2020届高三数学专题练习之函数零点

合集下载

高中数学函数零点问题必考点梳理+真题精练(附答案)

高中数学函数零点问题必考点梳理+真题精练(附答案)
4、几个“不一定”与“一定”(假设 f x 在区间 a,b 连续) (1)若 f a f b 0 ,则 f x “一定”存在零点,但“不一定”只有一个零点.要分析 f x 的 性质与图象,如果 f x 单调,则“一定”只有一个零点 (2)若 f a f b 0 ,则 f x “不一定”存在零点,也“不一定”没有零点.如果 f x 单调,
f
x
mx
m
2 3
有四个解,即直线
y
mx
m
2 3
与函数
f
x
的图象有四个交点,
因为直线
y
mx
m
2 3
过定点
1,
2 3

在同一直角坐标系中作出直线 y mx m 2 与函数 f x 的图象,如下图所示,
3
当直线
y
mx
m
2 3
过原点时,
m
2 3

当直线
y
mx
m
2 3
与函数
y
ln
x
1
,
x
0
的图象相切时,
4、函数的零点,方程的根,两图象交点之间的联系 (1)函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的 单调性确定是否存在零点. (2)方程:方程的特点在于能够进行灵活的变形,从而可将等号两边的表达式分别构造为两 个可分析的函数,为作图做好铺垫. (3)图象的交点:通过作图可直观的观察到交点的个数,并能初步判断交点所在区间.
专题 08 函数零点问题面面观 【热点聚焦与扩展】
函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助 于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1) 零点所在区间——零点存在性定理;(2)二次方程根分布问题;(3)判断根的个数问题;(4) 根据方程解的情况确定求参数的值或范围.上述情形除(1)简单,其它往往与分段函数结合或 与导数的应用结合,难度往往较大. 一、基础知识:

2020高考数学微专题4 函数零点(学生版)

2020高考数学微专题4 函数零点(学生版)

第一部分函数零点题组一:零点判断1.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是()A.()0,1 B.()1,2 C.()2,4 D.()4,+∞2.函数()2ln f x x =的图像与函数()245g x x x =-+的图象的交点个数为()A.3B.2C.1D.03.函数0.5()2|log |1xf x x =-的零点个数为()A.1B.2C.3D.44.设函数2()23xf x x =+-,则函数()y f x =的零点个数是()A.4B.3C.2D.15.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是()A.[]4,2-- B.[]2,0- C.[]0,2 D.[]2,46.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[]0,6上与x 轴的交点的个数为().A.6B.7C.8D.9题组二函数零点中的参数1.函数2()2xf x a x=--的一个零点在区间(1,2)内,则实数a 的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)2.若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是()A.(1,1)- B.(2,2)- C.(),2(2,)-∞-⋃+∞ D.(),1(1,)-∞-⋃+∞3.已知函数3ln(1),0()3,0x x f x x x x +≥⎧=⎨-<⎩,若函数()y f x k =-有三个不同的零点,则实数k的取值范围是()A.(2,2)- B.(2,1)- C.(0,2)D.(1,3)4.已知函数01,()1,1.x f x x x⎧⎪=⎨>⎪⎩ 若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为()A.59,44⎡⎤⎢⎥⎣⎦B.59,44⎛⎤⎥⎝⎦C.59,{1}44⎛⎤⎥⎝⎦D.59,{1}44⎡⎤⎢⎥⎣⎦5.已知函数2()3,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围是________.题组三综合问题1.若函数2()f x x ax b =++的两个零点是2-和3,则不等式(2)0af x ->的解集是______.2.函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于()A.2B.4C.6D.83.已知()f x 是奇函数且是R 上的单调函数,若函数2(21)()y f x f x λ=++-只有一个零点,则实数λ的值是()A.14B.18C.-78D.-384.已知lg ,0()2,0x x x f x x ⎧>⎪=⎨≤⎪⎩,则函数[]22()3()1y f x f x =-+的零点个数是________.5.已知0a >,函数222,0()22,0x ax a x f x x ax a x ⎧++≤⎪=⎨-+->⎪⎩.若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是________.第二部分综合训练一、填空题.1.设集合{|2}S x x =≥,}5|{≤=x x T ,则S T = ()A.]5,(-∞ B.),2[+∞ C.)5,2( D.]5,2[2.设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的()A.充分不必要条件B.必要不成分条件C.充要条件D.既不充分也不必要条件3.为了得到函数x x y 3cos 3sin +=的图象,可以将函数x y 3cos 2=的图象()A.向右平移12π个单位长 B.向右平移4π个单位长C.向左平移12π个单位长 D.向左平移4π个单位长4.已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为()A.2- B.4- C.6- D.8-5.设m 、n 是两条不同的直线,α、β是两个不同的平面,则()A.若n m ⊥,α//n ,则α⊥mB.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥m D.若n m ⊥,β⊥n ,αβ⊥,则α⊥m 6.正项等比数列{}n a 满足:4321228a a a a +=++,则652a a +的最小值是()A.64B.32C.16D.87.已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则()A.3≤c B.63≤<c C.96≤<c D.9>c8.在同一坐标系中,函数)0()(>=x x x f a,x x g a log )(=的图象可能是()9.设θ为两个非零向量,a b 的夹角,已知对任意实数t ,b ta +的最小值为1()A.若θ确定,则a唯一确定B.若θ确定,则b唯一确定C.若a 确定,则θ唯一确定D.若b确定,则θ唯一确定10.设()f x 是定义在(0,)+∞上的单调函数,且对任意(0,)x ∈+∞都有(()ln )1f f x x e -=+,则方程()()f x f x e '-=的实数解所在区间为()A.1(0,)eB.1(,1)eC.(1,)eD.(,4)e 二、填空题.1.设已知i 是虚数单位,计算21(1)ii -=+________.2.若,x y 满足和240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则y x +的取值范围是________.3.在三张奖劵中有一、二等各一张,另有一张无奖,甲乙两人各抽取一张,两人都中奖的概率为.4.设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a .。

2020届新高考数学二轮微专题突破专题13 函数的零点的问题(解析版)

2020届新高考数学二轮微专题突破专题13 函数的零点的问题(解析版)

专题13 函数的零点的问题一、题型选讲题型一 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. 例1、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x ≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________. 【答案】 (1,+∞)【解析】解法1(直接法) 当x>0时,令f(x)=e -x -12=0,解得x =ln 2>0,此时函数f(x)有1个零点,因为要求函数f(x)在R 上有3个不同的零点,则当x ≤0时,f (x )=x 3-3mx -2有2个不同的零点,因为f ′(x )=3x 2-3m ,令f ′(x )=0,则x 2-m =0,若m ≤0,则函数f (x )为增函数,不合题意,故m >0,所以函数f (x )在(-∞,-m )上为增函数,在(-m ,0]上为减函数,即f (x )max =f (-m )=-m m +3m m -2=2m m -2,f (0)=-2<0,要使f (x )=x 3-3mx -2在(-∞,0]上有2个不同的零点,则f (x )max =2m m -2>0,即m >1,故实数m 的取值范围是(1,+∞).解法2(分离参数) 当x>0时,令f(x)=e -x -12=0,解得x =ln 2>0,此时函数f(x)有1个零点,因为要求函数f(x)在R 上有3个不同的零点,则当x ≤0时,f (x )=x 3-3mx -2有2个不同的零点,即x 3-3mx -2=0,显然x =0不是它的根,所以3m =x 2-2x ,令y =x 2-2x (x <0),则y ′=2x +2x 2=2(x 3+1)x 2,当x ∈(-∞,-1)时,y ′<0,此时函数单调递减;当x ∈(-1,0)时,y ′>0,此时函数单调递增,故y min =3,因此,要使f (x )=x 3-3mx -2在(-∞,0)上有两个不同的零点,则需3m >3,即m >1.例2、(2018扬州期末)已知函数f(x)=e x ,g(x)=ax +b ,a ,b ∈R . 若对任意实数a ,函数F (x )=f (x )-g (x )在(0,+∞)上总有零点,求实数b 的取值范围.【解析】研究函数的零点问题,主要是抓住两点,一是函数的单调性,二是寻找支撑点,要避免由“图”来直观地说明.规范解答 (1) 由g(-1)=0知,g(x)的图像过点(-1,0).若a<0,F(x)=f(x)-g(x)=e x -ax -b 在(0,+∞)上单调递增,故F(x)=f(x)-g(x)在(0,+∞)上总有零点的必要条件是F(0)<0,即b>1.(10分)以下证明当b>1时,F(x)=f(x)-g(x)在(0,+∞)上总有零点. ①若a<0.由于F(0)=1-b<0,F ⎝⎛⎭⎫-b a =e -b a -a ⎝⎛⎭⎫-b a -b =e -ba >0,且F(x)在(0,+∞)上连续,由零点存在定理可知F(x)在⎝⎛⎭⎫0,-ba 上必有零点.(12分) ②若a ≥0.由(2)知e x >x 2+1>x 2在x ∈(0,+∞)上恒成立.取x 0=a +b ,则F(x 0)=F(a +b)=e a +b -a(a +b)-b>(a +b)2-a 2-ab -b =ab +b(b -1)>0.由于F(0)=1-b<0,F(a +b)>0,且F(x)在(0,+∞)上连续,由零点存在定理可知F(x)在(0,a +b)上必有零点.综上得实数b 的取值范围是(1,+∞).(16分)第(3)问是函数零点问题,不能从粗糙的图像来确定,必须按零点存在定理来确定,这是此题的难点所在,难在所谓的“支撑点”的寻找,这要在平时的解题中加以积累.此外第(3)问的参数范围的确定,采用的是以证代求,这也是值得关注的地方例3、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求ba 的值;【解析】 思路分析 (1) 先解不等式f′(x)>0,再写出函数f(x)的单调递增区间.(2) 记ba =k ,则转化为函数g(x)=x 3+kx 2-4恰有两个不同的零点.由三次函数的图像可知,g(x)在极值点处取得零点.解后反思 在第(2)题中,也可转化为b a =4x2-x 恰有两个不同的实数解.另外,由g(x)=x 3+kx 2-4恰有两个不同的零点,可设g(x)=(x -s)(x -t)2.展开,得x 3-(s +2t)x 2+(2st +t 2)x -st 2=x 3+kx 2-4,所以⎩⎪⎨⎪⎧-(s +2t )=k ,2st +t 2=0,-st 2=-4,解得⎩⎪⎨⎪⎧s =1,t =-2,k =3.解:(1)当a =b =1时,f(x)=x 3+x 2-4,f ′(x)=3x 2+2x.(2分) 令f′(x)>0,解得x>0或x<-23,所以f(x)的单调增区间是⎝⎛⎭⎫-∞,-23和(0,+∞).(4分) (2)法一:f′(x)=3ax 2+2bx ,令f′(x)=0,得x =0或x =-2b3a ,(6分)因为函数f(x)有两个不同的零点,所以f(0)=0或f ⎝⎛⎭⎫-2b3a =0. 当f(0)=0时,得a =0,不合题意,舍去;(8分) 当f ⎝⎛⎭⎫-2b 3a =0时,代入得a ⎝⎛⎭⎫-2b 3a +b ⎝⎛⎭⎫-2b3a 2-4a =0, 即-827⎝⎛⎭⎫b a 3+49⎝⎛⎭⎫b a 3-4=0,所以ba =3.(10分)法二:由于a ≠0,所以f(0)≠0,由f(x)=0得,b a =4-x 3x 2=4x2-x(x ≠0).(6分)设h(x)=4x 2-x ,h ′(x)=-8x3-1,令h′(x)=0,得x =-2,当x ∈(-∞,-2)时,h ′(x)<0,h(x)递减;当x ∈(-2,0)时,h ′(x)>0,h(x)递增, 当x ∈(0,+∞)时,h ′(x)>0,h(x)单调递增, 当x>0时,h(x)的值域为R ,故不论b a 取何值,方程b a =4-x 3x 2=4x 2-x 恰有一个根-2,此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分)题型二 函数零点个数证明与讨论函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点。

导数与函数的切线及函数零点问题

导数与函数的切线及函数零点问题

广东实验学校2020届高三理科数学寒假作业----导数专题函数的切线及函数零点问题1.已知函数f (x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=12.①求方程f (x)=2的根;②若对任意x∈R,不等式f (2x)≥mf (x)-6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f (x)-2有且只有1个零点,求ab的值.考点整合1.求曲线y=f (x)的切线方程的三种类型及方法(1)已知切点P(x0,y0),求y=f (x)过点P的切线方程:求出切线的斜率f ′(x0),由点斜式写出方程.(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0,y0),通过方程k =f ′(x0)解得x0,再由点斜式写出方程.(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f ′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.2.三次函数的零点分布三次函数在存在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x1<x2的函数f (x)=ax3+bx2+cx+d(a≠0)的零点分布情况如下:3.(1)研究函数零点问题或方程根问题的思路和方法研究函数图象的交点、方程的根、函数的零点,归根到底还是研究函数的图象,如单调性、值域、与x轴的交点等,其常用解法如下:①转化为形如f (x1)·f (x2)<0的不等式:若y=f (x)满足f (a)f (b)<0,则f (x)在(a,b)内至少有一个零点;②转化为求函数的值域:零点及两函数的交点问题即是方程g(x)=0有解问题,将方程分离参数后(a=f (x))转化为求y=f (x)的值域问题;③数形结合:将问题转化为y=f (x)与y=g(x)的交点问题,利用函数图象位置关系解决问题.(2)研究两条曲线的交点个数的基本方法①数形结合法,通过画出两个函数图象,研究图象交点个数得出答案.②函数与方程法,通过构造函数,研究函数零点的个数得出两曲线交点的个数.2.已知函数f (x)=2x3-3x.①求f (x)在区间[-2,1]上的最大值;②若过点P(1,t)存在3条直线与曲线y=f (x)相切,求t的取值范围.探究提高解决曲线的切线问题的关键是求切点的横坐标,解题时先不要管其他条件,先使用曲线上点的横坐标表达切线方程,再考虑该切线与其他条件的关系,如本题第(2)问中的切线过点(1,t).3. 已知函数f (x)=x3-x.(1)设M(λ0,f (λ0))是函数f (x)图象上的一点,求图象在点M处的切线方程;(2)证明:过点N(2,1)可以作曲线f (x)=x3-x的三条切线.热点二利用导数解决与函数零点(或方程的根)有关的问题[命题角度1]讨论函数零点的个数4.(2015·全国Ⅰ卷)已知函数f (x)=x3+ax+14,g(x)=-ln x.(1)当a为何值时,x轴为曲线y=f (x)的切线;(2)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f (x),g(x)}(x>0),讨论h(x)零点的个数.探究提高对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进而求解.[命题角度2]根据函数零点求参数范围5.(2017·徐州考前信息卷)已知函数f (x)=x ln x,g(x)=-x2+ax-2(e为自然对数的底数,a∈R).(1)判断曲线y=f (x)在点(1,f (1))处的切线与曲线y=g(x)的公共点个数;(2)当x∈\f(1e),e)时,若函数y=f (x)-g(x)有两个零点,求a的取值范围.探究提高研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.6. (2017·南通调研节选)已知函数f (x)=ax2-x-ln x,a∈R.(1)当a=38时,求函数f (x)的最小值;(2)若-1≤a≤0,证明:函数f (x)有且只有一个零点..1.求曲线的切线方程的方法是利用切线方程的公式y-y0=f ′(x0)(x-x0),它的难点在于分清“过点P的切线”与“在点P处的切线”的差异.突破这个难点的关键是理解这两种切线的不同之处在哪里,在过点P(x0,y0)的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P(x0,y0)处的切线,必以点P为切点,则此时切线的方程是y-y0=f′(x0)(x-x0).2.我们借助于导数探究函数的零点,不同的问题,比如方程的解、直线与函数图象的交点、两函数图象交点问题都可以转化为函数零点问题.3.对于存在一个极大值和一个极小值的函数,其图象与x轴交点的个数,除了受两个极值大小的制约外,还受函数在两个极值点外部函数值的变化的制约,在解题时要注意通过数形结合找到正确的条件.4.求函数零点或两函数的交点问题,综合了函数、方程、不等式等多方面知识,可以全面地考察学生对函数性质、函数图象等知识的综合应用能力,同时考察学生的变形、转化能力.因此在高考压轴题中占有比较重要的地位.7..(2017·泰州质检)已知函数f (x)=2ln x-x2+ax(a∈R).(1)当a=2时,求f (x)的图象在x=1处的切线方程;(2)若函数g(x)=f (x)-ax+m在\f(1e),e)上有两个零点,求实数m的取值范围.8.已知函数f (x)=x2-a ln x-1,函数F(x)=x)-1\r(x)+1.(1)如果函数f (x)的图象上的每一点处的切线斜率都是正数,求实数a的取值范围;(2)当a=2时,你认为函数y=f(x)x-1的图象与y=F(x)的图象有多少个公共点?请证明你的结论.9..(2017·山东卷)已知函数f (x)=13x3-12ax2,a∈R.(1)当a=2时,求曲线y=f (x)在点(3,f (3))处的切线方程;(2)设函数g(x)=f (x)+(x-a)cos x-sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.导数专题答案1.解(1)①由已知可得2x+\a\vs4\al\co1(\f(12))x=2,即2x+12x=2.∴(2x)2-2·2x+1=0,解得2x=1,∴x=0.②f (x)=2x+\a\vs4\al\co1(\f(12))x=2x+2-x,令t=2x+2-x,则t≥2.又f (2x)=22x+2-2x=t2-2,故f (2x)≥mf (x)-6可化为t2-2≥mt-6,即m≤t+4t,又t≥2,t+4t≥24t)=4(当且仅当t=2时等号成立),∴m≤\a\vs4\al\co1(t+\f(4t))min=4,即m的最大值为4.(2)∵0<a<1,b>1,∴ln a<0,ln b>0.g(x)=f (x)-2=a x+b x-2,g′(x)=a x ln a+b x ln b且g′(x)为单调递增,值域为R的函数.∴g′(x)一定存在唯一的变号零点,∴g(x)为先减后增且有唯一极值点.由题意g(x)有且仅有一个零点,则g(x)的极值一定为0,而g(0)=a0+b0-2=0,故极值点为0.∴g′(0)=0,即ln a+ln b=0,∴ab=1.2.解①由f (x)=2x3-3x得f ′(x)=6x2-3.令f ′(x)=0,得x=-2)2或x=2)2.因为f (-2)=-10,f \a\vs4\al\co1(-\f(\r(2)2))=2,f \a\vs4\al\co1(\f(\r(2)2))=-2,f (1)=-1,所以f (x)在区间[-2,1]上的最大值为f \a\vs4\al\co1(-\f(\r(2)2))=2.②设过点P(1,t)的直线与曲线y=f (x)相切于点(x0,y0),则y0=2x30-3x0,且切线斜率为k=6x20-3,所以切线方程为y-y0=(6x20-3)(x-x0),因为t-y0=(6x20-3)(1-x0).整理得4x30-6x20+t+3=0,设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f (x)相切”等价于“g(x)有3个不同零点”. g′(x)=12x2-12x=12x(x-1),当x变化时,g(x)与g′(x)的变化情况如下:所以,g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.当g(0)=t+3≤0,即t≤-3时,此时g(x)在区间(-∞,1)和[1,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.当g(1)=t+1≥0,即t≥-1时,此时g(x)在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.当g(0)>0且g(1)<0,即-3<t<-1时,因为g(-1)=t-7<0,g(2)=t+11>0,所以g(x)分别在区间[-1,0),[0,1)和[1,2)上恰有1个零点,由于g(x)在区间(-∞,0)和(1,+∞)上单调,所以g(x)分别在区间(-∞,0)和[1,+∞)上恰有1个零点.综上可知,当过点P(1,t)存在3条直线与曲线y=f (x)相切时,t的取值范围是(-3,-1).3.解因为f ′(x)=3x2-1.所以曲线f (x)=x3-x在点M(λ0,f (λ0))处的切线的斜率为k=f ′(λ0)=3λ20-1. 所以切线方程为y-(λ30-λ0)=(3λ20-1)(x-λ0),即y=(3λ20-1)x-2λ30.(2)证明由(1)知曲线f (x)=x3-x在点(λ,f (λ))处的切线的方程为y=(3λ2-1)x -2λ3.若切线过点N(2,1),则1=2(3λ2-1)-2λ3,即2λ3-6λ2+3=0.过点N可作曲线f (x)的三条切线等价于方程2λ3-6λ2+3=0有三个不同的解. 设g(λ)=2λ3-6λ2+3,则g′(λ)=6λ2-12λ=6λ(λ-2).当λ变化时,g′(λ),g(λ)的变化情况如下表:因为g(λ)在R上只有一个极大值3和一个极小值-5,所以过点N可以作曲线f (x)=x3-x的三条切线.4.解(1)设曲线y=f (x)与x轴相切于点(x0,0),则f (x0)=0,f ′(x0)=0.即3020x+ax0+\f(143x+a=0,解得x0=12,a=-34.因此,当a=-34时,x轴为曲线y=f (x)的切线.(2)当x∈(1,+∞)时,g(x)=-ln x<0,从而h(x)=min{f (x),g(x)}≤g(x)<0,故h(x)在(1,+∞)上无零点.当x=1时,若a≥-54,则f (1)=a+54≥0,h(1)=min{f (1),g(1)}=g(1)=0,故x=1是h(x)的零点;若a<-54,则f (1)<0,h(1)=min{f (1),g(1)}=f (1)<0,故x=1不是h(x)的零点. 当x∈(0,1)时,g(x)=-ln x>0.所以只需考虑f (x)在(0,1)的零点个数.(ⅰ)若a≤-3或a≥0,则f ′(x)=3x2+a在(0,1)上无零点,故f (x)在(0,1)上单调.而f (0)=14,f (1)=a+54,所以当a≤-3时,f (x)在(0,1)内有一个零点;当a≥0时,f (x)在(0,1)上没有零点.(ⅱ)若-3<a<0,则f (x)在\a\vs4\al\co1(0,\r(-\f(a3)))上单调递减,在\a\vs4\al\co1(\r(-\f(a3)),1)上单调递增,故在(0,1)中,当x=a3)时,f (x)取得最小值,最小值为f \a\vs4\al\co1(\r(-\f(a3)))=2a3a3)+14.①若f \a\vs4\al\co1(\r(-\f(a3)))>0,即-34<a<0,f (x)在(0,1)无零点;②若f \a\vs4\al\co1(\r(-\f(a3)))=0,即a=-34,则f (x)在(0,1)有唯一零点;③若f \a\vs4\al\co1(\r(-\f(a3)))<0,即-3<a<-34,由于f (0)=14,f (1)=a+54,所以当-54<a<-34时,f (x)在(0,1)有两个零点;当-3<a≤-54时,f (x)在(0,1)有一个零点.综上,当a>-34或a<-54时,h(x)有一个零点;当a=-34或a=-54时,h(x)有两个零点;当-54<a<-34时,h(x)有三个零点.5.解(1)f ′(x)=ln x+1,所以切线斜率k=f ′(1)=1.又f (1)=0,∴曲线在点(1,0)处的切线方程为y=x-1.由y=-x2+ax-2,y=x-1)⇒x2+(1-a)x+1=0.由Δ=(1-a)2-4=a2-2a-3=(a+1)(a-3)可知:当Δ>0时,即a<-1或a>3时,有两个公共点;当Δ=0时,即a=-1或a=3时,有一个公共点;当Δ<0时,即-1<a<3时,没有公共点.(2)y=f (x)-g(x)=x2-ax+2+x ln x,由y=0,得a=x+2x+ln x.令h(x)=x+2x+ln x,则h′(x)=(x-1)(x+2)x2.当x∈\f(1e),e)时,由h′(x)=0,得x=1.所以h(x)在\f(1e),1)上单调递减,在[1,e]上单调递增,因此h(x)min=h(1)=3.由h\a\vs4\al\co1(\f(1e))=1e+2e-1,h(e)=e+2e+1,比较可知h\a\vs4\al\co1(\f(1e))>h(e),所以,结合函数图象可得,当3<a≤e+2e+1时,函数y=f (x)-g(x)有两个零点.6.(1)解当a=38时,f (x)=38x2-x-ln x.所以f ′(x)=34x-1-1x=(3x+2)(x-2)4x(x>0).令f ′(x)=0,得x=2,当x∈(0,2)时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0,所以函数f (x)在(0,2)上单调递减,在(2,+∞)上单调递增.所以当x=2时,f (x)有最小值f (2)=-12-ln 2.(2)证明由f (x)=ax2-x-ln x得f′(x)=2ax-1-1x=2ax2-x-1x,x>0.所以当a≤0时,f′(x)=2ax2-x-1x<0,函数f (x)在(0,+∞)上单调递减,所以当a≤0时,函数f (x)在(0,+∞)上最多有一个零点.因为当-1≤a≤0时,f (1)=a-1<0,f \a\vs4\al\co1(\f(1e))=e2-e+ae2>0,所以当-1≤a≤0时,函数f (x)在(0,+∞)上有零点.综上,当-1≤a≤0时,函数f (x)有且只有一个零点7.解(1)当a=2时,f (x)=2ln x-x2+2x,f′(x)=2x-2x+2,切点坐标为(1,1),切线的斜率k=f ′(1)=2,则切线方程为y-1=2(x-1),即y=2x-1.(2)g(x)=2ln x-x2+m,则g′(x)=2x-2x=-2(x+1)(x-1)x.因为x∈\f(1e),e),所以当g′(x)=0时,x=1.当1e<x<1时,g′(x)>0,此时函数单调递增;当1<x<e时,g′(x)<0,此时函数单调递减.故g(x)在x=1处取得极大值g(1)=m-1.又g\a\vs4\al\co1(\f(1e))=m-2-1e2,g(e)=m+2-e2,g(e)-g\a\vs4\al\co1(\f(1e))=4-e2+1e2<0,则g(e)<g\a\vs4\al\co1(\f(1e)),所以g(x)在\f(1e),e)上的最小值是g(e).g(x)在\f(1e),e)上有两个零点的条件是g(1)=m-1>0,\rc\1e2)≤0,解得1<m≤2+1e2,所以实数m的取值范围是\a\vs4\al\co1(1,2+\f(1e2)).8.解(1)∵f (x)=x2-a ln x-1的定义域为(0,+∞),函数f (x)的图象上的每一点处的切线斜率都是正数,∴f ′(x)=2x-ax>0在(0,+∞)上恒成立.∴a<2x2在(0,+∞)上恒成立,∵y=2x2>0在(0,+∞)上恒成立,∴a≤0.∴所求的a的取值范围为(-∞,0].(2)当a=2时,函数y=f(x)x-1的图象与y=F(x)的图象没有公共点.证明如下:当a=2时,y=f(x)x-1=x2-2ln x-1x-1,它的定义域为{x|x>0且x≠1},F(x)的定义域为[0,+∞).当x>0且x≠1时,由f(x)x-1=F(x)得x2-2ln x-x+2x-2=0.设h(x)=x2-2ln x-x+2x-2,则h′(x)=2x-2x-1+1\r(x)=x)-1)(2x\r(x)+2x+\r(x)+2)x.∴当0<x<1时,h′(x)<0,此时,h(x)单调递减;当x>1时,h′(x)>0,此时,h(x)单调递增.∴当x>0且x≠1时,h(x)>h(1)=0,即h(x)=0无实数根.∴当a=2,x>0且x≠1时,f(x)x-1=F(x)无实数根.∴当a=2时,函数y=f(x)x-1的图象与y=F(x)的图象没有公共点.9.解(1)由题意f ′(x)=x2-ax,所以当a=2时,f (3)=0,f ′(x)=x2-2x,所以f ′(3)=3,因此曲线y=f (x)在点(3,f (3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f (x)+(x-a)cos x-sin x,所以g′(x)=f ′(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x),令h(x)=x-sin x,则h′(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以,当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g′(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.所以,当x=a时,g(x)取到极大值,极大值是g(a)=-16a3-sin a,当x=0时,g(x)取到极小值,极小值是g(0)=-a.②当a=0时,g′(x)=x(x-sin x),当x∈(-∞,+∞)时,g′(x)≥0,g(x)单调递增;所以g(x)在(-∞,+∞)上单调递增,g(x)无极大值也无极小值.③当a>0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g′(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.所以,当x=0时,g(x)取到极大值,极大值是g(0)=-a;当x=a时g(x)取到极小值,极小值是g(a)=-16a3-sin a.综上所述:当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大值是g(a)=-16a3-sin a,极小值是g(0)=-a;当a=0时,函数g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大值是g(0)=-a,极小值是g(a)=-16a3-sin a.。

2020高中数学苏教版必修一3.4.1第1课时函数的零点课后练习题

2020高中数学苏教版必修一3.4.1第1课时函数的零点课后练习题

§3.4 函数的应用3.4.1 函数与方程第1课时函数的零点课时目标1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数,理解二次函数的图象与x轴的交点和相应的一元二次方程根的关系.2.理解函数零点的概念以及函数零点与方程根的联系.3.掌握函数零点的存在性定理.1.函数y=ax2+bx+c(a≠0)的图象与x轴的交点和相应的ax2+bx+c=0(a≠0)的根的关系2.函数的零点一般地,我们把使函数y =f (x )的值为0的实数x 称为函数y =f (x )的______.3.函数y =f (x )的零点就是方程f (x )=0的________,也就是函数y =f (x )的图象与x 轴的交点的______.4.方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有______⇔函数y =f (x )有______.函数零点的存在性的判断方法若函数f (x )在区间[a ,b ]上的图象是一条不间断的曲线,且f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有零点.一、填空题1.二次函数y =ax 2+bx +c 中,a ·c <0,则函数的零点个数是________.2.若函数y =f (x )在区间[a ,b ]上的图象为一条连续不断的曲线,则下列说法不正确的是________.(填序号)①若f (a )f (b )>0,不存在实数c ∈(a ,b )使得f (c )=0;②若f (a )f (b )<0,存在且只存在一个实数c ∈(a ,b )使得f (c )=0;③若f (a )f (b )>0,有可能存在实数c ∈(a ,b )使得f (c )=0;④若f (a )f (b )<0,有可能不存在实数c ∈(a ,b )使得f (c )=0.3.若函数f (x )=ax +b (a ≠0)有一个零点为2,那么函数g (x )=bx 2-ax 的零点是________.4.已知函数y =f (x )是偶函数,其部分图象如图所示,则这个函数的零点至少有________个.5.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3, x ≤0,-2+ln x , x >0零点的个数为________. 6.已知函数y =ax 3+bx 2+cx +d 的图象如图所示,则实数b 的取值范围是________.7.已知函数f (x )是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______.8.函数f (x )=ln x -x +2的零点个数为________.9.根据表格中的数据,可以判定方程e x -x -2=0的一个实根所在的区间为(k ,k +1)(k∈N ),则k二、解答题10.证明:方程x 4-4x -2=0在区间[-1,2]内至少有两个实数解.11.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求m 的取值范围.能力提升12.设函数f (x )=⎩⎪⎨⎪⎧ x 2+bx +c ,x ≤0,2, x >0,若f (-4)=f (0),f (-2)=-2,则方程f (x )=x 的解的个数是_______________________.13.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之2.5.1 函数的零点知识梳理1.2个 1个 0个 2个 1个 2.零点 3.实数根 横坐标4.交点 零点作业设计1.2个解析 方程ax 2+bx +c =0中,∵ac <0,∴a ≠0,∴Δ=b 2-4ac >0,即方程ax 2+bx +c =0有2个不同实数根,则对应函数的零点个数为2个.2.①②④解析 对于①,可能存在根;对于②,必存在但不一定唯一;④显然不成立.3.0,-12 解析 ∵a ≠0,2a +b =0,∴b ≠0,a b =-12. 令bx 2-ax =0,得x =0或x =a b =-12. 4.4解析 由图象可知,当x >0时,函数至少有2个零点,因为偶函数的图象关于y 轴对称,故此函数的零点至少有4个.5.2解析 x ≤0时,令x 2+2x -3=0,解得x =-3.x >0时,f (x )=ln x -2在(0,+∞)上递增,f (1)=-2<0,f (e 3)=1>0,∴f (1)f (e 3)<0,∴f (x )在(0,+∞)上有且只有一个零点.综上,f (x )在R 上有2个零点.6.(-∞,0)解析 设f (x )=ax 3+bx 2+cx +d ,则由f (0)=0可得d =0,f (x )=x (ax 2+bx +c )=ax (x-1)(x -2)⇒b =-3a ,又由x ∈(0,1)时f (x )>0,可得a >0,∴b <0.7.3 0解析 ∵f (x )是R 上的奇函数,∴f (0)=0,又∵f (x )在(0,+∞)上是增函数,由奇函数的对称性可知,f (x )在(-∞,0)上也单调递增,由f (2)=-f (-2)=0.因此在(0,+∞)上只有一个零点,综上f (x )在R 上共有3个零点,其和为-2+0+2=0.8.2解析 该函数零点的个数就是函数y =ln x 与y =x -2图象的交点个数.在同一坐标系中作出y =ln x 与y =x -2的图象如下图:由图象可知,两个函数图象有2个交点,即函数f (x )=ln x -x +2有2个零点.9.1解析 设f (x )=e 2-(x +2),由题意知f (-1)<0,f (0)<0,f (1)<0,f (2)>0,所以方程的一个实根在区间(1,2)内,即k =1.10.证明 设f (x )=x 4-4x -2,其图象是连续曲线.因为f (-1)=3>0,f (0)=-2<0,f (2)=6>0.所以在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解.11.解 令f (x )=mx 2+2(m +3)x +2m +14.依题意得⎩⎪⎨⎪⎧ m >0f 4<0或⎩⎪⎨⎪⎧m <0f 4>0,即⎩⎪⎨⎪⎧ m >026m +38<0或⎩⎪⎨⎪⎧m <026m +38>0,解得-1913<m <0. 12.3 解析 由已知⎩⎪⎨⎪⎧ 16-4b +c =c ,4-2b +c =-2,得⎩⎪⎨⎪⎧ b =4,c =2. ∴f (x )=⎩⎪⎨⎪⎧ x 2+4x +2,x ≤0,2, x >0. 当x ≤0时,方程为x 2+4x +2=x ,即x 2+3x +2=0,∴x =-1或x =-2;当x >0时,方程为x =2,∴方程f (x )=x 有3个解.13.解 设f (x )=x 2+(k -2)x +2k -1.∵方程f (x )=0的两根中,一根在(0,1)内,一根在(1,2)内,∴⎩⎪⎨⎪⎧ f 0>0f 1<0f 2>0,即⎩⎪⎨⎪⎧ 2k -1>01+k -2+2k -1<04+2k -4+2k -1>0∴12<k <23.。

2020年高考数学一轮复习专题2.9零点定理练习(含解析)

2020年高考数学一轮复习专题2.9零点定理练习(含解析)

第九讲 零点定理1.函数的零点 (1)函数零点的定义对于函数y =f (x )(x ∈D ),把使f (x )=0的实数x 叫做函数y =f (x )(x ∈D )的零点. (2)三个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根. 2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系(x ,0),(x ,0)(x ,0) 无交点 3设x 1,x 2是一元二次方程ax 2+bx +c =0(a ,b ,c ∈R ,且a >0)的两实数根,则x 1,x 2的分布情况与一元二次方程的系数之间的关系如下表:(m ,n ,p 为常数,且m <n <p )二、二分法 (1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法。

(2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε。

第二步:求区间(,)a b 的中点1x 。

第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x =(此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步。

2020年高考数学(理)总复习:利用导数解决函数零点问题(解析版)

2020年高考数学(理)总复习:利用导数解决函数零点问题(解析版)

2020年高考数学(理)总复习:利用导数解决函数零点问题题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∵a >0,∴x 1<x 2,列表如下:∴f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a 2=8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵存在x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∴y =1x 3+3x 在x ∈[1,2]上单调递减,∴当x =1时,y =1x 3+3x 的最大值为4,∴2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ①当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∴h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.②当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∴h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ③当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1),∵φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∴φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∴存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(ⅰ)当0<x ≤x 0时,∵φ(x )=f (x )-g (x )≥φ(x 0)=0, ∴h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∴h (x )在(0,x 0)上有一个零点; (ⅱ)当x >x 0时,∵φ(x )=f (x )-g (x )<φ(x 0)=0, ∴h (x )=g (x )且h (x )为增函数,∵g (1)=0,∴h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∴函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2. (2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∴0<x 1<1,∴g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2ea ,(a <0),h′(a)=-12a ea-12ea-2e a+2,(a<0),h′(0)=-12,h″(a)=e-a-e a+e-a-12a ea>0,∴h′(a)在(-∞,0)上单调递增,h′(a)<h′(0)<0,∴h(a)在(-∞,0)上单调递减,∴h(a)>h(0)=0,∴g(x1)>0,即当a<0时,g(e a)>0.当x趋于+∞时,g(x)趋于+∞,且g(2)=2ln2-2<0.∴函数g(x)在(0,+∞)上始终有两个零点.题型二由函数零点个数求参数的取值范围【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f(x)=mxln x,曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直(其中e 为自然对数的底数).(1)求f(x)的解析式及单调减区间;(2)若函数g(x)=f(x)-kx2x-1无零点,求k的取值范围.【解析】(1)函数f(x)=mxln x的导数为f′(x)=m(ln x-1)(ln x)2,又由题意有:f′(e2)=12⇒m4=12⇒m=2,故f(x)=2xln x.此时f′(x)=2(ln x-1)(ln x)2,由f′(x)≤0⇒0<x<1或1<x≤e,所以函数f(x)的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1⇒g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∪(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∪(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∪(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ⇒h ′(x )=kx -2x2.①当k ≤0时,h ′(x )<0在x ∈(0,1)∪(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;②当k >0时,h ′(x )=kx -2x 2⇒h ′(x )=22xkx k ⎪⎭⎫ ⎝⎛-,(i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∪(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增; 当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减.当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ①若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;②若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤ ⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ③若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;④若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∵f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∴f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∵t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∵t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∴h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∵e -2<x <e∴函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∵g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∴m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.①当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1; ②当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合①②,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:①当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.②当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合①②,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围.[解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∴a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∵x ∈(1,+∞),∴ln x ∈(0,+∞), ∴当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∴a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∴f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x +2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∴4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∴g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∴g ′(x )=3x 2-2x -1,g ′(-1)=4,∴点P (-1,1)处的切线斜率k =g ′(-1)=4,∴函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0,∴当x =1时,h (x )取得最大值,h (x )max =h (1)=-2,∴a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∴φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∵φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∴方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届高三数学专题练习之函数零点1.零点的判断与证明例1:已知定义在()1,+∞上的函数()ln 2f x x x =--, 求证:()f x 存在唯一的零点,且零点属于()3,4. 2.零点的个数问题例2:已知函数()f x 满足()()3f x f x =,当[)1,3x ∈,()ln f x x =,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( ) A .ln 31,3e ⎛⎫ ⎪⎝⎭B .ln 31,93e ⎛⎫ ⎪⎝⎭C .ln 31,92e ⎛⎫ ⎪⎝⎭D .ln 3ln 3,93⎛⎫ ⎪⎝⎭3.零点的性质例3:已知定义在R 上的函数()f x 满足:()[)[)2220,121,0x x f x xx ⎧+∈⎪=⎨-∈-⎪⎩,且()()2f x f x +=,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为( ) A .5-B .6-C .7-D .8-4.复合函数的零点例4:已知函数()243f x x x =-+,若方程()()20f x bf x c ++=⎡⎤⎣⎦恰有七个不相同的实根,则实数b 的取值范围是( ) A .()2,0- B .()2,1--C .()0,1D .()0,2一、选择题1.设()ln 2f x x x +-=,则函数()f x 的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,42.已知a 是函数()12log 2x x f x =-的零点,若00x a <<,则()0f x 的值满足( )A .()00f x =B .()00f x >C .()00f x <D .()0f x 的符号不确定3.函数2()2f x x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3B .()1,2C .()0,3D .()0,24.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a -----+-=+的两个零点分别位于区间( ) A .(),a b 和(),b c 内B .(,)a -∞和(),a b 内C .(),b c 和(),c +∞内D .(,)a -∞和(),c +∞内5.设函数()f x 是定义在R 上的奇函数,当0x >时,()e 3x f x x =+-,则()f x 的零点个数为( ) A .1B .2C .3D .46.函数()2201ln 0x x x xx f x ⎧+-≤=⎨-+>⎩的零点个数为( )A .3B .2C .7D .07.已知函数()101x x xf x ≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是( )A .()1,2B .(],2-∞-C .()(),12,-∞+∞D .(][),12,-∞+∞8.若函数()312f x ax a +-=在区间()1,1-内存在一个零点,则a 的取值范围是( )A .1,5⎛⎫+∞ ⎪⎝⎭B .()1,1,5⎛⎫-∞-+∞ ⎪⎝⎭C .11,5⎛⎫- ⎪⎝⎭D .(),1-∞-9.已知函数()00exx x f x ≤⎧=⎨>⎩,则使函数()()g x f x x m =+-有零点的实数m 的取值范围是( ) A .[)0,1B .(1),-∞C .(](),12,-∞+∞D .(](),01,-∞+∞10.已知()f x 是奇函数且是R 上的单调函数,若函数221()()y f x f x λ++=-只有一个零点,则实数λ 的值是( )A .14 B .18C .78-D .38-11.已知当[]0,1x ∈时,函数21()y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1][23,+)∞ B .(]0,13[),+∞C .[23,+)∞D .[3,+)∞12.已知函数()y f x =和()y g x =在[]2,2-的图像如下,给出下列四个命题: (1)方程()0f g x =⎡⎤⎣⎦有且只有6个根 (2)方程()0g f x =⎡⎤⎣⎦有且只有3个根 (3)方程()0f f x =⎡⎤⎣⎦有且只有5个根 (4)方程()0g g x =⎡⎤⎣⎦有且只有4个根 则正确命题的个数是( )A .1B .2C .3D .4二、填空题13.函数()052log ||x f x x -=-.的零点个数为________. 14.设函数31y x =与2212x y -⎛⎫= ⎪⎝⎭的图象的交点为00(,)x y ,若0,1()x n n ∈+,n ∈N ,则0x 所在的区间是______.15.函数()22026ln 0f x x x x x x ⎧-≤=⎨-+>⎩的零点个数是________.16.已知函数()23||f x x x =+,R x ∈,若方程()1|0|f x a x --=恰有4个互异的实数根,则实数a 的取值范围是________________. 三、解答题17.关于x 的二次方程21()10x m x ++-=在区间[]0,2上有解,求实数m 的取值范围.18.设函数()1()10f x x x=->.(1)作出函数()f x 的图象; (2)当0a b <<且()()f a f b =时,求11a b+的值; (3)若方程()f x m =有两个不相等的正根,求m 的取值范围.答案1.零点的判断与证明例1:已知定义在()1,+∞上的函数()ln 2f x x x =--, 求证:()f x 存在唯一的零点,且零点属于()3,4. 【答案】见解析【解析】()111x f x x x-'=-=,()1,x ∈+∞,()0f x '∴>,()f x ∴在()1,+∞单调递增,()31ln30f =-<,()42ln 20f =->,()()340f f ∴<,()03,4x ∴∃∈,使得()00f x =因为()f x 单调,所以()f x 的零点唯一. 2.零点的个数问题例2:已知函数()f x 满足()()3f x f x =,当[)1,3x ∈,()ln f x x =,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( ) A .ln 31,3e ⎛⎫⎪⎝⎭B .ln 31,93e ⎛⎫⎪⎝⎭C .ln 31,92e ⎛⎫⎪⎝⎭D .ln 3ln 3,93⎛⎫⎪⎝⎭【答案】B 【解析】()()()33x f x f x f x f ⎛⎫=⇒= ⎪⎝⎭,当[)3,9x ∈时,()ln 33x x f x f ⎛⎫== ⎪⎝⎭,所以()ln 13ln 393xx f x xx ≤<⎧⎪=⎨≤<⎪⎩,而()()g x f x ax =-有三个不同零点⇔()y f x =与y ax =有三个不同交点,如图所示,可得直线y ax =应在图中两条虚线之间,所以可解得:ln3193ea << 3.零点的性质例3:已知定义在R 上的函数()f x 满足:()[)[)2220,121,0x x f x xx ⎧+∈⎪=⎨-∈-⎪⎩,且()()2f x f x +=,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为( ) A .5- B .6-C .7-D .8-【答案】C【解析】先做图观察实根的特点,在[)1,1-中,通过作图可发现()f x 在()1,1-关于()0,2中心对称,由()()2f x f x +=可得()f x 是周期为2的周期函数,则在下一个周期()3,1--中,()f x 关于()2,2-中心对称,以此类推。

从而做出()f x 的图像(此处要注意区间端点值在何处取到),再看()g x 图像,()251222x g x x x +==+++,可视为将1y x=的图像向左平移2个单位后再向上平移2个单位, 所以对称中心移至()2,2-,刚好与()f x 对称中心重合,如图所示:可得共有3个交点123x x x <<,其中23x =-,1x 与3x 关于()2,2-中心对称,所以有134x x +=-。

所以1237x x x ++=-.故选C .4.复合函数的零点例4:已知函数()243f x x x =-+,若方程()()20f x bf x c ++=⎡⎤⎣⎦恰有七个不相同的实根,则实数b 的取值范围是( ) A .()2,0- B .()2,1-- C .()0,1 D .()0,2【答案】B【解析】考虑通过图像变换作出()f x 的图像(如图),因为()()20f x bf x c ++=⎡⎤⎣⎦最多只能解出2个()f x ,若要出七个根,则()11f x =,()()20,1f x ∈,所以()()()121,2b f x f x -=+∈,解得:()2,1b ∈--. 一、选择题1.设()ln 2f x x x +-=,则函数()f x 的零点所在的区间为( ) A .()0,1 B .()1,2C .()2,3D .()3,4【答案】B【解析】∵()1ln11210f +-=-<=,()2ln 20f =>,∴()()120f f ⋅<, ∵函数()ln 2f x x x +-=的图象是连续的,且为增函数, ∴()f x 的零点所在的区间是()1,2.故选B .2.已知a 是函数()12log 2x x f x =-的零点,若00x a <<,则()0f x 的值满足( )A .()00f x =B .()00f x >C .()00f x <D .()0f x 的符号不确定【答案】C【解析】()f x 在(0,)+∞上是增函数,若00x a <<,则()()00f x f a <=.3.函数2()2f x x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3 B .()1,2C .()0,3D .()0,2【答案】C【解析】因为()f x 在(0,)+∞上是增函数,则由题意得()()()()12030f f a a --=<⋅,解得03a <<,故选C .4.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a -----+-=+的两个零点分别位于区间( ) A .(),a b 和(),b c 内B .(,)a -∞和(),a b 内C .(),b c 和(),c +∞内D .(,)a -∞和(),c +∞内【答案】A【解析】∵a b c <<,∴()()()0f a a b a c -=->,()()()0f b b c b a -=-<,()()()0f c c a c b -=->,由函数零点存在性定理可知,在区间(),a b ,(),b c 内分别存在零点,又函数()f x 是二次函数,最多有两个零点.因此函数()f x 的两个零点分别位于区间(),a b ,(),b c 内,故选A . 5.设函数()f x 是定义在R 上的奇函数,当0x >时,()e 3x f x x =+-,则()f x 的零点个数为( ) A .1 B .2 C .3 D .4【答案】C【解析】因为函数()f x 是定义域为R 的奇函数,所以()00f =,即0是函数()f x 的一个零点,当0x >时,令()3e 0x f x x =+-=,则e 3x x =-+,分别画出函数1e x y =和23y x =-+的图象,如图所示,两函数图象有一个交点,所以函数()f x 有一个零点, 根据对称性知,当0x <时函数()f x 也有一个零点. 综上所述,()f x 的零点个数为3.故选C . 6.函数()2201ln 0x x x xx f x ⎧+-≤=⎨-+>⎩的零点个数为( )A .3B .2C .7D .0【答案】B【解析】方法一:由()0f x =得2020x x x ≤⎧⎨+-=⎩或2020x x x >⎧⎨+-=⎩,解得2x =-或e x =,因此函数()f x 共有2个零点.方法二:函数()f x 的图象如图所示,由图象知函数()f x 共有2个零点. 7.已知函数()101x x xf x ≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是( )A .()1,2B .(],2-∞-C .()(),12,-∞+∞D .(][),12,-∞+∞【答案】D【解析】当0x ≤时,()x f x m +=,即1x m +=,解得1m ≤;当0x >时,()x f x m +=,即1x m x+=, 解得2m ≥,即实数m 的取值范围是(][),12,-∞+∞.故选D .8.若函数()312f x ax a +-=在区间()1,1-内存在一个零点,则a 的取值范围是( )A .1,5⎛⎫+∞ ⎪⎝⎭B .()1,1,5⎛⎫-∞-+∞ ⎪⎝⎭C .11,5⎛⎫- ⎪⎝⎭D .(),1-∞-【答案】B【解析】当0a =时,()1f x =与x 轴无交点,不合题意,所以0a ≠;函数()312f x ax a +-=在区间()1,1-内是单调函数,所以()0(11)f f -⋅<,即()(10)51a a -+>,解得1a <-或15a >.故选B .9.已知函数()00exx x f x ≤⎧=⎨>⎩,则使函数()()g x f x x m =+-有零点的实数m 的取值范围是( ) A .[)0,1B .(1),-∞C .(](),12,-∞+∞D .(](),01,-∞+∞【答案】D【解析】函数()()g x f x x m =+-的零点就是方程()f x x m +=的根,画出()()0e 0x xx h x f x x x x ≤⎧=⎨+=>+⎩的大致图象(图略).观察它与直线y m =的交点,得知当0m ≤或1m >时,有交点,即函数()()g x f x x m =+-有零点.故选D .10.已知()f x 是奇函数且是R 上的单调函数,若函数221()()y f x f x λ++=-只有一个零点,则实数λ 的值是( )A .14 B .18C .78-D .38-【答案】C【解析】令2()21(0)y f x f x λ+-+==,则2()())21(f x f x f x λλ--=-+=,因为()f x 是R 上的单调函数,所以221x x λ+=-,只有一个实根,即2210x x λ++=-只有一个实根,则1810()∆=λ-+=,解得78λ=-.11.已知当[]0,1x ∈时,函数21()y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1][23,+)∞ B .(]0,13[),+∞C .[23,+)∞D .[3,+)∞【答案】B【解析】在同一直角坐标系中,分别作出函数2221()(1)f x mx m x m ⎛⎫=-=- ⎪⎝⎭与()g x m的大致图象.分两种情形: (1)当01m <≤时,11m≥,如图①,当[]0,1x ∈时,()f x 与()g x 的图象有一个交点,符合题意.(2)当1m >时,101m<<,如图②,要使()f x 与()g x 的图象在[]0,1上只有一个交点, 只需()()11g f ≤,即211()m m +≤-,解得3m ≥或0m ≤(舍去).综上所述,(][0,13),m ∈+∞.故选B .12.已知函数()y f x =和()y g x =在[]2,2-的图像如下,给出下列四个命题: (1)方程()0f g x =⎡⎤⎣⎦有且只有6个根 (2)方程()0g f x =⎡⎤⎣⎦有且只有3个根 (3)方程()0f f x =⎡⎤⎣⎦有且只有5个根 (4)方程()0g g x =⎡⎤⎣⎦有且只有4个根 则正确命题的个数是( ) A .1 B .2C .3D .4【答案】B【解析】每个方程都可通过图像先拆掉第一层,找到内层函数能取得的值,从而统计出x 的总数.(1)中可得()()12,1g x ∈--,()20g x =,()()31,2g x ∈,进而()1g x 有2个对应的x ,()2g x 有2个,()3g x 有2个,总计6个,(1)正确;(2)中可得()()12,1f x ∈--,()()20,1f x ∈,进而()1f x 有1个对应的x ,()2f x 有3个,总计4个, (2)错误;(3)中可得()()12,1f x ∈--,()20f x =,()()31,2f x ∈,进而()1f x 有1个对应的x ,()2f x 有3个,()3f x 有1个,总计5个,(3)正确;(4)中可得:()()12,1g x ∈--,()()20,1g x ∈,进而()1g x 有2个对应的x ,()2g x 有2个,共计4个,(4)正确则综上所述,正确的命题共有3个. 二、填空题13.函数()052log ||x f x x -=-.的零点个数为________. 【答案】2【解析】由()0f x =,得0.51|log |2xx ⎛⎫= ⎪⎝⎭,作出函数105log ||y x =.和212xy ⎛⎫= ⎪⎝⎭的图象, 由上图知两函数图象有2个交点,故函数()f x 有2个零点. 14.设函数31y x =与2212x y -⎛⎫= ⎪⎝⎭的图象的交点为00(,)x y ,若0,1()x n n ∈+,n ∈N ,则0x 所在的区间是______. 【答案】()1,2【解析】令()2312x f x x -⎛⎫=- ⎪⎝⎭,则()00f x =,易知()f x 为增函数,且()10f <,()20f >,∴0x 所在的区间是()1,2.15.函数()22026ln 0f x x x x x x ⎧-≤=⎨-+>⎩的零点个数是________.【答案】2【解析】当0x ≤时,令220x -=,解得x =,所以在(0],-∞上有一个零点; 当0x >时,1'()20f x x=+>恒成立,所以()f x 在(0,)+∞上是增函数.又因为()22ln 20f +-<=,()3ln30f =>,所以()f x 在(0,)+∞上有一个零点,综上,函数()f x 的零点个数为2.16.已知函数()23||f x x x =+,R x ∈,若方程()1|0|f x a x --=恰有4个互异的实数根,则实数a 的取值范围是________________. 【答案】()0,19(),+∞【解析】设()21|3|y f x x x ==+,2|1|y a x =-,在同一直角坐标系中作出21||3y x x =+,2|1|y a x =-的图象如图所示.由图可知()1|0|f x a x --=有4个互异的实数根等价于21||3y x x =+与2|1|y a x =-的图象有4个不同的交点且4个交点的横坐标都小于1,所以()231y x xy a x ⎧=--⎪⎨=-⎪⎩有两组不同解,消去y 得2)0(3x a x a -+=+有两个不等实根, 所以2()340a a ∆=-->,即21090a a +>-,解得1a <或9a >.又由图象得0a >,∴01a <<或9a >. 三、解答题17.关于x 的二次方程21()10x m x ++-=在区间[]0,2上有解,求实数m 的取值范围. 【答案】(],1-∞-【解析】显然0x =不是方程21()10x m x ++-=的解,02x <≤时,方程可变形为11m x x-=+, 又∵1y x x=+在(]0,1上单调递减,在[]1,2上单调递增, ∴1y x x=+在(]0,2上的取值范围是[2,)+∞,∴12m -≥,∴1m ≤-, 故m 的取值范围是(],1-∞-.18.设函数1()1(0)f x x x=->.(1)作出函数()f x 的图象; (2)当0a b <<且()()f a f b =时,求11a b+的值;(3)若方程()f x m =有两个不相等的正根,求m 的取值范围. 【答案】(1)见解析;(2)2;(3)01m <<. 【解析】(1)如图所示. (2)∵(]()110,11()1111,x xf x x x x⎧-∈⎪⎪=-=⎨⎪-∈+∞⎪⎩故()f x 在(]0,1上是减函数,而在(1,)+∞上是增函数. 由0a b <<且()()f a f b =,得01a b <<<且1111a b -=-,∴112a b+=. (3)由函数()f x 的图象可知,当01m <<时,方程()f x m =有两个不相等的正根.。

相关文档
最新文档