相等,则它们的周长也相等。

答案:错误11.若一个数的平方是正数,则该数一定是正数。

答案:错误12.任何两个奇数之和都是偶数。

答案:正确13.任何两个负数相乘都是正数。

答案:正确14.若一个数的立方是负数,则该数一定是负数。

答案:正确三、填空题(每空1分,共10分)15.若a=3,b=-2,则a+b=___________,ab=___________。

答案:1516.若x^25x+6=0,则x的值为___________或___________。

答案:2317.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为___________。

答案:2818.若一个数的算术平方根是3,则该数为___________。

答案:919.两个等腰三角形的面积相等,则它们的周长也相等。

(判断对错)答案:错误四、简答题(每题10分,共10分)20.请简述勾股定理的内容。

期中检测九年级数学卷

期中检测九年级数学卷

期中检测九年级数学卷时间:120分钟满分:150分一.选择题(共12小题,满分48分,每小题4分)1.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是()A.B.C.D.3.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8B.7C.4D.34.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=5.若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥16.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和35%,则口袋中白色球的个数可能是()A.6个B.14个C.20个D.40个7.如图,∠DAB=∠CAE,请你再添加一个条件,使得△ADE∽△ABC.则下列选项不成立的是()A.∠D=∠B B.∠E=∠C C.D.第7题图第8题图8.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m 时,标准视力表中最大的“E”字高度为72.7mm,当测试距离为3m时,最大的“E”字高度为()A.4.36mm B.29.08mm C.43.62mm D.121.17mm9.如图,在△ABC中,DE∥BC,=,则的值是()A.B.1C.D.第9题图第10题图10.如图,点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC 缩小到原来的,得到△A′B′C′,点P在A′C′上的对应点P′的坐标为()A.(4,3)B.(3,4)C.(5,3)D.(4,4)11.如图,正方形ABCD的边长为4,G是BC边上一点,若矩形DEFG的边EF经过点A,GD=5,则FG长为()A.2.8B.3C.3.2D.4第11题图第12题图12.如图,正方形ABCD的边长为6,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①∠DEC=∠AEB;②CF⊥DE;③AF=BF;④=,其中正确结论的个数是()A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)13.若=,则=.14.方程x(x﹣2)=x的根是.15.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是m.16.某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为72cm2,则菱形的边长为.(结果中如有根号保留根号)18.四个完全相同的小球上分别标有数字﹣2,﹣1,1,3,从这4个球中任意取出一个球记为a,不放回,再取出一个记为b.则能使一次函数y=2ax+b的图象必过第一、第四象限的概率为.三.解答题(共9小题,满分78分)19.(6分)解方程:x(x﹣4)=2.20.(6分)已知:如图,在□ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.21(6分)如图,等边△ABC中,点D、E分别在边BC、AC上,∠ADE=60°(1)求证:△ABD∽△DCE;(2)若BD=2,CE=,求等边△ABC的边长.22.(8分)某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形土地做养鸡场.如图所示,养鸡场一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆)求这个养鸡场的长和宽.23.(8分)商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)若每台冰箱降价150元,则平均每天可售出台冰箱;(2)商场要想在这种冰箱销售中平均每天盈利4800元,要使百姓得到实惠,每台冰箱应降价多少元?24.(10分)某校九(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,将“垃圾分类”的知晓情况分为A,B,C,D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.根据以上信息解决下列问题:(1)补全条形统计图,并求出扇形统计图中类别C所对应扇形的圆心角.(2)类别A的4名学生中有3名男生和1名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,求所选取的2名学生中恰好有1名男生、1名女生的概率.25.(10分)如图所示,△ABC中,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发:(1)经过多少秒后,△CPQ的面积为8cm?(2)经过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似.26.(12分)一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且==,AE=2,AB =4,将矩形AEFG绕点A按顺时针方向旋转(如图3).连接DE,BG.说明BE与DG的关系;小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.27.(12分)【问题发现】如图1,△ABC和△ADE均为等边三角形,点B,D,E在同一直线上.填空:①线段BD,CE之间的数量关系为;②∠BEC=°.【类比探究】如图2,△ABC和△ADE均为等腰直角三角形,∠ACB=∠AED=90°,AC =BC,AE=DE,点B,D,E在同一直线上.请判断线段BD,CE之间的数量关系及∠BEC 的度数,并给出证明.【解决问题】如图3,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点D在AB边上,DE⊥AC于点E,AE=3.将△ADE绕点A旋转,当DE所在直线经过点B时,点C到直线DE的距离是多少?(直接写出答案)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.B.C.D.
—第一学期初三年级期中试卷
数学学科
命题人:卢锐平校对人:卢锐平审核人:戴建勇
说明:
1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分120分,考试时间为120分钟
一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,
恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置
.......上)
1.下列各组二次根式中是同类二次根式的是()A.
2
1
12与B.27
18与C.
3
1
3与D.54
45与
2.下列图形中对称轴最多的图形是()
3.下列命题中不成立
...的是()
A.矩形的对角线相等
B.菱形的对角线互相垂直
C.邻边相等的矩形一定是正方形
D.一组对边平行,另一组对边相等的四边形一定是平行四边形
4.下列各式正确的是()A.a
a=
2B.a

=
2C.a
a=
2D.2
2a
a=
5.若关于x一元二次方程0
1
6
2=
+
+
-k
x
x有两个相等的实数根,则k的值为( ) A. 8 B. 9 C.12 D. 36
6.已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交
BC于点E,AD=6cm,则OE的长为()
A.6 cm B.4 cm C.3 cm D.2 cm
7.顺次连结任意四边形各边中点所得到的四边形一定是()
A.平行四边形B.矩形C.菱形D.正方形
60°
30°
D
C
B
A
8.如图,已知梯形ABCD中,AD∥BC,∠B
=30°,∠C=60°,AD=4,AB=33,则下底BC 的长是()
A.8B.(4+33)C.10D.63
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案
直接填写在答题卡相应位置
.......上)
9.若,那么x的取值范围是;
10.关于x的方程x²+mx-1=0的两根互为相反数,则m的值为_______.
11.一组数据:1,-2,a的平均数是0,那么这组数据的方差是
12. 若梯形的面积为6㎝2,高为2㎝,则此梯形的中位线长为
13.若6+11和6-11的整数部分分别是a和b,则a+b的值是;14.甲、乙两同学近期4次数学单元测试成绩的平均分相同,甲同学成绩的方差,乙同学成绩的方差,则他们的数学测试成绩谁较稳定(填甲或乙).15.当m时,关于x的一元二次方程()2
1-10
m x x
++=有实数根
16.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的
一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N 分别是AD、BC边的中点,则A′N=.
第16题图第17题图第18题图
17.下图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P 到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是_______. 18.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是 cm2.
x
x-
=
-2
22)

2.3
2=

S
1.4
2=

S
三、解答题(本大题共有10小题,共74分.请在答题指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分5
20.(本题满分5分)计算:
(
(2005
2006
22-
21.(本题满分6分)解方程()()2232
-=-x x x
22.(本题满分6分)解方程21110236
x x --=
23.(本题满分7分)如图,矩形ABCD 中,点E 、F 分别在AB 、BC 上,DEF △为等
腰直角三角形,90102DEF AD CD AE ∠=+==°,,,求AD 的长.
D A B
C
F E
24.(
第一场 第二场 第三场 第四场 第五场 小冬 10 13 9 8 10 小夏
12
2
13
21
2
(1) 平均数 中位数
众数 方差 小冬 10 10 2.8 小夏
10
12
32.4
(2)根据以上信息,若教练选择小冬参加下一场比赛,教练的理由是什么?
(3)若小冬的下一场球赛得分是11分,则在小冬得分的四个统计量中(平均数、中位数、众数与方差)哪些发生了改变,改变后是变大还是变小?(只要回答是“变大”或“变小”)
( ()()
()
2
2
2
2
12
1n S x x x
x
x x n

⎤=-+-+
+-⎢⎥⎣⎦

25.(本题9分)如图,平行四边形ABCD 中,点E 是AD 的中点,连接BE 并延长交CD 的延长线于点F .
(1)求证:△ABE ≌△DFE ; (2)连接CE ,当CE ..平分∠...BCD ...时.
, 求证:CE ⊥BF .
A
B
C
D
E
F
(第25题图)
26.(本题8分)某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量
p(桶)与销售单价x(元)的函数图象如图所示.
(1)求日均销售量p(桶)与销售单价x(元)的函数关系;
(2)若该经营部希望日均获利1350元,请你根据以上信息,就该桶装水的销售单价或销售
数量,提出一个用一元二次方程
......解决的问题,并写出解答过程.
27.(本题10分)在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这
样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法
....
(1)△ABC的面积为:.
2、17,请在图1的正方形网格中画出相应的△(2)若△DEF三边的长分别为5、2
DEF,并利用构图法
...求出它的面积.
(3)利用第2小题解题方法完成下题:如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.
A
B
C
(第27题图1)
28.(本题12分)如图1,在正方形ABCD 中,对角线AC 与BD 相交于点O ,AF 平分∠BAC ,
交BD 于点F . (1)求证:DF =DA ;
(2)过点F 作FH ⊥AB ,垂足为点H ,求证:FH +
2
1
AC =AD ; (3)如图2,将∠ADC 绕顶点D 旋转一定的角度后,DC 边所在的直线与BC 边交于点 C 1(不与点B 重合),DA 边所在的直线与BA 边的延长线交于点A 1. A 1F 1平分∠BA 1C 1, 交BD 于点F 1,过点F 1作F 1H 1⊥AB ,垂足为H 1,试猜想F 1H 1、2
1
A 1C 1与AD 三者之 间的数量关系,并证明你的猜想.
A
B
C
D
O
F
H
图1
A 1
A B
C
D
H 1
C 1
F 1
图2
(第28题图)。

相关文档
最新文档