九年级数学上期中测试题

合集下载

陕西省西安市长安区2024届九年级上学期期中学习评价数学试卷(含答案)

陕西省西安市长安区2024届九年级上学期期中学习评价数学试卷(含答案)

2023~2024学年度第一学期期中学习评价九年级数学纸笔测试第一部分(选择题共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若关于x 的一元二次方程20x x m --=的一个根是3x =,则m 的值是()A.6- B.3- C.3D.62.用配方法解方程2620x x --=,配方后的方程是()A.()232x -= B.()239x -= C.()239x += D.()2311x -=3.若菱形两条对角线的长度是方程2680x x -+=的两根,则该菱形的边长为()B.4C.5D.254.如图,直线123l l l ,直线AC 分别交1l 、2l 、3l 于点A 、B 、C ,直线DF 分别交1l 、2l 、3l 于点D 、E 、F ,已知23BC AC =,若3DE =,则DF 的长是()A.94B.92C.9D.65.阳光明媚的一天,身高为1.6m 的小颖想测量校内一棵大树的高度.如图,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 3.2m BC =,0.8m CA =,于是计算出树的高度应为()A.8mB.6.4mC.4.8mD.10m6.如图,在菱形ABCD 中,84BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则CDF ∠的度数是()A.42︒B.48︒C.54︒D.60︒7.如图,在下列方格纸中的四个三角形,是相似三角形的是()A.①和②B.①和③C.②和③D.②和④8.如图,在ABC △中,BD AC ⊥于点D ,E 为BC 的中点,DE DC =,81A ∠=︒,则ABC ∠的度数是()A.31︒B.39︒C.41︒D.49︒9.阅览室有十本名著,小红和小燕都想借阅,于是她们通过摸球游戏决定谁先看,游戏规则:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同,先由小红从中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小燕从口袋中摸出1个乒乓球,记下颜色.若二人摸到乒乓球的颜色相同,则小红先看,否则小燕先看.则小燕先看的概率是()A.13 B.12C.49 D.5910.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP 、EF .给出下列结论:①2PD EC =;②四边形PECF 的周长为8;③EF 的最小值为2;④AP EF =;⑤AP EF ⊥.其中正确的结论有()A.5个B.4个C.3个D.2个第二部分(非选择题共90分)二、填空题(共5小题,每小题3分,计15分)11.如图,AB CD ,AC 与BD 相交于点E ,已知1AE=,2CE =,3DE =,则BD 的长为________.12.一个口袋中有若干个白球,小明想用学过的概率知识估计口袋中白球的个数,于是将4个黑球放入口袋中搅匀(黑球与口袋中的白球除颜色外其余都相同),从口袋中随机摸出一球,记下其颜色,再把它放回口袋并摇匀,不断重复上述过程,共摸了300次,其中有48次摸到黑球,估计口袋中大约有________个白球.13.若a 、b 是一元二次方程2290x x +-=的两个根,则223a a ab ++的值为________.14.如图,在矩形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将ADE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为________.15.如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为1S 、2S ,则12S S +的值为________.三、解答题(共9小题,计75分.解答应写出过程)16.(本小题6分)如图,在ABC △中,AB AC =,请用尺规作图法在BC 上求作一点D ,使得DAB ABC △△.17.(本小题8分)解方程:(1)()()2333x x x +=+(2)()()32514x x -+=-18.(本小题8分)已知532a b c ==.(1)求a bc+的值;(2)若29a b c +-=,求2a b c -+的值.19.(本小题8分)如图,在菱形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE BF =.求证:(1)ADE CDF ≅△△;(2)DEFDFE ∠=∠.20.(本小题8分)某校九年级1班为准备学校元旦演讲比赛,通过班级预赛共评选出两位男生和三位女生共5名推荐人选.(1)若该班随机选一名同学参加比赛,求选中男生的概率;(2)若该班随机选出两名同学组成一组选手参加比赛,求恰好选中一男一女的概率(用列表或树状图的方法求解).21.(本小题9分)已知关于x 的一元二次方程()22210x k x k +-+=有实数解.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为1x 、2x ,若()()125114x x --=,求k 的值.22.(本小题9分)某商品专卖店,平均每天可售出40件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于35元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若该商品降价5元,那么平均每天销售数量是多少件?(2)若专卖店每天销售该商品盈利2400元,那么每件商品应降价多少元?23.(本小题9分)如图,在四边形ABCD 中,AB CD ,90D ∠=︒,ABC ∠的平分线BE 交CD 于点E ,F 是AB 的中点,连接AE 、EF ,且AE BE ⊥.求证:(1)四边形BCEF 是菱形;(2)2BE AEAD EF ⋅=⋅.24.(本小题10分)如图,在Rt ABC △中,90B ∠=︒,8cm AB =,6cm BC =.点P 从A 点出发沿AC 向C 点运动,速度为每秒2cm ,同时点Q 从C 点出发沿CB 向B 点运动,速度为每秒1cm ,当点P 到达顶点C 时,P 、Q 同时停止运动,设P 点运动时间为秒.(1)当为何值时,PQC △是以C ∠为顶角的等腰三角形?(2)当为何值时,PQC △的面积为25cm (3)当为何值时,PQC △与ABC △相似?2023~2024学年度第一学期期中学习评价九年级数学纸笔测试参考答案及评分标准一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.D2.D3.A4.C5.A6.C7.B8.B9.C 10.B二、填空题(共5小题,每小题3分,计15分)11.9212.2113.18-14.10315.68三、解答题(共9小题,计75分,解答应写出过程)16.解:作图(略)……………………………………………………………………(5分)则点D 即为所求.…………………………………………………………………………(6分)17.解:(1)原方程可化为()()23330x x x +-+=.……………………………………(1分)即()()3230x x +-=,……………………………………………………………………(2分)∴30x +=或230x -=,………………………………………………………………(3分)∴13x =-,232x =.……………………………………………………………………(4分)(2)原方程可化为22561514x x x +--=-,即2210x x --=,……………………………………………………………………(1分)这里2a =,1b =-,1c =-.∵()()224142190b ac -=--⨯⨯-=>,………………………………………………(2分)∴()113224x --±==⨯,……………………………………………………………………(3分)∴11x =,212x =-.…………………………………………………………………………(4分)18.解:(1)∵532a b c==,∴532a b c +=+,……………………………………………………………………………………(2分)∴842a b c +==.………………………………………………………………………………(3分)(2)∵532a b c ==,∴532252a b c a +-⨯=+-,…………………………………………………………………………(5分)∴459a=.……………………………………………………………………………………(6分)∵532a b c==,∴25325429a b c a ⨯-+==-+,……………………………………………………………………(7分)∴8124a b c -+=.…………………………………………………………………………(8分)19.证明:(1)∵四边形ABCD 是菱形,∴AD CD AB BC ===,A C ∠=∠,………………………………………………(2分)∵BE BF =,∴AE CF =.……………………………………………………………………(3分)在ADE △与CDF △中,,,,AD CD A C AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE CDF ≅△△.(2)∵ADE CDF ≅△△,∴DE DF =,∴DEFDFE ∠=∠.20.解:(1)随机选一名同学参加比赛有5种等可能结果数,而选中男生的结果有2种,∴选中男生的概率为:25P =.………………………………………………………………(3分)(2)5名推荐人选中,两位男生分别记为A ,B ,三位女生分别记为c ,d ,e 列表为:A Bc d eA ABAc Ad Ae BBABc Bd BeccA cB cdceddA dB dcdee eAeBeced…………………………………………………………………………(6分)共有20种等可能的结果数,其中恰好选中一男一女的结果数为12种.所以恰好选中一男一女的概率为:123205P ==.………………………………………………(8分)21.解:(1)∵关于x 的方程()22210x k x k +-+=有实数根,∴()22242141b ac k k ∆=-=--⨯⨯……………………………………………………(2分)410k =-+≥,………………………………………………………………………………(3分)∴14k ≤.……………………………………………………………………………………(4分)(2)∵方程()22210x k x k +-+=的两个实数根分别为1x ,2x .∴()1221x x k +=--,212x x k =.……………………………………………………(5分)由()()125114x x --=,∴()1212514x x x x -++=,………………………………………………………………(6分)∴()252114k k +-+=,即24850k k +-=,…………………………………………(7分)∴152k =-,212k =(舍去),…………………………………………………………(8分)∴52k =-.……………………………………………………………………(9分)22.解:(1)若该商品降价5元,平均每天销售数量是405250+⨯=(件).………………(3分)(2)设每件商品应降价x 元,则每件盈利为:()50x -元,日销售量为:()402x +件,…………(5分)根据题意得:()()504022400x x -+=,……………………………………………………(7分)解这个方程得:110x =,220x =.…………………………………………………………(8分)由于每件盈利不少于35元,那么每件应降价10元.………………………………………………(9分)23.证明:(1)∵AE BE ⊥,F 是AB 的中点.∴EFBF AF ==,∴FEB FBE ∠=∠.……………………………………………………………………………………(1分)∵BE 是ABC ∠的平分线,∴FBE CBE ∠=∠,∴FEB CBE ∠=∠,……………………………………………………………………(2分)∴EFBC ,………………………………………………………………………………(3分)∵AB CD ,∴四边形BCEF 是平行四边形.………………………………………………………………(4分)∵EFBF =,∴四边形BCEF 是菱形.……………………………………………………………………(5分)(2)∵AB CD ,∴DEA EAB ∠=∠.……………………………………………………………………(6分)∵90D AEB ∠=∠=︒,∴ADE BEA △△,………………………………………………………………(7分)∴AE ABAD BE=,…………………………………………………………………………(8分)∴BE AEAD AB ⋅=⋅,即2BE AE AD EF ⋅=⋅.………………………………………………………………(9分)24.解:(1)∵8cm AB =,6cm BC =,∴10cm AC =.由题意2AP t =,102PC t =-,CQ t =,()05t <≤………………………………(1分)∵PQC △是以C ∠为顶角的等腰三角形,∴PC CQ =,……………………………………………………………………(2分)∴102t t -=,解得103t =.……………………………………………………………………………………(3分)(2)过点P 作PD BC ⊥于点D ,∴PD PC AB AC=,………………………………………………………………………………(4分)∴()()810285105t t AB PC PD AC --⋅===,…………………………………………(5分)∴()85115225PQC t S CQ PD t -=⋅=⋅=△,解得:1252t t ==.……………………………………………………………………(6分)(3)当11PQ C ABC △△时,11CP AC CQ BC=,…………………………………………(7分)∴102106t t -=,解得:3011t =.…………………………………………………………………………(8分)当22P Q C BAC △△时,22CP BCCQ AC=,…………………………………………(9分)∴102610t t -=,解得:5013t =.综上所述3011t =或5013t =时,PQC △与ABC △相似.…………………………(10分)11。

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题一.选择题(共12小题,满分36分,每小题3分)1.已知关于x的方程(m+1)x2+2x﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣12.在平面直角坐标系中,点A(3,﹣4)与点B关于原点对称,则点B的位置()A.第一象限B.第二象限C.第三象限D.第四象限3.若n(n≠0)是关于x的方程x2+mx+n=0的根,则m+n的值为()A.0B.1C.﹣1D.﹣24.在下列方程中,满足两个实数根的和等于2的方程是()A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 5.一元二次方程x2+2020=0的根的情况是()A.有两个相等的实根B.有两个不等的实根C.只有一个实根D.无实数根6.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为()A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×227.二次函数y=x2+3x﹣2的图象是()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,则下列四个结论错误的是()A.a﹣b+c<0B.2a+b=0C.4a﹣2b+c=0D.am2+b(m+1)≥a9.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a (x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5B.﹣1C.5或1D.﹣5或﹣1 10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外11.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车的刹车距离s(m)与车速x(km/h)之间有下列关系:s=0.01x+0.01x2,在一个限速40km/h的弯道上的刹车距离不能超过()A.15.8m B.16.4m C.14.8m D.17.4m12.如图,将△ABD绕顶点B顺时针旋转40°得到△CBE,且点C刚好落在线段AD上,若∠CBD=32°,则∠E的度数是()A.32°B.34°C.36°D.38°二.填空题(共6小题,满分24分,每小题4分)13.已知方程(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,则a=.14.设m,n是方程x2﹣x﹣2=0的两根,则m2+n+mn=.15.要将函数y=ax2+bx+c的图象向右平移3个单位长度.再向上平移2个单位长度得到的二次函数为y=2x2﹣4x+3,那么a+b+c=.16.若函数y=x2﹣4x+b的图象与坐标轴只有两个交点,则b的值是.17.如图,在喷水池的中心A处竖直安装一根水管AB,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线的表达式为y=﹣(x﹣1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为,其中自变量的取值范围是,水管AB的长为m.18.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.三.解答题(共8小题,满分90分)19.解下列方程:(1)(2x+1)2=9;(2)x2﹣2x﹣1=0;(3)(x﹣3)2=4(3﹣x).20.已知关于x的一元二次方程mx2+nx﹣2=0.(1)当n=m﹣2时,证明方程有两个实数根;(2)若方程有两个不相等的实数根,写出一组满足条件的m,n的值,并求出此时方程的根.21.二次函数f(x)=ax2+bx+c的自变量x的取值与函数y的值列表如下:(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线y=x上,并写出平移后二次函数的解析式.22.如图,抛物线与直线交于点A(﹣4,﹣1)和点B(﹣2,3),抛物线顶点为A,直线与y轴交于点C.(1)求抛物线和直线的解析式;(2)若y轴上存在点P使△PAB的面积为9,求点P的坐标.23.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.24.如图,在一个边长为32cm的正方形的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计),且折成的长方体盒子的表面积是864cm2,求剪去小正方形的边长.25.利用对称性可设计出美丽的图案,在边长为1的方格中,有如图所示的四边形(顶点都在格点上)(1)先作该四边形关于直线l成轴对称图形.(2)再作出你所作图形连同原四边形绕O点按顺时针方向旋转90°后的图形.(3)完成上述设计后,求整个图案的面积.26.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.2.解:点A的坐标是(3,﹣4),若点A与点B关于原点对称,则点B的坐标为(﹣3,4),位于第二象限.故选:B.3.解:把x=n代入方程x2+mx+n=0得n2+mn+n=0,∵n≠0,∴n+m+1=0,即m+n=﹣1.故选:C.4.解:A、Δ=b2﹣4ac=(﹣2)2﹣4×1×4=﹣12<0,方程没有实数根,所以A选项不符合题意;B、x1+x2=﹣2,所以B选项不符合题意;C、Δ=b2﹣4ac=4﹣4×4<0,方程没有实数根,所以C选项不符合题意;D、x1+x2=2,所以D故选:D.5.解:∵a=1,b=0,c=2020,∴Δ=b2﹣4ac=02﹣4×1×2020=﹣8080<0,∴一元二次方程x2+2020=0的根的情况是无实数根.故选:D.6.解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.7.解:∵y=x2+3x﹣2=(x+)2﹣,∴抛物线的开口向上,顶点坐标为(﹣,﹣),对称轴为直线x=﹣故选:B.8.解:由抛物线可得当x=﹣1时,y<0,故a﹣b+c<0,故结论A正确;抛物线可得对称轴为x=﹣=﹣1,故2a﹣b=0,故结论B错误.由抛物线经过原点,对称轴为直线x=﹣1可知,当x=﹣2时,y=0,故4a﹣2b+c=0,故结论C正确;当x=﹣1时,该函数取得最小值,则am2+bm+c≥a﹣b+c,即am2+b(m+1)≥a,故结论D正确;故选:B.9.解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1D选项正确,故选:C.11.解:将x=40代入s=0.01x+0.01x2得,s=0.01×40+0.01×402=16.4,即刹车距离不能超过16.4m.故选:B.12.解:∵将△ABD绕点B顺时针旋转40°得到△CBE,∴CB=AB,∠ABC=40°,∠D=∠E,∴∠A=∠ACB=(180°﹣40°)=70°,∵∠CBD=32°,∴∠ABD=∠ABC+∠CBD=40°+32°=72°,∴∠D=∠E=180°﹣∠A﹣∠ABD=180°﹣70°﹣72°=38°.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,∴a﹣3≠0且|a|﹣1=2,解得a=﹣3,故答案为:﹣3.14.解:∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,∴m2=m+2,∴m2+n+mn=m+2+n+mn=m+n+mn+2,∵m,n是方程x2﹣x﹣2=0的两根,∴m+n=1,mn=﹣2,∴m2+n+mn=1﹣2+2=1.故答案为:1.15.解:y=2x2﹣4x+3=2(x﹣1)2+1,把抛物线y=2(x﹣1)2+1向左平移3个单位长度,向下平移2个单位长度得到抛物线的解析式为y=2(x﹣1+3)2+1﹣2=2x2+8x+7,所以a=2,b=8,c=7,所以,a+b+c=17,故答案为17.16.解:令y=0,则x2﹣4x+b=0,当函数y=x2﹣4x+b的图象与坐标轴只有两个交点时有两种情况:①Δ=0,且函数图象不过原点∴△=(﹣4)2﹣4b=0解得:b=4;②Δ>0,且函数y=x2﹣4x+b的图象过原点,∴b=0故答案为:0或4.17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3,﹣3≤x≤0,2.25.18.解:由旋转性质得:∠C=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°,故答案为:82°.三.解答题(共8小题,满分90分)19.解:(1)(2x+1)2=9,开方得:2x+1=±3,解得:x1=1,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,开方得:x﹣1=,x1=1+,x2=1﹣;(3)(x﹣3)2=4(3﹣x),(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,x﹣3=0,x﹣3+4=0x1=3,x2=﹣1.20.(1)证明:当n=m﹣2时,Δ=n2﹣4×m×(﹣2)=(m﹣2)2﹣4×m×(﹣2)=m2﹣4m+4+8m=m2+4m+4=(m+2)2≥0,∴当n=m﹣2时,方程有两个实数根.(2)解:∵方程有两个不相等的实数根,∴Δ=n2﹣4×m×(﹣2)=n2+8m>0,∴符合题意.当m=n=1时,原方程为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.21.解:(1)把(﹣1,0),(0,3),(3,0)分别代入y=ax2+bx+c(a≠0)中,得.解得.则该二次函数的解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点的坐标为(1,4);(2)∵二次函数f(x)=ax2+bx+c的顶点坐标(1,4);∴二次函数图象向右平移3个单位后抛物线的顶点为(4,4)或向下平移3个单位后抛物线的顶点为(1,1)落在直线y =x 上,则此时抛物线的解析式为:y =﹣(x ﹣4)2+4或y =﹣(x ﹣1)2+1.22.解:(1)由抛物线的顶点A (﹣4,﹣1)设二次函数为y =a (x +4)2﹣1,将B (﹣2,3)代入得,3=a (﹣2+4)2﹣1,解得a =1,∴二次函数为y =(x +4)2﹣1(或y =x 2+8x +15),设一次函数的解析式为y =kx +b ,将A (﹣4,﹣1)和B (﹣2,3)代入得,解得,∴一次函数的解析式为y =2x +7;(2)由直线y =2x +7可知C (0,7),设P (0,n ),∴PC =|n ﹣7|,∴S △PAB =S △PAC ﹣S △BPC =(4﹣2)•|n ﹣7|=9,∴|n ﹣7|=9,∴n =﹣2或16,∴P (0,﹣2)或P (0,16).23.解:令y =0,则﹣(x ﹣3)2+=0,解得:x 1=8,x 2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.24.解:设剪去小正方形的边长为xcm ,则折成的长方体盒子的底面的长为(32﹣2x )cm ,宽为=(16﹣x )(cm ),由题意得:2x (16﹣x )+2(16﹣x )(32﹣2x )+2x (32﹣2x )=864,整理得:x 2+16x ﹣80=0,解得:x =4或x =﹣20(不符合题意,舍去),答:剪去小正方形的边长为4cm.25.解:(1)图形如图所示;(2)图形如图所示;(3)整个图案的面积=4××2×5=20.26.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8×2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM=•4•t ﹣•t •t=﹣t 2+2t=﹣(t ﹣3)2+3,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0).。

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

高新区2024-2025学年第一学期九年级数学期中学业水平测试试题(满分150分时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,一个实木正方体内部有一个圆锥体空洞,它的左视图是( )A. B. C. D.2.若a4=b3,则ab的值是( )A.34B.43C.12D.1123.对于反比例函数y=﹣6x的图象,下列说法正确的是()A.它的图象分布在一、三象限B.它的图象与坐标轴可以相交C.它的图象经过点(-4,-1.5)D.当x<0时,y的值随x的增大而增大4.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则sinB=( )A.35B.45C.√74D.34(第4题图)(第5题图)(第7题图)5.如图,DE∥BC,且EC:BD=2:3,AD=6,则AE的长为()A.1B.2C.3D.46.函数与y=kx与y=kx-k(k≠0)在同一平面直角坐标系中的大致图象是( )7."今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?"这是我国古代数学著作《九章算术》中的"井深几何"问题,它的题意可以由如图所示(单位:尺),已知井的截面图为矩形ABCD ,设井深为x 尺,下列所列方程中,正确的是( )A.5x =0.45B.x5+x=50.4C.x5﹣x=0.45D.x5+x=0.45A. B. C. D.9.根据图①所示的程序,得到了y与x的函数图象,如图②.若点M是y轴正半轴上任意一点,过点;②△OPO的面积为定M作PQ平行x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=2x值;③x>0时,y随x的增大而增大;④MQ=2PM;⑤∠POO可以等于90°。

其中正确结论是()A.①②⑤ B.②④⑤ C.③④⑤ D.②③⑤(第9题图)(第10题图)10.如图,正方形ABCD中,点E是CD边上一点,连结BE,以为对角线BE作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF ⊥BD;④2BG2=BH·BD,你认为其中正确的有()A.1个B.2个C.3个D.4个二.填空题:(本大题共5个小题,每小题4分,共20分。

山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

2024-2025学年九年级上期中评估试卷数学试卷说明:共三大题,23小题,满分120分,考试时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.把一元二次方程化成一般形式,则二次项系数、一次项系数、常数项分别为( )A .3,,1B .3,1,4C .3,D .3,4,12.2024年6月25日,嫦娥六号返回器准确着陆于预定区域,工作正常,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.下列航天领域的图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.我们解一元二次方程时,可以运用因式分解法,将此方程化为,得到两个一元一次方程:,从而得到原方程的解为.这种解法体现的数学思想是( )A .公理化思想B .模型思想C .函数思想D .转化思想4.二次函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在中,A 是的中点,点D 在上.若,则 ( )AB . C.D .6.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,,将绕点C 旋转得到,则点A 与点之间的距离为( )2314x x +=4-4,1--210x -=()()110x x -+=10,10x x -=+=121,1x x ==-25y x x =+O BCO AOB α∠=AD C ∠=α2α12α90α︒-4,16AC BD ==BOC △180︒B O C '''△B 'A .6B .8C .10D .127.下列方程没有实数根的是( )A .B .C .D .8.如图,学校课外生物小组的试验田的形状是长为、宽为的矩形,为了方便管理,要在中间开辟两横一纵共三条等宽的小路,小路与试验田的各边垂直或平行,要使种植面积为,则小路的宽为多少米若设小路的宽为x m ,根据题意可列方程( )A .B .C .D .9.石拱桥是中国传统的桥梁四大基本形式之一,是用天然石料作为主要建筑材料的拱桥,以历史悠久,形式优美,结构坚固等特点闻名于世,它的主桥是圆弧形.如图,某石拱桥的跨度AB (AB 所对的弦的长)约为,拱高CD (AB 的中点到弦AB 的距离)约为,则AB 所在圆的半径OA 为( )A .B .C .D .10.已知二次函数的图象如图所示,该抛物线的对称轴为直线,则下列结论不正确的是()()235x x -=2210x x -+=280x x --=()()230x x -+=36m 22m 2700m ()()3622700x x --=()()36222700x x --=()()36222700x x ++=()()36222700x x --=36m 6m 30m 27m 25m2y ax bx c =++1x =A .B .关于x 的方程的两根是C .当时,y 随x 的增大而减小D .二、填空题(本大题共5个小题,每小题3分,共15分)11.方程的解是___________.12.如图,四边形ABCD 内接于,若,则的度数为___________.13.若二次函数的图象经过点,利用抛物线可知不等式的解集是____________.14.铅球是利用人体全身的力量,将一定重量的铅球从肩上用手臂推出的田径运动项目之一,是集力量和技术于一体的运动,绝对力量和完美技术都是取得好成绩的因素,铅球行进高度和铅球行进曲线都影响着铅球投掷的成绩.如图,一位运动员推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是,此运动员投掷时,铅球的最大行进高度是_________m .15.如图,在矩形ABCD 中,E 是边CD 上一点,对角线AC ,BD 相交于点O ,于点F ,连接OF .若,则OF 的长为______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)解方程:.0a c <20ax bx c ++=121,3x x =-=0x >20a b +=()()430x x -+=O 125A ∠=︒C ∠22y x x m =-+()2,3-22y x x m =-+220x x m -+≤21251233y x x =-++EF AB ⊥15,5,12AB DE AD ===243x x +=(2)以下是小夏同学解方程的过程,请解决问题:解:原方程可变形为, 第一步方程两边同时除以得, 第二步∴原方程的解是.第三步上述解方程的过程从第_______步开始出错,错误的原因是____________②请直接写出方程的解:_________________________17.(本题9分)已知二次函数的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A ,B ,C ,D 的坐标,并在如图所示的平面直角坐标系中画出该二次函数的大致图象(每个小方格的边长都是1个单位长度).(2)描述抛物线是由抛物线如何平移得到的.(3)求四边形AOCD 的面积.18.(本题8分)如图,已知的直径AB 垂直弦CD 于点E ,连接CO 并延长交AD 于点F ,且F 为AD 的中点.(1)求证:.(2)若,求弦CD 的长.19.(本题7分)大豆,通称黄豆,属一年生草本,是我国重要粮食作物之一,已有五千年栽培历史,古称“菽”.某校综合实践小组以“探究大豆种植密度优化方案”为主题展开项目学习.在六块不同的试验田中种植株数不同的大豆,()()323x x x -=-()()323x x x -=--()3x -2x =-2x =-223y x x =+-223y x x =+-2y x =O AD CD=8AB =严格控制影响大豆生长的其他变量,在大豆成熟期,对每株大豆的产量进行统计,并记录如下:试验田编号123456单位面积试验田种植株数/株304050607080单位面积试验田单株的平均产量/粒514641363126(1)根据记录表中的数据分析单位面积试验田的单株平均产量与种植株数的变化规律,若设单位面积试验田种植x 株(),则单位面积试验田单株的平均产量为_________粒.(2)如果要想获得单位面积大豆的总产量达到2160粒,又相对减少田间管理,那么单位面积大豆应种植多少株?20.(本题8分〉某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系;乙种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系 (其中a ,b 为常数,),且当进货量为1吨时,销售利润为1.4万元,当进货量为2吨时,销售利润为2.6万元.如果该批发市场准备进甲、乙两种水果共10吨,问这两种水果各进多少吨时获得的销售利润之和最大?最大利润是多少?21.(本题8分)阅读与思考观察下列方程系数的特征及其根的特征,解决问题:方程及其根方程及其根方程及其关联方程方程的根方程及其关联方程方程的根①①②②…………(1)请描述一元二次方程和关联方程的系数特征及它们根的关系特征.(2)方程和是不是关联方程?求解两个方程并判断两个方程的根是否符合根的关系特征.(3)请以一元二次方程为例证明关联方程根的关系特征.22.(本题12分)综合与实践如图1,这是某广场中的喷水池,那随着音乐声此起彼伏的水线,一会儿高高跃起,一会儿盘旋而下,令人心旷神怡!边上各个方向向外喷出的水线可以看做一圈形状相同的抛物线,从这些抛物线中抽象出一条分析研究,若水线达到最大高度 (点P 距地面的距离)时,水线的跨度.3080x ≤≤y 甲0.3y x =甲y 乙2y ax bx =+乙0a ≠22310x x -+=121,12x x ==2230x x +-=123,1x x =-=22310x x ++=121,12x x =-=-2230x x --=123,1x x ==-2240x x --=2240x x +-=()2200,40axbx c a b ac ++=≠-≥3.2m 8m AB =请你结合所学知识解决下列问题:(1)在图2中建立以为单位长度,点A 为坐标原点,AB 所在直线为x 轴,过点A 与AB 垂直的直线为y 轴,构建平面直角坐标系,并求出抛物线的解析式.(2)若喷水池中心C 到A 的距离约为,则该喷水池的半径至少为多少米,才能使喷出的水流都落在水池内?(3)在(2)的条件下,身高为的清洁工王师傅在水池中清理漂浮物,为了不被淋湿,王师傅站立时必须在离水池中心点C 多少米范围内?(结果保留1位小数,参考数据:,)23.(本题13分)综合与探究问题情境:数学课上,老师提出一个问题:如图1,在中,,把绕点C 逆时针旋转到的位置,点A ,B 的对应点分别是与AB 相交于点D .在旋转过程中,线段之间存在一些特殊的位置关系和数量关系.如图2,在旋转过程中,当经过AB 的中点D 时,试判断四边形与AC 的位置关系,并加以证明.问题解决:(1)请你解答老师提出的问题.数学思考:(2)小明同学发现:在图形旋转过程中,有线段垂直关系的存在.如图3,在旋转过程中,当时,求点A 与点之间的距离.数学探究:(3)小敏同学发现:在旋转过程中,有特殊三角形的存在.在旋转过程中,当是等腰三角形时,请直接写出线段AD的长.1m 2.3m 1.8m 2.24≈≈≈2.45, 3.32≈≈≈Rt ABC △90,4,3ACB AC BC ∠=︒==ABC △()090αα︒≤≤︒ABC ''△,,A B AC'''A C 'A B ''A C A B '⊥A 'BCD △数学参考答案1.A2.B 3.D4.D5.C6.C7.A8.B 9.A10.C 提示:由抛物线开口方向可知,由抛物线与y 轴交点位置可知,∴,A 选项正确;根据抛物线的轴对称性可知抛物线与x 轴分别交于和,∴方程的两根是,B 选项正确;抛物线的对称轴是直线,变形可得,D 选项正确;抛物线的对称轴是直线,故时,y 随x 的增大而增大,时,y 随x 的增大而减小,C 选项不正确.故选C .11.12.13. 14.315.6.5 提示:如图,延长FO 交DC 于点G ,构造中心对称.在矩形ABCD 中,.在矩形AFED 中,,所以.根据矩形的中心对称性和线段的中心对称性可知,,有,∴.在中,根据勾股定理得,∴.16.(1)(解法不唯一)解:配方,得,3分直接开平方,得, 4分∴5分(2)解:①二;没有考虑为0而错误地运用等式的基本性质2进行变形.3分0a <0c >0a c <()3,0()1,0-20ax bx c ++=121,3x x =-=12bx a=-=20a b +=1x =01x <<1x >124,3x x ==-55︒13x -≤≤15AB C D ==5,12AF DE AD EF ====10C E B F ==AFO CGO △≌△15,2CG AF OF FG ===1055EG =-=Rt FEG △13FG ==16.52OF FG ==()227x +=2x +=1222x x =-=-()3x -②. 5分17.解:(1)当时,,解得.∵点A 在点B 的左侧,∴点,点.当时,,∴点.由可得点.2分二次函数的大致图象如下图所示.4分(2)(方法不唯一)抛物线可由抛物线先向左平移1个单位长度,再向下平移4个单位长度得到.6分(3)如图,直线DE 为该抛物线的对称轴,其中E 为对称轴与x 轴的交点,∴.由可得是直角三角形,四边形EOCD 是直角梯形,, 8分∴9分18.解:(1)证明:如图,连接AC .∵直径AB 垂直弦CD 于点E ,∴,∴,∴.2分又∵F 为AD 的中点,CF 经过圆心O ,∴,∴,∴,∴. 4分(2)由(1)可知,∴是等边三角形,∴.如图,连接BD ,可得. 6分122,3x x =-=0y =2230x x +-=123,1x x =-=()3,0A -()1,0B 0x =3y =-()0,3C -()222314y xx x =+-=+-()1,4D --223y x x =+-223y x x =+-2y x =()1,0E -()()()3,0,0,3,1,4A C D ----A D E △2,1,4AE OE DE ===()4312415222AED AOCD EOCDS S S =+⨯⨯+=+=△四边形梯形CE DE =AC AD = AC AD =C F A D ⊥CD AC = CD AC = AC CD=AC AD CD ==ACD △30D AB ∠=︒90AD B ∠=︒在中,,∴,∴,∴.8分19.解:(1).2分(2)根据题意可列方程:. 4分整理,得,解得.6分∵种植60株比种植72株的田间管理少一些,故应舍去,∴.答:单位面积大豆应种植60株.7分20.解:由题意可知,解得 2分∴.3分设乙种水果进货m 吨,则甲种水果进货吨,10吨水果销售利润之和为W 万元,根据题意,,5分配方,得.∵,∴当时,W 的最大值为6.6.∴.7分答:甲、乙两种水果分别进货4吨,6吨时获得的销售利润之和最大,最大利润是6.6万元. 8分21.解:(1)一元二次方程和关联方程的系数特征是二次项系数、常数项相同,一次项系数互为相反数;一元二次方程和关联方程的根的关系特征是对应根互为相反数.2分(2)方程和的二次项系数、常数项相同,一次项系数互为相反数,符合(1)中描述的特征,故它们是关联方程.3分Rt ABD △8AB =142BD AB ==AD ===CD AD ==()660.5x -()660.52160x x -=213243200x x -+=1272,60x x ==1x 60x =1.442 2.6a b a b +=⎧⎨+=⎩0.11.5a b =-⎧⎨=⎩20.1 1.5y x x =-+乙()10m -()220.1 1.50.3100.1 1.23W m m m m m =-++-=-++()20.16 6.6Wm =--+0.10-<6m =104m -=2240x x --=2240x x +-=方程的根是的根是它们的两个根对应互为相反数,符合根的关系特征.5分(3)一元二次方程的根是,它的关联方程的根是,它们的两个根对应互为相反数.8分22.解:(1)根据题意,构造平面直角坐标系如图所示. 2分由题意可知,抛物线的顶点,可设抛物线的函数解析式为,2分将点B 代入,得,解得,∴抛物线的解析式为.4分(2)由题可知,∴.6分答:喷水池的半径至少为,才能使喷出的水流都落在水池内. 7分(3)当时,,解得9分.答:王师傅站立时必须在离水池中心点C 约至的范围内. 12分23.解:(1). 1分证明:由旋转的性质可知.∵D 是的中点,∴,∴,2分∴,∴ 4分(2)如图,连接2240x x --=21211240x x x x =+=-+-=1211x x =--=-+()200ax bx c a ++=≠≥x =20ax bx c -+=x =()()00,0,8,0B ()4,3.2P ()24 3.2y a x =-+()284 3.20a-+=0.2a =-()220.24 3.20.2 1.6y x x x =--+=-+2.3,8CA AB ==10.3CB CA AB =+=10.3m 1.8y =20.2 1.6 1.8x x -+=1244x x ==+()()122.3 6.3 6.3 2.65 3.7m , 2.3 6.3 6.3 2.658.9m x x +=≈-≈+=≈+≈3.7m 8.9m A B AC ''∥A A ∠=∠'Rt ABC △12AD BD CD AB ===AC A A ∠'=∠ACA A ∠'=∠'A B AC ''∥AA '在中,根据勾股定理可得.根据三角形面积公式可得由旋转可知.∴6分在中,根据勾股定理可得,在中根据勾股定理可得∴点A 与点10分(3)AD 的长为2或或. 13分提示:①当时,;②当时,;③当时,Rt ABC △5AB ==341255CD ⨯==4A C A C '==128455A D A C CD '='-=-=Rt AD C △165AD ==Rt AD A '△AA '==A '7552BC BD =532AD AB BD =-=-=BC CD =9725255AD AB BD =-=-⨯=BC CD =1522AD AB ==。

2024-2025学年九年级数学上学期期中测试卷(陕西专用,北师大版九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中测试卷(陕西专用,北师大版九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(陕西专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大版九年级(九上全册)。

5.难度系数:0.69。

一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列函数不是反比例函数的是( )A.y=3x﹣1B.y=―x3C.xy=5D.y=12x2.如图是某个几何体的三视图,则该几何体是( )A.圆锥B.长方体C.三棱柱D.圆柱3.若双曲线y=k―1x的图象经过第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k=1D.不存在4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有( )A.15个B.20个C.30个D.35个5.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A .6B .23C .53D .836.在长为30m ,宽为20m 的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m 2,求道路的宽度设道路的宽度为x (m ),则可列方程( )A .(30﹣2x )(20﹣x )=468B .(20﹣2x )(30﹣x )=468C .30×20﹣2×30x ﹣20x =468D .(30﹣x )(20﹣x )=4687.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =n x 的图象的四个分支上,则实数n 的值为( )A .﹣3B .―13C .13D .38.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE AE =34,BE =1,F 是BC 的中点.现有下列四个结论:①DE =3;②四边形DEBC 的面积等于9;③(AC +BD )(AC ﹣BD )=80;④DF =DE .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(共5小题,每小题3分,计15分)9.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于__________.(填“平行投影”或“中心投影”)10.反比例函数y =k x的图象经过点(1,6)和(m ,﹣3),则m =__________.11.已知等腰三角形的两边长是方程x 2﹣9x +18=0的两个根,则该等腰三角形的周长为__________.12.如图,在菱形ABCD 中,AC =24,BD =10.E 是CD 边上一动点,过点E 分别作EF ⊥OC 于点F ,EG⊥OD 于点G ,连接FG ,则FG 的最小值为__________.13.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿着CA向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到终点时,另一个点随之停止.经过__________秒后,△PCQ 与△ABC 相似.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:x 2﹣4x +1=0.15.(5分)已知:a 2=b 3=c 4≠0,且2a ﹣b +c =10.求a 、b 、c 的值.16.(5分)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图..17.(5分)如图所示,BE,CF是△ABC的高,D是BC边的中点,求证:DE=DF.18.(5分)已知矩形ABCD中,AB=2,在BC中取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,求AD的长.19.(5分)如图,小明用自制的直角三角形纸板DEF测量水平地面上树AB的高度,已知两直角边EF:DE=2:3,他调整自己的姿势和三角形纸板的位置,使斜边DF保持水平,并且边DE与点B在同一直线上,DM垂直于地面,测得AM=21m,边DF离地面的距离为1.6m,求树高AB.20.(5分)如图所示某地铁站有三个闸口.(1)一名乘客随机选择此地铁闸口通过时,选择A闸口通过的概率为 .(2)当两名乘客随机选择此地铁闸口通过时,请用树状图或列表法求两名乘客选择不同闸口通过的概率.21.(6分)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.22.(7分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为72,则△A 1B 1C 1的面积是__________.23.(7分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y (毫克/百毫升)与时间x(时)变化的图象如图(图象由线段OA 与部分双曲线AB 组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由.24.(8分)如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C 同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q P和点Q的距离第一次是10cm?25.(8分)如图,已知四边形ABCD为正方形,AB=E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.(10分)如图,12y kx =+的图象与反比例函数2y mx =图象相交于A 、B 两点,已知点B 坐标为(3,﹣1).(1)求一次函数和反比例函数的表达式;(2)求得另一个交点A(﹣1,3),观察图象,请直接写出不等式kx+2≤mx的解集;(3)P为y轴上的点,Q为反比例函数图象上的点,若以ABPQ为顶点的四边形是平行四边形,求出满足条件的点P的坐标.。

湖北省武汉市武昌区武珞路中学2023-2024学年九年级上学期期中数学试题(含答案)

湖北省武汉市武昌区武珞路中学2023-2024学年九年级上学期期中数学试题(含答案)

2023—2024学年度九年级上学期期中测试数学试卷(考试时间为120分钟,满分为120分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑1.将化成一般式后,,,的值分别是()A .1,2,B .1,,C .1,,5D .1,2,52.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线是中心对称图形的是()A .B .C .D .3.把抛物线向右平移2个单位,再向下平移3`个单位,得到抛物线为()A .B .C .D .4.将二次函数化成的形式应为()A .B .C .D .5.已知一元二次方程的两根分别为,,则的值是()A .B .C .3D .56.如图,在中,,,在同一平面内,将绕点顺时针旋转到的位置,连接,若,则的度数是()A .B .C .D .7.如图,有一张长12cm ,宽9cm的矩形纸片,在它的四个角各剪去一个同样大小的小正方形,然后折叠成()25x x +=20ax bx c ++=a b c 5-2-5-2-2y x =-()223y x =-++()223y x =--+()223y x =-+-()223y x =---262y x x =+-()2y x h k =-+()237y x =++()2311y x =-+()2311y x =+-()237y x =+-2410x x +-=m n m n mn ++5-3-ABC △AB AC =100BAC ∠=︒ABC △A 11AB C △1BB 11BB AC ∥1CAC ∠10︒20︒30︒40︒一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是,求剪去的小正方形的边长.设剪去的小正方形的边长是,根据题意,可列方程为()A .B .C .D .8.如图,圆内接四边形中,,连接,,,,.则的度数是()A .B .C .D .9.如图,在中,顶点,,.将与正方形组成的图形绕点逆时针旋转,每次旋转,则第2023次旋转结束时,点的坐标为()A .B .C .D .10.如图,平行四边形中,,,,是边上一点,且,是边上的一个动点,将线段绕点顺时针旋转,得到,连接、,则的最小值是()270cm cm x 1294970x ⨯-⨯=2129470x ⨯-=()()12970x x --=()()1229270x x --=ABCD 105BCD ∠=︒OB OC OD BD 2BOC COD ∠=∠CBD ∠20︒25︒30︒35︒OBC △()0,0O ()2,2B -()2,2C OBC △ABCD O 90︒A ()6,2()2,6-()6,2-()6,2--ABCD 12AB =10AD =60A ∠=︒E AD 6AE =F AB EF E 60︒EN BN CN BN CN +A .B .D .14C .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卡指定的位置。

2024-2025学年九年级数学上学期期中测试卷(江苏通用,测试范围:苏科版九上第1章-第2章)解析

2024-2025学年九年级数学上学期期中测试卷(江苏通用,测试范围:苏科版九上第1章-第2章)解析

2024-2025学年九年级数学上学期期中模拟卷(江苏通用)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:苏科版九年级上册第1章-第2章。

5.难度系数:0.75。

第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若关于x 的一元二次方程23510x x a +++= 有一个根为0,则a 的值为( )A .1±B .1C .1-D .02.直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,则 r 的取值范围是( )A .6r <B .6r =C .6r >D .6r ³【答案】C【详解】解:∵直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,∴6r >.故选:C .3.关于x 的一元二次方程22310x kx +-=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根【答案】A【详解】解:在关于x 的一元二次方程22310x kx +-=中,2a =,3b k =,1c =-,22Δ498b ac k =-=+,因为20k >,所以22Δ4980b ac k =-=+>,所以关于x 的一元二次方程22310x kx +-=根的情况是有两个不相等的实数根.故选A .4.如图,在 O e 中,A ,B ,D 为 O e 上的点,52AOB Ð=°,则ADB Ð的度数是 ( )A .104°B .52°C .38°D .26°5.若12x x ,是一元二次方程20x x +-=的两个实数根,则12124x x x x +-的值为( )A .4B .3-C .0D .7【答案】D【详解】解:∵12x x ,是一元二次方程220x x +-=的两个实数根,∴121x x +=-,122x x =-,∴()121241427x x x x +-=--´-=,故选:D .6.如图,等边三角形ABC 和正方形DEFG 均内接于O e ,若2EF =,则BC 的长为( )A.B.C D7.把一根长50cm的铁丝围成一个等腰三角形,使其中一边的长比另一边的2倍少5cm,则该三角形的边长不可能为()A .12cmB .19cmC .22.5cmD .13cm8.如图,AB 是O e 的直径,4AB =,点C 是上半圆AB 的中点,点D 是下半圆AB 上一点,点E 是BD的中点,连接AE CD 、交于点F .当点D 从点A 运动到点B 的过程中,点F 运动的路径长是( )A 2BC .πD .【答案】B【详解】解:连接,,,AC BC BD OE ,∵AB 是O e 的直径,点C 是上半圆 AB 的中点,∴ AC BC=,90ACB Ð=°,∴点F 的轨迹为 AB 的长90=故选B .第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。

2023—2024学年九年级上学期11月期中数学试题+

2023—2024学年九年级上学期11月期中数学试题+

2023-2024学年九年级上学期11月期中数学试题一、选择题:本大题共10 小题,每小题3 分,共30 分.每小题给出的四个选项中,只有一项符合要求.1.下列与杭州亚运会有关的图案中,中心对称图形是()2.用配方法解方程x2+6x+4=0时,原方程变形为()A.(x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=43.二次函数y=﹣x2的图象向右平移2个单位,向上平移5个单位,则平移后的二次函数解析式为()A.y=﹣(x+2)2+5B.y=﹣(x+2)2﹣5C.y=﹣(x﹣2)2+5D.y=﹣(x﹣2)2﹣54.若关于x的一元二次方程k x2+2x﹣1=0有实数根,则k的取值范围是()A.k≥1且k≠0B.k≥﹣1C.k>﹣1D.k>﹣1且k≠05,如图,Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点A顺时针旋转60°得到△AED,连接BE,则BE 的长为()A.5B.4C.3D.2第5题第7题第9题6.已知二次函数y=3(x﹣1)2+1的图象上有A(1,y1),B(2,y2),C(﹣2,y3)三个点,则y1,y2,y3的大小关系是()A. y1 >y2>y3B.y2>y1>y3C. y3>y1>y2D.y3>y2>y17,如图所示,在⊙O中,直径AB=10,弦DE⊥AB于点C,连接DO.若OC:OB=3:5,则DE的长为()A.3B. 4C. 6D. 88,某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x) 2=256B.256(1﹣x) 2=289C.289(1﹣2x) 2=256D.256(1﹣2x) 2=2899.在直径为10cm的圆柱形油槽内装入一些油后,截面如图,油面宽AB为6cm,当油面宽AB为8cmA.1B.7C.1或7D.3或410.已知抛物线y=ax2+b x+c(a<0),经过点(﹣3,0)(1,0).判断下列结论:①a bc>0;②a﹣b+c<0;③若m是任意实数,则a m2+b≤a﹣bm;④方程ax2+bx+c=﹣1有两个不相等的实数根;⑤无论a、b、c取何值,抛物线定过(,0)其中正确结论的个数()A. 2B. 3C. 4D. 5二、填空题:本大题共6小题,每小题3分,共18分.11.抛物线y=(x﹣2)2﹣5的顶点坐标是_____12.已知关于x的一元二次方程x2﹣3x﹣=0两个根为x1、x2,则x1+x2=____13.已知m 是一元二次方程x2﹣x﹣2=0 的一个根,则2022+m2﹣m=_____14.如图,在平面直角坐标系中,若直线y=m x+n与抛物线y=ax2+b x+c交于A(﹣1,p)、B (2,q)则关于x的不等式m x+n<ax2+b x+c的解集是_____15.如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为_____16.如图,在△ABC中,∠C=90°,∠B=36°,将△ABC绕点A顺时针方向旋转α(0° <α<180°)得到△ABC',BC交AB'于点F,连接BB',则当△BB'F是等腰三角形时,旋转角α=_____第14题第15题第16题三、解答题(一):本大题共 3 小题,每小题7分,共21分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学期中测试题
一选择题:(每小题3分,共30分).
1.要使二次三项式p x 5x 2
+-可以在整数范围内进行因式分解,那么整数P 的取值可是( )个.
A .2
B .
4 C .6 D .无数个
2.已知:方程组
的解为 ,则2a -
3b 的值为( ).
A .4
B .6
C .-6
D .-4 3.若反比例函数x
k
y =
的图象经过点(-1,2),则这个函数的图象一定经过点( ). A .(2,-1) B .(2
1
-,2) C .(-2,-1) D .(21,2)
4.如图1,AB ∥CD ,AE ∥FD ,AE 、FD 分别交BC 于点G 、H ,则图中共有相似三角形
( )对.
A .4
B .5
C .6
D .7
5.如图2是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是( ).
A .3
B .4
C .5
D .6 6.观察统计局公布的十五时期郑州市农村
居民年人均收入每年比上年增长率的统计
图,下列说法中正确的是( )
A .2003年农村居民年人均收入低于2002年.
B .农村居民年人均收入每年比上年增长率低于9%的有2年.
C .农村居民年人均收入最大的是2004年.
D .农村居民年人均收入每年比上年增长率有大有小,但农村居民年均收入在持续增加.
7.一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角是( ).
A .30°
B .45°
C .60°
D .75°
C
图1 ax -by=4
ax +by=2 x=2 y=1
主视图 左视图 俯视图 图2
班级 姓名 考场 座号
8.免交农业税,大大提高了农民的生产积极性,开封县某镇政府引导农民对生产的某种土特产进行加工后,分为甲乙丙三种不同包装推向市场进行销售,其相关信息如下表:
春节期间,这三种不同包装的土特产都销售了1200千克,那么在本次销售中,这三种包装的土特产获得利润最大的是( ).
A .甲
B .乙
C .丙
D .不能确定
9.如图3,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2,CD=5,点P 到CD 的距离是3,则点P 到AB 的距离是( ).
A .
65 B .76 C .56 D .3
10
10.如图4,B 是AC 的中点,过点C 的直线与AC 成60°的角,在直线上取一点P ,
使得∠APB=30°,则满足条件的点P 的个数是( ).
A .3
B .2 C
.1 D .不存在
二.填空题:(每题3分,共24分)
11.近几年河南省教育事业加快发展,根据2006年末统计的数据显示,仅普通初中在校生就约有5630万人,5630万人用科学计数法表示为 人.
12.全国中小学危房改造工程实施以来,已改造农村中小学危房7800万平方米,如 果按一栋教学楼的总面积是750平方米计算,那么该项改造工程共修建教学楼大约有 栋.
13.如下图是小明所画正方体平面展开图的一部分,请你补画完整,使它成为该正方
体的一种平面展开图.
14如图5,AD ∥BC ,点E 在BD 的延长线上,若∠ADE=155°,则∠DBC 的度数 是 . 15.已知:ab
7b 2a 2b ab 2a ,4b 1a 1+---=-则的值 .
P B A C D
图3 · P
C B A 图4 图5
E
D
C A
余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为 .
17.计算:
29
63m m m -+
+÷3
m 2
-的结果为 . 18.下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第5个图案中白色正方形的个数是 .
三.解答题
19.先化简,再求值:()()()()2
1x 21x
x 52x 32x 3-----+,其中x=—
3
1
(本题10分). 20.(本题10分)妞妞和她的爸爸玩“锤子、剪刀、布”游戏,每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀, 剪刀赢布、布赢锤子,若两人出相同手势,则算打平.⑴你帮妞妞算算爸爸出“锤子”手势的概率是 . ⑵妞妞这次决定出“布”手势,妞妞赢的概率是 . ⑶用树状图或列表的方法求出妞妞和爸爸出相同手势的概率是多少?
21.(本题12分)祥符中学开展“拒绝不文明行为,共创文明和谐校园”演讲比赛活动,九1、九2班根据初赛成绩
各选出5名选手参加复赛,两个班各选
出的
5名选手的复赛成绩(满分100分)如右图所示.
⑴根据右图填写下表:
第一个
第二个
第三个

⑶若在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,并说明理由. 22.(本题10分)已知:如图在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,DB 是对角线,AG ∥BD 交CB 的延长线于G . ⑴求证:△ADE ≌△CBF .
⑵若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.
23(本题12分)已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC=90°,∠C=45°,BE ⊥CD 于点E ,AD=1,CD=22,求BE 的长.
24.(本题12分)如图,在直角坐标系中,O 为原点,点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=
x
12
的图象经过点A . ⑴求点A 的坐标;
⑵若经过点A 的一次函数图象与y 轴的负半轴交于点B ,与x 轴交于点C 且S △OBC =8,
求这个一次函数的解析式.
E D
C B A
x。

相关文档
最新文档