五参数估计和假设检验

合集下载

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。

(一)参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。

点估计是用估计量的某个取值直接作为总体参数的估计值。

点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。

区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。

在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。

统计学家在某种程度上确信这个区间会包含真正的总体参数。

在区间估计中置信度越高,置信区间越大。

置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05, 0.1。

置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。

一个总体参数的区间估计需要考虑总体分布是否正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。

(1)来自正态总体的样本均值,不论抽取的是大样本还是小样本,均服从正态分布。

(2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布。

(3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理。

(4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近。

(5)样本均数服从的正态分布为N(u , a^2/n)远远小于原变量离散程度N (u, a^2) 。

(二)假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设,然后利用样本信息判断这一假设是否成立。

假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。

常用统计术语

常用统计术语

常用统计术语一、总体与样本在统计学中,总体是指研究对象的全体,样本是指从总体中选取的一部分个体。

总体的特征称为参数,样本的特征称为统计量。

总体参数常用符号表示,如总体均值用μ表示,总体方差用σ²表示。

二、抽样与抽样误差抽样是指从总体中选取样本的过程,目的是通过样本推断总体的特征。

抽样误差是指由于样本的随机性导致的样本统计量与总体参数之间的差异。

三、描述统计与推断统计描述统计是对收集到的数据进行整理、总结和描绘的过程,常用的描述统计指标有平均数、中位数、标准差等。

推断统计是根据样本数据对总体进行推断的过程,通过样本推断总体的特征。

四、频数与频率频数是某个数值在数据中出现的次数,频率是某个数值在数据中出现的相对比例。

频率可以通过频数除以总样本量得到,通常以百分数或小数形式表示。

五、参数估计与假设检验参数估计是通过样本数据对总体参数进行估计的过程,常用的参数估计方法有点估计和区间估计。

假设检验是根据样本数据对总体参数进行推断的过程,常用的假设检验方法有单样本检验、双样本检验等。

六、相关与回归相关分析是研究两个或多个变量之间关系的统计方法,常用的相关系数有皮尔逊相关系数、斯皮尔曼相关系数等。

回归分析是研究自变量与因变量之间关系的统计方法,常用的回归模型有线性回归、多项式回归等。

七、方差分析与卡方检验方差分析是用于比较两个或多个样本均值之间差异的统计方法,常用的方差分析方法有单因素方差分析、多因素方差分析等。

卡方检验是用于比较观察频数与期望频数之间差异的统计方法,常用的卡方检验有卡方拟合优度检验、卡方独立性检验等。

八、正态分布与偏态分布正态分布是一种对称的连续概率分布,符合正态分布的数据呈钟形分布,均值、中位数和众数相等。

偏态分布是一种不对称的概率分布,偏态分布的数据在均值两侧的分布不对称。

九、标准化与归一化标准化是将数据按照一定的比例进行缩放,使得数据具有相同的尺度,常用的标准化方法有Z-score标准化、Min-Max标准化等。

参数估计与假设检验SPSS

参数估计与假设检验SPSS

3
区别
参数估计更侧重于总体参数的估计和推断,而假 设检验更侧重于对总体参数的假设进行验证和决 策。
02
SPSS软件介绍
SPSS软件的特点与优势
强大的统计分析功能
SPSS提供了广泛的统计分析方法,包括描述性统计、推论性统计、 多元统计分析等,能够满足各种数据分析和科学研究的需求。
易用性
SPSS的用户界面友好,操作简单,使得用户可以快速上手,减少了 学习成本。
参数估计与假设检验的应用场景与注 意事项
参数估计与假设检验的应用场景
社会科学研究 在社会科学研究中,参数估计与 假设检验是常用的统计方法,用 于检验理论模型和假设,评估变 量之间的关系。
心理学研究 在心理学研究中,参数估计与假 设检验用于研究人类行为、认知 和情感等方面的规律和特点。
医学研究 在医学研究中,参数估计与假设 检验常用于临床试验和流行病学 研究中,以评估治疗效果、疾病 发病率和风险因素等。
04
05
根据输出结果判断假设是否 成立。
假设检验的实例分析
以一个实际研究问题为例,如比较两组人群的平均身高是否存在显著差异。
在SPSS中实现该实例分析,包括数据导入、选择统计方法、设置参数、运 行统计方法和结果解读等步骤。
根据SPSS的输出结果,判断提出的假设是否成立,并解释结果的实际意义。
05
数据处理技术,提高分析效率和准确性。
多变量分析方法
03
多变量分析方法的发展将促进参数估计与假设检验的进一步应
用,能够更全面地揭示变量之间的关系。
THANKS
感谢观看
使用SPSS进行参数估计,例如使用逻辑回归分 析来估计吸烟与肺癌之间的关系。
04
假设检验在SPSS中的实现

5种常用的统计学方法

5种常用的统计学方法

5种常用的统计学方法1. 描述统计方法描述统计方法是统计学中常用的一种方法,用于对数据进行整理、总结和描述。

它通过计算和分析数据的中心趋势、离散程度和分布特征,提供对数据的直观认识。

描述统计方法不依赖于任何假设,适用于各种类型的数据。

其中,常用的描述统计方法包括均值、中位数、众数和标准差等。

均值是一组数据的平均值,反映了数据的中心趋势;中位数是一组数据中居于中间位置的值,对于数据的离群点不敏感;众数是一组数据中出现最频繁的值,用于描述数据的分布特征;标准差是一组数据的离散程度的度量,反映了数据的变异程度。

通过描述统计方法,我们可以对数据进行整体把握,了解数据的基本情况,为后续的分析和决策提供依据。

2. 探索性数据分析方法探索性数据分析方法是一种通过可视化和统计分析来理解数据的方法。

它旨在发现数据中的模式、趋势和异常值,并提供对数据的深入理解。

在探索性数据分析中,常用的方法包括直方图、散点图和箱线图等。

直方图可以展示数据的分布情况,散点图可以显示两个变量之间的关系,箱线图可以展示数据的分散程度和异常值。

通过探索性数据分析方法,我们可以挖掘数据中的潜在信息,发现数据的规律和特点,为进一步的分析和建模提供指导。

3. 参数估计方法参数估计方法是一种通过样本数据来估计总体参数的方法。

它基于统计模型和假设,利用样本数据推断总体的特征。

常用的参数估计方法包括点估计和区间估计。

点估计是通过样本数据得到总体参数的一个具体值,如样本均值作为总体均值的估计;区间估计是通过样本数据得到总体参数的一个范围,如置信区间可以给出总体均值的估计范围。

参数估计方法可以帮助我们根据有限的样本数据,对总体参数进行推断和估计,提供对总体特征的认识和预测。

4. 假设检验方法假设检验方法是一种通过样本数据来检验关于总体参数的假设的方法。

它基于统计模型和假设,利用样本数据来判断总体参数是否符合某种假设。

常用的假设检验方法包括单样本检验、两样本检验和方差分析等。

参数估计和假设检验

参数估计和假设检验

假设检验
实际中的假设检验问题
假设检验: 事先作出关于总体参数、分布形式、
相互关系等的命题(假设),然后通过样本信息 来判断该命题是否成立(检验) 。



产品自动生产线工作是否正常? 某种新生产方法是否会降低产品成本? 治疗某疾病的新药是否比旧药疗效更高? 厂商声称产品质量符合标准,是否可信?





两个正态总体均值差的检验(t检验) 两个正态总体方差未知但等方差时,比较两正态总体样 本均值的假设检验 函数 ttest2 格式 [h,sig,ci]=ttest2(X,Y) %X,Y为两个正态总体的样本,显 著性水平为0.05 [h,sig,ci]=ttest2(X,Y,alpha) %alpha为显著性水平 [h,sig,ci]=ttest2(X,Y,alpha,tail) %sig为当原假设为真时得 到观察值的概率,当sig为小概率时则对原假设提出质疑 ,ci为真正均值μ的1-alpha置信区间。
例:从某厂生产的滚珠中随机抽取10个,测得滚珠的
直径(单位:mm)如下 15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87 若滚珠直径满服从正态分布N(μ,σ2),其中μ,σ未知。试 求之并计算置信水平为90%的置信区间
x = [15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87]; % 定义样本观测值向量 % 调用normfit函数求正态总体参数的最大似然估计和置信区间 % 返回总体均值的最大似然估计muhat和90%置信区间muci, % 还返回总体标准差的最大似然估计sigmahat和90%置信区间sigmaci [muhat,sigmahat,muci,sigmaci] = normfit(x,0.1)

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。

总体参数是指总体的其中一种性质,比如总体均值、总体方差等。

样本数据是从总体中随机抽取的一部分数据,用来代表总体。

参数估计的目标是使用样本数据来估计总体参数的值。

常见的参数估计方法有点估计和区间估计。

(1)点估计点估计是通过一个统计量来估计总体参数的值。

常见的点估计方法有样本均值、样本方差等。

点估计的特点是简单、直观,但是估计值通常是不准确的。

这是因为样本的随机性导致样本统计量有一定的误差。

因此,点估计通常会伴随着误差界限,即估计值的置信区间。

(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。

常见的区间估计方法有置信区间和可信区间。

置信区间是指当重复抽样时,包含真实总体参数的概率。

置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

可信区间是指在一次抽样中,包含真实总体参数的概率。

可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。

例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。

2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。

在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。

在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。

然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。

假设检验包含两种错误,即第一类错误和第二类错误。

第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。

第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。

常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。

5种常用的统计学方法

5种常用的统计学方法

5种常用的统计学方法常用的统计学方法主要包括描述统计、推断统计、回归分析、方差分析和因子分析。

一、描述统计描述统计是对数据进行总结和展示的一种方法。

它可以通过计算数据的中心趋势和离散程度来揭示数据的特征。

常用的描述统计方法包括均值、中位数、众数、标准差、极差等。

均值是一组数据的平均值,可以用来表示数据的中心位置。

例如,在一组考试成绩中,计算出的均值为80分,说明这组数据整体上呈现出较高的水平。

中位数是将一组数据按照大小顺序排列后,处于中间位置的数值。

对于有偏态的数据,中位数比均值更能反映数据的中心位置。

例如,在一组工资数据中,工资水平差异较大,此时计算中位数更能反映数据的中心趋势。

众数是一组数据中出现次数最多的数值,可以反映数据的分布特征。

例如,在一组人口年龄数据中,出现最多的年龄段是30岁,说明这个年龄段的人口占比较大。

标准差是一组数据与其均值之间的差异程度的度量指标。

标准差越大,说明数据的离散程度越大,反之则说明数据的离散程度较小。

例如,在一组销售额数据中,标准差较大则说明销售额的波动性较大。

极差是一组数据中最大值与最小值之间的差异,可以反映数据的变动范围。

例如,在一组温度数据中,最高温度与最低温度之间的差异较大,则说明温度变动范围较大。

二、推断统计推断统计是通过从样本中获取信息来推断总体特征的一种方法。

它可以通过对样本进行抽样和假设检验来进行推断。

常用的推断统计方法包括置信区间估计和假设检验。

置信区间估计是一种通过样本估计总体参数的方法。

它可以用来估计总体均值、总体比例等参数,并给出一个置信水平的区间估计。

例如,通过对一组产品质量进行抽样,可以计算出产品的平均质量在95%的置信水平下落在某个区间内。

假设检验是一种用来验证关于总体参数的假设的方法。

它可以判断样本观测结果与假设之间是否存在显著差异。

例如,在一组学生考试成绩中,通过假设检验可以判断是否存在某个因素对学生成绩的影响。

三、回归分析回归分析是一种用来研究变量之间关系的方法。

《统计学》第5章 假设检验

《统计学》第5章 假设检验
假设。原假设通常用H0 表示,也称为“零假设”;备择假设指的是当原
假设不成立时,即拒绝原假设时备以选择的假设,通常用H1 表示。备择
假设和原假设互斥,如在例5.1中,原假设是“2022 年全国城市平均
PM2.5 浓度与2018 年相比没有显著差异”,那么备择假设就是“2022
年全国城市平均PM2.5 浓度与2018 年相比存在显著差异”。相应的统计
小越好。但是,在一定的样本容量下,减少犯第I类错误的概率,就会
使犯第II类错误的概率增大;减少犯第II类错误的概率,会使犯第I类
错误的概率增大。增加样本容量可以使犯第I类错误的概率和犯第II类
错误的概率同时减小,然而现实中资源总是有限的,样本量不可能没有
限制。因此,在给定的样本容量下,必须考虑两类可能的错误之间的权
易被否定,若检验结果否定了原假设,则说明否定的理由是充分的。
第四章 参数估计
《统计学》
16
5.1 假设检验的基本原理
(四) P值法
假设检验的另一种常用方法是利用P值(P-value) 来确定检验决策。P值
指在原假设0 为真时,得到等于样本观测结果或更极端结果的检验统计
量的概率,也被称为实测显著性水平。P值法的决策规则为:如果P值大
1.96) 中。这里−1.96和1.96 称为临界值,区间(−1.96, 1.96) 两侧的
区域则被称为拒绝域。基于样本信息,可以计算得到相应的z检验统计量
值,已知ҧ = 46,0 = 53, = 14 , n = 100 = −5
14/10
第四章 参数估计
《统计学》
14
5.1 假设检验的基本原理
犯第I 类(弃真) 错误的概率 也称为显著性水平(Significance level),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章参数估计和假设检验
一、单项选择题
1. 抽样调查的主要目的在于()。

A. 计算和控制误差
B. 了解总体单位情况
C. 用样本来推断总体
D. 对调查单位作深入的研究
2. 抽样调查所必须遵循的基本原则是()。

A. 随意原则
B. 可比性原则
C. 准确性原则
D. 随机原则
3、对两个工厂工人平均工资进行不重复的随机抽样调查,抽查的工人人数一样,两工厂工人工资方差相同,但第二个厂工人数比第一个厂工人数整整多一倍。

抽样平均误差()。

A. 第一工厂大
B. 第二个工厂大
C. 两工厂一样大
D. 无法做出结论
4、在总体方差一定的情况下,下列条件中抽样平均误差最小的是()。

A. 抽样单位数为20
B. 抽样单位数为40
C. 抽样单位数为90
D. 抽样单位数为100
5、某地订奶居民户均牛奶消费量为120公斤,抽样平均误差为2公斤。

据此可算得户均牛奶消费量在114-126公斤之间的概率为()。

A. 0.9545
B. 0.9973
C. 0.683
D. 0.900
6、按地理区域划片所进行的区域抽样,其抽样方法属于()。

A. 纯随机抽样
B. 等距抽样
C. 类型抽样
D. 整群抽样
7. 在抽样推断中,样本的容量()。

A. 越多越好
B. 越少越好
C. 由统一的抽样比例决定
D. 取决于抽样推断可靠性的要求
8、在用样本指标推断总体指标时,把握程度越高则()。

A.误差范围越小
B.误差范围越大
C.抽样平均误差越小
D.抽样平均误差越大
9、某乐器厂以往生产的乐器采用的是一种镍合金弦线,这种弦线的平均抗拉强度不超过1035Mpa,现产品开发小组研究了一种新型弦线,他们认为其抗拉强度得到了提高并想寻找证据予以支持。

在对研究小组开发的产品进行检验时,应该采取以下哪种形式的假设?
10、在抽样设计中,最好的方案是()。

A. 抽样误差最小的方案
B. 调查单位最少的方案
C. 调查费用最省的方案
D. 在一定误差要求下费用最小的方案
二、计算题
1、从麦当劳餐厅连续三个星期抽查49位顾客,以调查顾客的平均消费额,得样本平均消费额为25.5元。

要求:
(1)假如总体的标准差为10.5元,那么抽样平均误差是多少?
(2)在0.95的概率保证下,抽样极限误差是多少?极限误差说明什么问题?(3)总体平均消费额95%的信赖区间是多少?
2、某食品公司销售一种果酱,按标准规格每罐净重为250克,标准差为3克。

现该公司从生产该果酱的工厂进了一批货,抽取其中的100罐,测得平均净重为251克。

问该批果酱是否符合标准?(α=0.05)
3、从5000名学生中抽查200名测得平均身高为1.65m抽样平均误差为0.05m,试以95%的把握程度推算全部学生平均身高的可能范围。

若200名学生中女生数为50名,试以95%的概率,抽样成数平均误差为0.03,估计全部学生数中女生的比重的区间。

4、从某厂生产的一批灯泡中随机重复抽取100只,检查结果是:100只灯泡的平均使用寿命为100小时,标准差为15小时。

求:以95.45%概率保证程度对灯泡的平均使用寿命进行区间估计:假定其他条件不变,将抽样极限误差减少到原来的1/2,应抽取多少之灯泡进行检查?
5、最新一次人口普查表明某市老年人口比重为15.7%,为了检验该数据是否真实,普查机构有随机抽选了400名居民,发现其中有62人年龄在65岁以上,问随机调查的结果是否支持该市老年人口比重为15.7%?(α=0.05)。

相关文档
最新文档