2015九年级数学上册期末模拟试题(北师大版)

合集下载

北师大版九年级上册数学期末考试试卷带答案

北师大版九年级上册数学期末考试试卷带答案

北师大版九年级上册数学期末考试试题一、单选题1.一元二次方程x(x-3)=4的解是()A.1B.4C.-1或4D.1或-42.一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是A.B.C.D.3.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标A.(﹣1,﹣1)B.(﹣43,﹣1)C.(﹣1,﹣43)D.(﹣2,﹣1)4.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值是()A.45B.35C.54D.435.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC =9,则BF的长为()A.4B.C.4.5D.56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.如图,在直角三角形ABC 中,90ACB ∠=︒,3AC =,4BC =,点M 是边AB 上一点(不与点A ,B 重合),作ME AC ⊥于点E ,MF BC ⊥于点F ,若点P 是EF 的中点,则CP 的最小值是()A .1.2B .1.5C .2.4D .2.58.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .49.如图,正方形ABCD 的边长为2,E 为对角线AC 上一动点,90EDP ∠=︒,DE DP =,当点E 从点A 运动到点C 的过程中,EPC ∆的周长的最小值为()A .222B .42C .324D .22310.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=11.如图,某次课外实践活动中,小红在地面点B 处利用标杆FC 测量一旗杆ED 的高度.小红眼睛点A 与标杆顶端点F ,旗杆顶端点E 在同一直线上,点B ,C ,D 也在同一条直线上.已知小红眼睛到地面距离 1.6AB =米,标杆高 3.8FC =米,且1BC =米,7CD =米,则旗杆ED 的高度为()A .15.4米B .17米C .17.6米D .19.2米12.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是A .B .C .D .二、填空题13.一元二次方程220x x -+=的解是______.14.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是_____.15.如图,Rt △ABC 中,∠ACD=90°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F .若S △AEG=13S 四边形EBCG ,则CF AD=_________.16.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.三、解答题17.解方程(1)2230x x --=(公式法);(2)23740x x -+=(配方法);(3)22(2)(23)x x -=+(因式分解法);(4)2(1)22x x -=-(适当的方法).18.现有5个质地、大小完全相同的小球上分别标有数字–1,–2,1,2,3.先将标有数字–2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.19.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t≤6),那么,当t 为何值时,△POQ 与△AOB 相似?20.如图,△ABC 是等边三角形,点D 在AC 上,连接BD 并延长,与∠ACF 的角平分线交于点E .(1)求证:△ABD ∽△CED ;(2)若AB=8,AD=2CD ,求CE 的长.21.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8)、B (﹣4,m ).(1)求一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若y 1<y 2,直接写出x 的取值范围.22.如图,在菱形ABCD ,对角线AC,与BD 交于点O,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线交于点E,(1)求证:四边形OCED 是矩形;(2)若CE=1,菱形ABCD的周长为ABCD 的面积.23.如图,反比例函数ky x(k≠0)的图象经过点A (1,2)和B (2,n ),(1)以原点O 为位似中心画出△A1B1O ,使11AB A B =12;(2)在y 轴上是否存在点P ,使得PA+PB 的值最小?若存在,求出P 的坐标;若不存在,请说明理由.24.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利2400元,那么每件童装应降价多少元?25.如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG =CG ;(2)求证:△AEG ∽△FAG ;(3)若GE•GF =9,求CG 的长.参考答案1.C 2.A 3.B 4.B 5.A 6.C 7.A 8.A 9.A 10.D 11.D 12.C13.120,2x x ==【分析】利用因式分解法解一元二次方程即可得.【详解】解:220x x -+=,(2)0x x -+=,0,20x x =-+=,则120,2x x ==,故答案为:120,2x x ==.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题关键.14.6y x=-【分析】根据反比例函数的意义待定系数法求解析式.【详解】解:∵反比例函数的图象过点A(-3,2),∴6k =-∴这个反比例函数的表达式是6y x=-故答案为:6y x=-15.12【详解】解:∵EF BD∥∴∠AEG=∠ABC ,∠AGE=∠ACB ,∴△AEG ∽△ABC ,且S △AEG=13S 四边形EBCG∴S △AEG :S △ABC=1:4,∴AG :AC=1:2,又EF BD∥∴∠AGF=∠ACD ,∠AFG=∠ADC ,∴△AGF ∽△ACD ,且相似比为1:2,∴S △AFG :S △ACD=1:4,∴S △AFG=13S 四边形FDCGS △AFG=14S △ADC ∵AF :AD=GF :CD=AG :AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF :AD=1:2.故答案为:1216.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC ∴=ADE ABC∴ 21(4ADE ABC S DE S BC ∴==△△,即4ABCADES S =△△又12ADES =1422ABCS ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.17.(1)123,1x x ==-(2)124,13x x ==(3)121,53x x =-=-(4)123,1x x ==【分析】(1)利用公式法求解即可;(2)利用配方法求解即可;(3)利用因式分解法求解即可;(4)利用因式分解法求解即可.(1)解:∵2230x x --=,∴1a =,2b =-,3c =-,∴()()22=42413160b ac ∆-=--⨯⨯-=>,∴242x ±==,∴13x =,21x =-;(2)解:∵23740x x -+=,∴2374x x -=-,∴27433x x -=-,∴22277473636x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭,∴271636x ⎛⎫-= ⎪⎝⎭,∴7166x -=±,∴143x =,21x =;(3)解:∵22(2)(23)x x -=+∴22(2)(23)0x x -+-=,∴()(223)2230x x x x -++---=,∴()()3150x x ++=,∴113x =-,25x =-;(4)解:∵2(1)22x x -=-,∴()2(1)210x x --=-,∴()(12)10x x ---=,∴13x =,21x =.18.(1)详见解析;(2)13【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【详解】解:(1)列表得:-12-2-30103325则共有6种结果,且它们的可能性相同;(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:2163=.19.当t=4或t=2时,△POQ 与△AOB 相似.【详解】试题分析:根据题意可知:OQ=6-t ,OP=t ,然后分OQ OP OB OA =和OQ OP OA OB=两种情况分别求出t 的值.试题解析:解:①若△POQ ∽△AOB 时,=,即=,整理得:12﹣2t=t ,解得:t=4.②若△POQ ∽△BOA 时,=,即=,整理得:6﹣t=2t ,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ 与△AOB 相似.20.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=21.(1)18y x =,y 2=2x+6,过程见解析;(2)15,过程见解析;(3)﹣4<x <0或x >1,过程见解析.【分析】(1)利用待定系数法即可求得结论;(2)设直线AB 与x 轴交于点D ,与y 轴交于点C ,利用直线AB 解析式求得点C ,D 的坐标,用△AOC ,△OCD 和△OBD 的面积之和表示△AOB 的面积即可;(3)利用图象即可确定出x 的取值范围.(1)解:点A (1,8)在反比例函数11ky x =上,∴k 1=1×8=8.∴18y x =.∵点B (﹣4,m )在反比例函数18y x =上,∴﹣4m =8.∴m =﹣2.∴B (﹣4,﹣2).∵点A (1,8)、B (﹣4,﹣2)在一次函数y 2=k 2x+b 的图象上,∴22842k b k b +=⎧⎨-+=-⎩,解得:226k b =⎧⎨=⎩.∴y 2=2x+6.(2)解:设直线AB 与y 轴交于点C,如图,由直线AB:y 2=2x+6,令x =0,则y =6,∴C (0,6).∴OC =6.过点A 作AF ⊥y 轴于点F ,过点B 作BE ⊥y 轴于点E ,∵A (1,8),B (﹣4,﹣2),∴AF =1,BE =4.∴AOBAOC BOC S S S =+△△△11××22OC AF OC BE =+1=6(14)2⨯⨯+=15答:△AOB 的面积是15.(3)解:由图象可知,点A 右侧的部分和点B 与点C 之间的部分y 1<y 2,∴若y 1<y 2,x 的取值范围为:﹣4<x <0或x >1.【点睛】本题是一道反比例函数与一次函数图象的交点问题,主要考查了待定系数法,一次函数图象上点的坐标的特征,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长和利用数形结合的思想方法求得x 的取值范围是解题的关键.22.(1)证明见解析;(2)4.【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥,90COD ︒∴∠=,//,//CE OD DE OC ,所以四边形OCED 是平行四边形,90COD ︒∠= ,∴四边形OCED 是矩形;(2)由(1)知,四边形OCED 是矩形,则CE=OD=1,∵四边形ABCD 是菱形,∴AB=AD=CD=BC ,∵菱形ABCD 的周长为CD ∴2OC∴==,24,22 AC OC BD OD==== ,∴菱形ABCD的面积为:11424 22AC BD⋅=⨯⨯=.23.(1)作图见解析;(2)存在,P(0,5 3).【分析】(1)有两种情形,分别画出图象即可;(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.求出直线BA′的解析式即可解决问题.【详解】(1)△A1B1O的图象如图所示.(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.∵点A(1,2)在反比例函数y=kx上,∴k=2,∴B (2,1),∵A′(﹣1,2),设最小BA′的解析式为y=kx+b ,则有221k b k b -+⎧⎨+⎩==,解得1253k b ⎧-⎪⎪⎨⎪⎪⎩==,∴直线BA′的解析式为y=﹣13x+53,∴P (0,53).24.每件童装应降价20元.【分析】设每件童装应降价x 元,再根据题意即可列出关于x 的一元二次方程,解出x ,最后舍去不合题意的解即可.【详解】解:设每件童装应降价x 元,依题意可列方程为(40)(404)2400x x -+=,解得:121020x x ==,,∵要减少库存,∴20x =,答:每件童装应降价20元.【点睛】本题考查一元二次方程的实际应用.根据题意找出等量关系,列出方程是解题关键.25.(1)见解析;(2)见解析;(3)CG =3【分析】(1)根据正方形的性质得到∠ADB =∠CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG ≌△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD ∥CB ,推出∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,利用全等三角形的性质得到∠DAG =∠DCG ,结合图形根据角之间的和差关系∠DAB−∠DAG =∠DCB−∠DCG ,推出∠BCF =∠BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG ∽△FAG ,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS ),∴AG =CG ;(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB−∠DAG =∠DCB−∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GEGAGA GF =,即GA 2=GE•GF ,∴GA =3或GA =−3(舍去),根据(1)中的结论AG =CG ,∴CG =3.。

北师大版九年级上册数学期末测试卷(完美版)

北师大版九年级上册数学期末测试卷(完美版)

北师大版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2B.m<﹣2C.m>2D.m<22、如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD 于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD =AC•BC;③OE:AC= :6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个3、以下A、B、C、D四个三角形中,与左图中的三角形相似的是()A. B. C. D.4、将方程x2-6x+1=0配方后,原方程变形()A.(x-3) 2=8B.(x-3) 2=-8C.(x-3) 2=9D.(x-3) 2=-95、用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(B.C.D.6、如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A. B. C. D.7、如下图,双曲线经过平行四边形ABCO的对角线的交点D,已知边OC在y轴上,且于点C,则平行四边形OABC的面积是()A. B. C.3 D.68、在已知反比例函数(k为常数)的图象上有三点,,,若,则a的取值范围是()A. B. C. 或 D.9、某反比例函数的图象经过点(-1,6),则此函数图象也经过点 ( )A. B. C. D.10、用公式法解一元二次方程,正确的应是()A.x=B.x=C.x=D.x=11、如图,在△ABC中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE.下列结论:① ;② ;③ ;④ .其中正确的个数有()A.1个B.2个C.3个D.4个12、如图,一次函数y=kx﹣1的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B,BC垂直x轴于点C.若△ABC的面积为1,则k的值是()A.1B.2C.3D.413、如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④B.①②③C.①②④D.②③④14、阜宁到南京之间的距离约为240千米,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于()A.一根火柴的长度B.一根筷子的长度C.一支铅笔的长度D.一支钢笔的长度15、若反比例函数y=﹣的图象上有3个点A(x1, y1),B(x2, y2),C(x3, y3),且满足x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共10题,共计30分)16、反比例函数的图象经过点P(﹣1,2),则此反比例函数的解析式为________17、在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.18、已知点A1(-1,y1),A2(-3,y2)都在反比例函数y= (k>0)的图像上,则y1与y2的大小关系为________.19、如图,△AOB,AB∥x轴,OB=2,点B在反比例函数y=上,将△AOB 绕点B逆时针旋转,当点O的对应点O′落在x轴的正半轴上时,AB的对应边A′B恰好经过点O,则k的值为________.20、如图,以的斜边为边,向外作正方形,设正方形的对角线与的交点为O,连接,若,,则的值是________.21、若一个反比例函数的图象经过点和,则这个反比例函数的表达式为________.22、如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为________.23、一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有________个.24、已知关于x的方程的一个根为,则方程的另一个根为________。

北师大版九年级(上)期末数学模拟试卷1

北师大版九年级(上)期末数学模拟试卷1

北师大版九年级(上)期末数学模拟试卷(1)一、选择题(每题3分,共36分)1.(3分)sin30°的值为()A.B.C.D.2.(3分)如图,是一个物体的俯视图,它所对应的物体是()A.B.C.D.3.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.B.C.D.4.(3分)巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x,则可列方程为()A.45+2x=50 B.45(1+x)2=50 C.50(1﹣x)2=45 D.45(1+2x)=505.(3分)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(3分)如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是()A.AB=BE B.AD=DC C.AD=DE D.AD=EC7.(3分)张明同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近一棵树的影长为8米,则这棵树的高是()米.A.10 B.6.4 C.4 D.无法确定8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是()A.﹣1<x<3 B.x>3 C.x<﹣1 D.x>3或x<﹣19.(3分)如图,利用一面墙,用80米长的篱笆围成一个矩形场地,墙长为30m,围成鸡场的最大面积为()平方米.A.800 B.750 C.600 D.240010.(3分)如图,在菱形ABCD中,AE⊥BC于点E,EC=4,,则菱形的周长是()A.10 B.20 C.40 D.2811.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b <0;③4a﹣2b+c<0;④b2﹣4ac>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个12.(3分)如图,直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,与双曲线(x>0)交于点B,与x轴交于点C.若,则k的值为()A.12 B.10 C.8 D.6二、填空题(每题3分,共12分)13.(3分)方程x(x﹣1)=x的根是.14.(3分)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的两球都是白球的概率是.15.(3分)如图,已知反比例函数y=(k≠0)与直线y=x交于A、C两点,AB⊥x轴于点B,若S△ABC=6,则反比例函数的解析式为.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.三、解答题(17、18每题5分,19、20、21、22题8分,23题10分)17.(5分)sin45°﹣cos30°•tan60°+(π﹣3.14)0.18.(5分)解方程:﹣2x2=﹣7x+3.19.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.20.(8分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.21.(8分)大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.22.(8分)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m (件)与每件的销售价x(元)满足一次函数,其图象如图所示.(1)求出每天的销售数量m(件)与每件的销售价格x(元)的函数解析式;(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;保证商场赢利并使得每件的售价不超过80元,求出每天商场的最大利润.23.(10分)如图,在平面直角坐标系中,点A的坐标为(1,3),点B在x轴上,△AOB 的面积是3.(1)求过点A、O、B的抛物线的解析式;(2)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)抛物线的对称轴与x轴交于点D,在抛物线上是否存在点P使得以A,B,D,P为顶点的四边形是梯形?若存在,求出点P的坐标;若不存在,请说明理由.广东省深圳市新华中学九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)sin30°的值为()A.B.C.D.【解答】解:sin30°=.故选C.2.(3分)如图,是一个物体的俯视图,它所对应的物体是()A.B.C.D.【解答】解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同.符合这些条件的只有A,故选A.3.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.B.C.D.【解答】解:画树状图得:∴一共有9种等可能的结果,指针指向的数字和为偶数的有4种情况,∴指针指向的数字和为偶数的概率是:.故选C.4.(3分)巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x,则可列方程为()A.45+2x=50 B.45(1+x)2=50 C.50(1﹣x)2=45 D.45(1+2x)=50【解答】解:依题意得:去年的粮油产量为:45(1+x)则今年的粮油产量为:45(1+x)(1+x)=45(1+x)2=50;故选B.5.(3分)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥【解答】解:根据题意得:1﹣2m<0,解得:m>.故选:C.6.(3分)如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是()A.AB=BE B.AD=DC C.AD=DE D.AD=EC【解答】解:根据折叠性质,有AB=BE,AD=DE,∠A=∠DEC=90°.∴A、C正确;又∠C=45°,∴△CDE是等腰直角三角形,EC=DE,CD>DE.∴D正确,B错误.故选B.7.(3分)张明同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近一棵树的影长为8米,则这棵树的高是()米.A.10 B.6.4 C.4 D.无法确定【解答】解:设这棵树的高度为xm,根据相同时刻的物高与影长成比例,则可列比例为:,解得:x=6.4.故选:B.8.(3分)(2008•达州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x 的取值范围是()A.﹣1<x<3 B.x>3 C.x<﹣1 D.x>3或x<﹣1【解答】解:∵依题意得图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3,∴x的取值范围﹣1<x<3.故选A.9.(3分)如图,利用一面墙,用80米长的篱笆围成一个矩形场地,墙长为30m,围成鸡场的最大面积为()平方米.A.800 B.750 C.600 D.2400【解答】解:设矩形的面积为S,所围矩形ABCD的长BC为x(0<x≤30)米,由题意,得S=x•(80﹣x),S=﹣(x﹣40)2+800,易知在x<40的区间内,S单调递增;∴当x=30时,S最大=750,且符合题意.∴当所围矩形的长为30m、宽为25m时,能使矩形的面积最大,最大面积为750 m2.故选B.10.(3分)如图,在菱形ABCD中,AE⊥BC于点E,EC=4,,则菱形的周长是()A.10 B.20 C.40 D.28【解答】解:∵,∴cosB=.∵在菱形ABCD中,AE⊥BC于点E,EC=4,∴BE:AB=(BC﹣EC):BC=3:5,∴BC=10,则菱形的周长=10×4=40.故选C.11.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b <0;③4a﹣2b+c<0;④b2﹣4ac>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个【解答】解:∵图象开口向下,∴a<0,∵x=﹣>0,∴b>0,∵图象与y轴的正半轴相交,∴c>0,∴abc<0,故①错误;∵抛物线的对称轴x=﹣<1,a<0,∴b<﹣2a,∴2a+b<0,故②正确;∵当x=﹣2时,y<0,∴4a﹣2b+c<0,故③正确;∵图象和x轴交于两点,∴b2﹣4ac>0,故④正确.故选B.12.(3分)(2011•桐乡市一模)如图,直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,与双曲线(x>0)交于点B,与x轴交于点C.若,则k的值为()A.12 B.10 C.8 D.6【解答】解:∵直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,∴y=2(x﹣3)=2x﹣6,∵与双曲线(x>0)交于点B,与x轴交于点C.若,∴AD=2BE,∴假设B点的横坐标为3+x,∴B点的纵坐标为:y=2(x+3)﹣6=2x,∴BE=2x,AD=4x,∵y=2x,∴OD=AD=2x,∴A点的纵坐标为:4x,根据A,B都在反比例函数图象上得出:∴2x×4x=(3+x)×2x,x=1,∴k的值为:2×1×4×1=8,故选:C.二、填空题(每题3分,共12分)13.(3分)方程x(x﹣1)=x的根是x1=0,x2=2.【解答】解:由原方程,得x2﹣2x=0,∴x(x﹣2)=0,∴x﹣2=0或x=0,解得x1=2,x2=0.故答案为:x1=2,x2=0.14.(3分)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的两球都是白球的概率是.【解答】解:画图如下:一共有30种情况,其中两个球都是白球的有2种情况,因此摸出的两球都是白球的概率是=.故答案为:.15.(3分)如图,已知反比例函数y=(k≠0)与直线y=x交于A、C两点,AB⊥x轴于点B,若S△ABC=6,则反比例函数的解析式为y=.【解答】解:过C作CD⊥x轴于D,设A的坐标是(a,b),则根据双曲线的两个分支关于原点对称,则C的坐标是(﹣a,﹣b),则ab=k,OB=a,AB=b,CD=b,∵S△ABC=S△AOB+S△COB=4,∴ab+ab=6,即k+k=6,解得k=6,故该反比例函数解析式为:y=.故答案为:y=.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.【解答】解:根据三角形内心的特点知∠ABO=∠CBO,∵已知点C、点B的坐标,∴OB=OC,∠OBC=45°,∠ABC=90°可知△ABC为直角三角形,BC=2,∵点A在直线AC上,设A点坐标为(x,x﹣1),根据两点距离公式可得:AB2=x2+,AC2=(x﹣2)2+,在Rt△ABC中,AB2+BC2=AC2,解得:x=﹣6,y=﹣4,∴AB=6,∴tanA===.故答案为:.三、解答题(17、18每题5分,19、20、21、22题8分,23题10分)17.(5分)sin45°﹣cos30°•tan60°+(π﹣3.14)0.【解答】解:原式=×﹣×+1=﹣+1=﹣.18.(5分)解方程:﹣2x2=﹣7x+3.【解答】解:移项得:2x2﹣7x+3=0,(2x﹣1)(x﹣3)=0,2x﹣1=0,x﹣3=0,x1=,x2=3.19.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.20.(8分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.【解答】解:(1)四张牌中,有二张“5”,故其概率为=.故答案为:.(2)不公平.画树状图如图所示:∴P(和为偶数)=,P(和为奇数)=;∵P(和为偶数)≠P(和为奇数),∴游戏不公平.21.(8分)大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.【解答】解:过点B作BE⊥AD,交AD延长线于点E.(1分)在Rt△BED中,∵D点测得塔顶B点的仰角为30°,∴∠BDE=60度.设DE=x,则BE=x.(2分)在Rt△BEA中,∠BAE=30度,BE=x.∴AE=3x.(3分)∴AD=AE﹣DE=3x﹣x=2x=10.∴x=5.(4分)∴BC=AD+DE=10+5=15(米).(5分)答:塔BC的高度为15米.22.(8分)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m (件)与每件的销售价x(元)满足一次函数,其图象如图所示.(1)求出每天的销售数量m(件)与每件的销售价格x(元)的函数解析式;(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;保证商场赢利并使得每件的售价不超过80元,求出每天商场的最大利润.【解答】解:(1)设出一次函数的一般表达式m=kx+b,将(0,100)(100,0)代入得:,解得:k=﹣1,b=100,故每天的销售数量m(件)与每件的销售价格x(元)的函数解析式为:m=﹣x+100(0≤x ≤100);(2)由题意得,y=(x﹣50)(﹣x+100)=﹣x2+150x﹣5000,即y=﹣x2+150x﹣5000;∵y=﹣x2+150x﹣5000=﹣(x﹣75)2+625,∴当x=75元时,每天商场的最大利润是625元.23.(10分)如图,在平面直角坐标系中,点A的坐标为(1,3),点B在x轴上,△AOB 的面积是3.(1)求过点A、O、B的抛物线的解析式;(2)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)抛物线的对称轴与x轴交于点D,在抛物线上是否存在点P使得以A,B,D,P为顶点的四边形是梯形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)如图1,由△AOB的面积是3,得S△AOB=|OB|y A=3,即|OB|×3=3,解得OB|=2,B(﹣2,0).设抛物线的解析式为y=ax2+bx+c,将A、B、O的坐标代入函数解析式,得,解得,抛物线的解析式为y=x2+2x;(2)如图2,抛物线的解析式为y=x2+2x的对称轴是x=﹣1,由两点之间线段最短,得AC+CO=AB,直线AB与对称轴的交点,即为C点,设AB的解析式为y=kx+b,将A,B点坐标代入,得,解得,AB的解析式为y=x+2.当x=﹣1时,y=﹣1+2=1,即C(﹣1,1);(3)①当AD∥BP时,P点与A点关于x=﹣1对称,P点的横坐标为﹣1﹣[1﹣(﹣1)]=﹣3,P点的纵坐标与A点的纵坐标相等,P1(﹣3,3);②当AD∥BP时,AD的解析式为y=x+,设BP的解析式为y=x+b,将B(﹣2,0)代入函数解析式,解得b=3,BP的解析式为y=x+3,联立BP与抛物线,得,解得(不符合题意,舍),,即P2(,);③如图3,当AB∥DP时,AB的解析式为y=x+2,设DP的解析式为y=x+b,将D(﹣1,0)代入,得b=1,即DP的解析式为y=x+1.联立DP与抛物线,得,解得,,即P3(,),P4(,),综上所述:P1(﹣3,3);P2(,);P3(,),P4(,).。

新北师大版2014-2015年九年级上学期期末考试数学试题

新北师大版2014-2015年九年级上学期期末考试数学试题

C (第7题)新北师大版2014-2015年九年级上学期期末考试数学试题时间120分钟 满分120分 2015、1、16一、填空题(本大题共有9小题,每小题3分,共27分)1.方程x x 22=的解为 . 2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 .3.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于 °.4.如图,PA 是O ⊙的切线,切点为A ,PA∠APO =30°,则O ⊙的半径为 .5.已知二次函数2(0)y ax bx c a =++≠,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .6.如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(3-,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为 .7.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A =60°, BC =2,则图中阴影部分面积为 .8.如图,矩形ABCD 中,AB=4,AD=6,以为A 圆心,R 长为半径作圆,⊙A 仅与直线BC 、CD 中一条相离,R 的取值范围是 .9.已知a 是关于x 的一元二次方程02=-+m x x 的一个根,a+1是关于x 的一元二次方程022=-+m x x 的一个根,(其中m ≠0) 则a= .二、选择题(本大题共有5小题,每小题3分,共15分)第3题图第4题图第6题图BCDA(第8题)A .100)1(1442=-xB .144)1(1002=-xC .100)1(1442=+xD .144)1(1002=+x11.在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则△ABC 的内切圆半径为 ( )A .1B .2C .512D .6 12.下列说法正确的是( )A.三点确定一个圆。

北师大版九年级上册数学期末考试试卷含答案

北师大版九年级上册数学期末考试试卷含答案

北师大版九年级上册数学期末考试试题一、单选题1.若25x y =,则xy的值是()A .52B .25C .32D .232.如图所示的几何体的左视图是()A .B .C .D .3.下列关于矩形的说法,正确的是()A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分4.连续两次掷一枚质地均匀的硬币,两次都是正面朝上的概率是()A .16B .14C .12D .135.两个相似多边形的相似比是3:4,其中小多边形的面积为18cm 2,则较大多边形的面积为()A .16cm 2B .54cm 2C .32cm 2D .48cm 26.如图,////AB CD EF ,若3BF DF =,则ACCE的值是()A .2B .12C .13D .37.点A (﹣3,y 1)、B (﹣1,y 2)、C (2,y 3)都在反比例函数y =6x-的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 38.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是()A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根9.如图,有一张矩形纸片,长10cm ,宽6cm ,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm 2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm ,根据题意可列方程为()A .10×6﹣4×6x=32B .(10﹣2x )(6﹣2x )=32C .(10﹣x )(6﹣x )=32D .10×6﹣4x 2=3210.函数y=x+m 与my x=(m≠0)在同一坐标系内的图象可以是()A .B .C .D .11.如图,在平面直角坐标系中,已知点A (﹣3,6)、B (﹣9,﹣3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B′的坐标是()A .(﹣3,﹣1)B .(﹣1,2)C .(﹣9,1)或(9,﹣1)D .(﹣3,﹣1)或(3,1)12.如图,在矩形ABCD 中,对角线AC 、BD 交于O ,2,BC AE BD =⊥,垂足为E ,30BAE ∠=︒,那么ECO ∆的面积是()A B C D 二、填空题13.在某一时刻,测得一根长为1.5m 的标杆的影长为3m ,同时测得一根旗杆的影长为16m ,那么这根旗杆的高度为_______m .14.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.15.若一元二次方程ax 2﹣bx ﹣2021=0有一根为x=﹣1,则a+b=______.16.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.17.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =kx(k≠0,x >0)上,若矩形ABCD 的面积为8,则k 的值为___.三、解答题18.已知关于x 的方程x 2+ax+a ﹣2=0.(1)若该方程的一个根为1,求a 的值;(2)若a的值为3时,请解这个方程.19.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A:乘坐电动车,B:乘坐普通公交车或地铁,C:乘坐学校的定制公交车,D:乘坐家庭汽车,E:步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.20.某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.(1)求平均每次降价盈利的百分率;(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?21.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)22.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.23.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.24.如图,已知Rt △ABO ,点B 在x轴上,∠ABO=90°,∠AOB=30°,OB=函数()0ky x x=>的图象经过OA 的中点C ,交AB 于点D .(1)求反比例函数ky x=的表达式;(2)求△OCD 的面积;(3)点P 是x 轴上的一个动点,请直接写出使△OCP 为直角三角形的点P 坐标.25.如图,在Rt △ABC 中,∠ACB=90°,点D 是斜边AB 的中点,过点B 、点C 分别作BE ∥CD ,CE ∥BD .(1)求证:四边形BECD 是菱形;(2)若∠A=60°,BECD 的面积.26.如图(1),在四边形ABCD 中,AB ∥DC ,CB ⊥AB ,AB =16cm ,BC =6cm ,CD =8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2cm/s .点P 和点Q 同时出发,设运动的时间为t (s ),0<t <5(1)用含t 的代数式表示AP ;(2)当以点A 、P 、Q 为顶点的三角形与△ABD 相似时,求t 的值;(3)如图(2),延长QP 、BD ,两延长线相交于点M ,当△QMB 为直角三角形时,求t 的值.参考答案1.A【分析】利用比例的基本性质计算即可.【详解】∵2x=5y,∴xy=52,故选A.【点睛】本题考查了比例的基本性质,熟练掌握比例的性质并能进行灵活变形是解题的关键.2.D【分析】根据简单组合体的三视图的画法可知,其左视图是中间有一道横虚线的长方形,即可求解.【详解】解:根据简单组合体的三视图的画法可知,其左视图是中间有一道横虚线的长方形,因此选项D的图形比较符合题意,故选:D.【点睛】考查三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.3.D【详解】分析:根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.解答:解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选D.4.B【分析】利用树状图法列出连续两次掷一枚质地均匀的硬币会出现的所有情况,看两次都正面朝上的情况占总情况的多少即为所求.【详解】解:画树状图如图所示:共有4种情况,两次都正面朝上的情况只有一种,所以两次都是正面朝上的概率是1 4.故答案选:B.【点睛】本题考查了求概率的方法,熟练应用树状图法或列表法求出所求情况数和总情况数是解题的关键.5.C【分析】设较大多边形的面积为S,由相似比与面积相似比的关系得18916S=,计算求解即可.【详解】解:设较大多边形的面积为S由两个相似多边形的相似比是3:4,可知两个相似多边形面积的相似比是9:16∴18916 S=解得32S=故选C.【点睛】本题考查了相似三角形的性质.解题的关键在于明确相似多边形的面积比与相似比的关系.6.A【分析】由BF=3DF,得BD=2DF,使用平行线分线段成比例定理计算即可.【详解】∵BF=3DF,∴BD=2DF,∵////AB CD EF,∴ACCE=BDDF,∴ACCE=2DFDF=2,故选A.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是定理的对应关系是解题的关键.7.C【分析】分别把A、B、C各点坐标代入反比例函数y=6x-求出y1、y2、y3的值,再比较大小即可.【详解】解:∵点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=6x-的图象上,∴y1=63--=2,y2=61--=6,y3=62-=﹣3,∵﹣3<2<6,∴y3<y1<y2,故选:C.【点睛】本题考查了反比例函数图像上点的特征,熟练掌握反比例函数的性质是解题的关键8.A【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x ﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.B【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据题意得:(10−2x)(6−2x)=32.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.B【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m 的取值,二者一致的即为正确答案.【详解】A.由函数y=x+m的图象可知m<0,由函数ymx=的图象可知m>0,相矛盾,故错误;B.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m>0,正确;C.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m<0,相矛盾,故错误;D.由函数y=x+m的图象可知m=0,由函数ymx=的图象可知m<0,相矛盾,故错误.故选:B.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题.11.D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以13或-13即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为13,把△ABO缩小,∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).故选:D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12.B【分析】过点C作CF⊥BD于F.根据矩形的性质得到∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°.根据全等三角形的性质得到AE=CF.解直角三角形得到OE【详解】解:如图:过点C作CF⊥BD于F.∵矩形ABCD 中,BC =2,AE ⊥BD ,∴∠ABE =∠CDF =60°,AB =CD ,AD =BC =2,∠AEB =∠CFD =90°.∴△ABE ≌△CDF ,(AAS ),∴AE =CF .∵∠ABE =∠CDF =60°,∴∠ADE =∠CBF =30°,∴CF =AE =12AD =1,∴BE =tan AE ABE ∠3333∵∠ABE =60°,AO=BO ,∴△ABO 是等边三角形,∴OE =33∴S △ECO =12OE•CF =1331236=故选B .13.8【分析】根据同时同地物高与影长成比相等,列式计算即可得解.【详解】设旗杆高度为x 米,由题意得:1.5316x =解得8x =.故答案为8.14.25【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.15.2021【分析】将1x =-代入原方程即可得出答案.【详解】解:将1x =-代入一元二次方程ax 2﹣bx ﹣2021=0中,得:20210a b +-=,∴2021a b +=,故答案为:2021.16.10【分析】由菱形的性质和勾股定理求出CD =20,证出平行四边形OCED 为矩形,得OE =CD =10即可.【详解】解:∵DE //AC ,CE //BD ,∴四边形OCED 为平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =6,OB =OD =12BD =8,∴∠DOC =90︒,CD =10,∴平行四边形OCED 为矩形,∴OE =CD =10,故答案为:10.17.4.【分析】设A 点的坐标为(m ,n )则根据矩形的性质得出矩形中心的纵坐标为2n ,根据中心在反比例函数y =k x 上,求出中心的横坐标为2k n ,进而可得出BC 的长度,根据矩形ABCD 的面积即可求得.【详解】如图,延长DA 交y 轴于点E ,∵四边形ABCD 是矩形,设A 点的坐标为(m ,n )则根据矩形的性质得出矩形中心的纵坐标为2n ,∵矩形ABCD 的中心都在反比例函数y =k x 上,∴x =2k n,∴矩形ABCD 中心的坐标为(2k n ,2n )∴BC =2(2k n ﹣m )=4k n﹣2m ,∵S 矩形ABCD =8,∴(4k n﹣2m )•n =8,4k ﹣2mn =8,∵点A (m ,n )在y =k x上,∴mn =k ,∴4k ﹣2k =8解得:k =4故答案为:418.(1)12(2)12x x ==【分析】(1)将x=1代入原方程可得出关于a 的一元一次方程,解之即可得出a 的值;(2)把a=3代入原方程得到x 2+3x+1=0,再利用公式法求解即可.(1)将x=1代入原方程,得:1+a+a-2=0,解得:a=12.(2)把a=3代入原方程得,x 2+3x+1=0,∴Δ=32-4×1×1=5,∴33212x --==⨯∴12x x =.19.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B 项对应的扇形圆心角是4036072200︒⨯=︒,故答案为:200;72;(2)C 选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为3193=.20.(1)10%;(2)60元【分析】(1)设每次下降的百分率为a ,根据刚上市每件利润100元和连续两次降价后每件利润81元,可列方程为:100(1﹣a )2=81,即可求解;(2)设每件应降价x 元,则降价后的利润为()81x -,因降价后销量为()202x +,根据总利润=利润⨯销量,列方程进而求解.【详解】(1)设每次下降的百分率为a ,根据题意,得:100(1﹣a )2=81,解得:a =1.9(舍)或a =0.1=10%,答:每次下降的百分率为10%;(2)设每件应降价x 元,根据题意,得(81﹣x )(20+2x )=2940,解得:x 1=60,x 2=11,∵尽快减少库存,∴x=60,答:若商场每天要盈利2940元,每件应降价60元.21.(1)见解析;(2)菱形,理由见解析;(3)∠A=45°.【分析】(1)根据∠ACB=90°,DE⊥BC可得DE//AC,即可证明四边形ADEC是平行四边形,根据平行四边形的性质即可得结论;(2)根据直角三角形斜边中线的性质可得AD=BD=CD,可得BD=CE,根据AB//MN可证明BECD是平行四边形,根据有一组邻边相等的平行四边形是菱形即可得结论;(3)根据正方形的性质可得∠CBD=45°,根据∠ACB=90°可得△ABC为等腰直角三角形,可得答案.【详解】(1)∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD.(2)四边形BECD是菱形,理由如下:∵D为AB中点,∠ACB=90°,∴AD=BD=CD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵BD=CD,∴四边形BECD是菱形.(3)当△ABC是等腰直角三角形时,四边形BECD是正方形,理由如下:由(2)可知,四边形BECD是菱形,∴∠BDC=90°时,四边形BECD是正方形,∴∠CBD=45°,∵∠ACB=90°,∴△ABC 是等腰直角三角形,∴当△ABC 是等腰直角三角形时,四边形BECD 是正方形.22.(1)132y x =-,y=8x;(2)C (2,-2),18(3)O'(4,2),D'(6,6).【分析】(1)把A 坐标代入一次函数解析式求出k 的值,确定出一次函数解析式,再将A 坐标代入反比例函数解析式求出k 的值,即可确定出反比例解析式;(2)设C 的坐标为(a ,132a -),表示出D 的坐标,两点纵坐标之差即为DC 的长,由已知DC 的长求出a 的值,确定出C 的坐标,过A 作AE ⊥CD 于点E ,由A 与C 的横坐标之差求出AE 的长,三角形ACD 面积以DC 为底,AE 为高,求出即可;(3)连接OO',由平移可得:OO'∥AC ,根据两直线平行时k 的值相同确定出直线OO'的解析式,与反比例函数解析式联立求出交点O'的坐标,根据平移的性质,由O 平移到O'的路径确定出D 平移到D'的路径,进而确定出D'的坐标即可.(1)解:∵点A (8,1)在直线y=kx -3上,∴1=8k -3,解得:k=12,∴一次函数解析式为132y x =-,∵A (8,1)在y=m x(x >0)的图象上,∴1=8m ,解得:m=8,则反比例函数解析式为y=8x;(2)解:设C (a ,132a -)(0<a <8),则有D (a ,8a ),∴CD=8a-(132a -)=8132a a -+,∵CD=6,∴81362aa-+=,解得:a=-8(舍去)或a=2,∴13132 2a-=-=-,∴C(2,-2),过A作AE⊥CD于点E,则AE=8-2=6,∴S△ACD=12CD•AE=12×6×6=18;(3)连接OO',由平移可得:OO'∥AC,∴直线OO'的解析式为y=12 x,联立得:812yxy x ⎧=⎪⎪⎨⎪=⎪⎩,解得:42xy=⎧⎨=⎩或42xy=-⎧⎨=-⎩(不合题意,舍去),∴O'(4,2),即O (0,0)通过往右平移4个单位,往上平移2个单位得到O'(4,2),又由(2)中知D 坐标为(2,4),∴点D (2,4)往右平移4个单位,往上平移2个单位得到D'(6,6).【点睛】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数及反比例函数解析式,一次函数与反比例函数的交点,平移的性质,熟练掌握各自的性质是解本题的关键.23.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键.24.(1)3(0)y x x =>;(2)面积为334;(3)P (2,0)或(4,0)【分析】(1)解直角三角形求得AB ,作CE ⊥OB 于E ,根据平行线分线段成比例定理和三角形中位线的性质求得C 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)补形法,求出各点坐标,S △OCD =S △AOB -S △ACD -S △OBD ;(3)分两种情形:①∠OPC=90°.②∠OCP=90°,分别求解即可.【详解】解:(1)∵∠ABO=90°,∠AOB=30°,OB=23∴33OB=2,作CE ⊥OB 于E ,∵∠ABO=90°,∴CE ∥AB ,∴OC=AC ,∴OE=BE=123CE=12AB=1,∴C 31),∵反比例函数k y x =(x >0)的图象经过OA 的中点C ,∴33∴反比例函数的关系式为3y x=;(2)∵OB=23∴D的横坐标为23代入3yxy=12,∴D(2312),∴BD=12,∵AB=12,∴AD=3 2,∴S△OCD =S△AOB-S△ACD-S△OBD=12OB•AB-12AD•BE-12334(3)当∠OPC=90°时,点P的横坐标与点C的横坐标相等,C(2,2),∴P(2,0).当∠OCP=90°时.∵C(2,2),∴∠COB=45°.∴△OCP为等腰直角三角形.∴P(4,0).综上所述,点P的坐标为(2,0)或(4,0).【点睛】本题主要考查的是一次函数、反比例函数的综合应用,列出关于k、n的方程组是解答问题(2)的关键,分类讨论是解答问题(3)的关键.25.(1)见解析;(2)面积332(1)先证明四边形BECD是平行四边形,再根据直角三角形中线的性质可得CD=BD,再根据菱形的判定即可求解;(2)根据图形可得菱形BECD的面积=直角三角形ACB的面积,根据三角函数可求BC,根据直角三角形面积公式求解即可.【详解】(1)证明:∵BE∥CD,CE∥BD,∴四边形BECD是平行四边形,∵Rt△ABC中点D是AB中点,∴CD=BD,∴四边形BECD是菱形;(2)解:∵Rt△ABC中,∠A=60°,∴,∴直角三角形ACB的面积为∴菱形BECD【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.26.(1)10-2t;(2)4013或2513;(3)3527或209【分析】(1)作DH⊥AB于H,得矩形DHBC,则CD=BH=8cm,DH=BC=6cm,AH=8cm,由勾股定理可求得AD的长,从而可得AP;(2)分两种相似情况加以考虑,根据对应边成比例即可完成;(3)分∠QMB=90゜和∠MQB=90゜两种情况考虑即可,再由相似三角形的性质即可求得t的值.【详解】(1)如图,作DH⊥AB于H则四边形DHBC是矩形∴CD=BH=8cm,DH=BC=6cm∴AH=AB-BH=16-8=8(cm)在Rt△ADH中,由勾股定理得10(cm)AD===∵DP=2tcm∴AP=AD-DP=(10-2t)cm(2)①当△APQ∽△ADB时则有AP AD AQ AB=∴10210 216tt-=解得:4013 t=②当△APQ∽△ABD时则有AP AB AQ AD=∴10216 210tt-=解得:2513 t=综上所述,当4013t=或2513t=时,以点A、P、Q为顶点的三角形与△ABD相似;(3)①当∠QMB=90゜时,△QMB为直角三角形如图,过点P作PN⊥AB于N,DH⊥AB于H∴∠PNQ=∠BHD∵∠QMB=90゜∴∠PQN+∠DBH=90゜∵∠PQN+∠QPN=90゜∴∠QPN=∠DBH∴△PNQ∽△BHD∴6384 QN DHPN BH===即4QN=3PN∵PN∥DH∴△APN∽△ADH∴63105PN DHAP AD===,84105AN AHAP AD===∴33(102)55PN AP t ==-,44(102)55AN AP t ==-∴418(102)2855QN AN AQ t t t=-=--=-由4QN=3PN 得:1834(8)3(102)55t t -=⨯-解得:3527t =②当∠MQB=90゜时,△QMB 为直角三角形,如图则PQ ∥DH∴△APQ ∽△ADH ∴45AQAH AP AD ==∴45AQ AP=即42(102)5t t =-解得:209t =综上所述,当3527t =或209时,△QMB 是直角三角形.。

2015秋季新北师大版数学九年级上期末试卷

2015秋季新北师大版数学九年级上期末试卷

一、选择题(每小题3分 共45分)1.已知1=x 是方程022=++ax x 的一个根,则方程的另一个根为( )A .2B .2-C .3-D .32.在下列函数中,当x <0时,y 随x 增大而增大的是( ) A 、x y 31-=B 、3y x=- C 、y=-x -3 D 、32+=x y 3.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上 的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线y=﹣x2+3x 上的概率为( )A .B .C .D .4.如图,函数 与y 2=k 2x 的图象相交于点A (1,2)和点B ,当y 1<y 2时,自变量x 的取值范围是( )A 、x >1B 、-1<x <0C 、-1<x <0或x >1 D 、x <-1或0<x <15.函数y=kx (k ≠0)和xk y =(k ≠0)在同一坐标系中的图象是( ) (第4题)6. 在正方形ABCD 中,对角线AC 的长为12cm ,P 为AB 上任一点,则点P 到AC 、BD 的距离之和为( )A 、6cmB 、6cmC 、12 cmD 、12cm.8.若a 、b 是关于x 的方程x 2+2x-9=0的根,则a 2+3a+b 的值为( )A 、8B 、11C 、7D 、109、如右上图,Rt △ABC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP =x ,则PD+PE =( )10.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥ C.k>且k≠1 D.k≥且k≠111.如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.12.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A.B.C.D.13.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60mB.40mC.30mD.20m13题 15题二、填空题(每小题5分共25分)16.若一元二次方程的两个根分别是R t△ABC的两条直边长,且S△ABC=3,请写出一个..符合题意的一元二次方程17、已知),(),,(2211yxByxA都在反比例函数xy6=的图象上。

北师大版九年级上学期期末学业教学质量监测数学试题(含答案)

第1页(共23页)北师大新版九年级上册数学期末复习试卷说明:1.本试卷分为第Ⅰ卷和第Ⅰ卷,满分为120分,考试时间90分钟.2.用黑色或蓝色钢笔或圆珠笔在答卷上作答.第Ⅰ卷一.选择题(本大题10小题,每小题3分,共30分)1.下列方程属于一元二次方程的是( )A .x 2+y ﹣2=0B .x +y =3C .x 2+2x =3D .x +x 1=52.已知3a =2b (a ≠0,b ≠0),下列变形错误的是( )A .32b a= B .32a b= C .23a b= D .3b2a=3.关于菱形,下列说法错误的是( )A .对角线互相平分B .对角线互相垂直C .四条边相等D .对角线相等4.在中ABC R △t 中,ⅠC = 90,若ⅠABC 的三边都缩小5倍,则A sin 的值( )A . 放大5倍B . 缩小5倍C . 不变D .无法确定5.关于x 的一元二次方程9x 2﹣6x +k =0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥16.如图,已知Ⅰ1=Ⅰ2,那么添加下列一个条件后,仍无法判定ⅠABC ~ⅠADE 的是()A .DE BCAD AB = B .AE ACAD AB = C .ⅠB =ⅠD D .ⅠC =ⅠAED第2页(共23页)7. 如图,已知ABC R △t 中,斜边BC 上的高AD =3,B cos =53,则AC 的长为( ) A . 3 B . 3.5 C . 4.8 D . 58.四张完全相同的卡片上,分别画有菱形、矩形、等边三角形、等腰梯形,现从中随机抽取一张卡片上画的恰好是中心对称图形的概率为( )A .41B .21C .43 D .1 9.如下表给出了二次函数y =x 2+2x ﹣10中x ,y 的一些对应值,则可以估计一元二次方程y =x 2+2x ﹣10的一个近似解(精确到0.1)为( )A .2.2B . 2.3C . 2.4D . 2.510. 如图,点A 在反比例函数y 1=x 20(x >0)的图象上,过点A 作AB Ⅰx 轴,垂足为B ,交反比例函数y 2=x8的图象于点C ,P 为轴上一点,连接P A ,PC ,则ⅠAPC 的面积为( )A . 6B . 8C . 12D . 20第6题图 第7题图 第10题图 第Ⅰ卷二.填空题(本大题7小题,每小题4分,共28分)第3页(共23页)11.方程x 2=4x 的解是.12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知ⅠAOD =120°,AB =2.5则AC 的长为。

北师大2014-2015学年九年级(上)期末数学试卷 三套

北师大2014-2015学年九年级(上)期末数学试卷姓名:______一、选择题(3*7=21)2,y=y=y=<0;④abc>0,其中正确的个数是()1.抛物线y=(x﹣1)2+2的顶点坐标是_________ .2.已知函数y=(m+1)是反比例函数,则m的值为_________ .3.已知直角三角形两直角边的长分别为6cm和8cm,则斜边上的中线长为_________ cm.4.已知菱形的周长为40cm,一条对角线长为16cm,则这个菱形的面积为_________ cm2.5.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a的值是_________ .6.在Rt△ABC中,∠C=90°,BC=5,AB=12,sinA= _________ .7.把一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次均是红色的概率是:_________ .三、解答题:19.(6分)解一元二次方程:x2+2x﹣3=0.20.(6分)|﹣|+﹣sin30°+(π+3)0+tan45°.21. (12分)已知:如图,矩形ABCD中AB=4,AD=12,点P是线段AD上的一动点(点P不与点A,D重合),点Q是直线CD上的一点,且PQ⊥BP,连接BQ,设AP=x,DQ=y(1)求证:△ABP∽△DPQ.(2)求y与x的函数关系式,并写出自变量x的取值范围.(3)并求出当y取何值,△ABP∽△PBQ.(4)若点Q在DC的延长线上,则x的取值范围.(不必写出过程).25.(7分)如图,天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B点测得C点的仰角为60°.已知AB=20m,点C和直线AB在同一铅垂平面上,求气球离地面的高度(结果保留根号).26.(12分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?27.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.北师大2014-2015学年九年级(上)期末数学试卷 姓名:_________..B9.如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且0<x≤10,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( ).1.若,则= _________ .2.如图,市政府准备修建一座高AB=6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的正弦值为,则坡面AC 的长度为 _________ m . 3.若△ABC∽△DEF,△ABC 与△DEF 的相似比为1:2, 则△ABC 与△DEF 的周长比为 _________ . 4.两个反比例函数和在第一象限内的图象如图所示,点P 在的图象上,PC⊥x 轴于点C ,交的图象于点A ,PD⊥y 轴于点D ,交的图象于点B ,当点P 在的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_________ (把你认为正确结论的序号都填上) 三、解答题 15.(5分)计算:sin60°﹣cos45°+.16.(6分)已知在△ABC 中,∠C=90°,,,解这个直角三角形.18.(6分)随着人民生活水平的提高,小轿车也逐渐进入千家万户.为了解决停车难问题,我县交警大队在城区划定了许多机动车停车位.如图,矩形ABCD 的供一辆机动车停放的车尾示意图,已知BC=2.2m ,∠DCF=40°,请计算车位所占街道的宽度EF .(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1m )19.(6分)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.20.(6分)如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、B(2,2)、C (2,1),D(3,3).(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;(2)在(1)的前提下,写出点A的对应点坐标A′,并说明点A与点A′坐标的关系.五、解答题(9分)21.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向,顶点坐标,对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.22.(12分)已知:如图,在正方形ABCD中,AB=8,点E在边AB上点,CE的垂直平分线FP 分别交AD、CE、CB于点F、H、G,交AB的延长线于点P.(1)求证:△EBC∽△EHP;(2)设BE=x,BP=y,求y与x之间的函数解析式.七、解答题(9分)23.一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20﹣10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出专买店当一次销售x(x>10)只时,所获利润y元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?北师大2014-2015学年九年级(上)期末数学试卷 姓名:______一、选择题1.的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定6.二次函数y=ax 2+bx+c 的图象如图所示,则反比例函数与一次函数y=bx+c 在同一坐标系中的大致图象是( )二、填空题7.写出一个经过点(2,3)的反比例函数 _________ .8.已知关于x 的方程x 2+mx+n=0的两个根分别是1和﹣3, 则m= _________ .9.在四边形ABCD 中,AB=DC ,AD=BC ,请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是 ______. (写出一种即可) 10.在Rt△ABC 中,∠C=90°,,则tanB= ___ .11.如图,是二次函数y=ax 2+bx+c (a≠0)的图象的一部分,则方程ax 2+bx+c=0的两根分别为 ____..12.如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的正午时刻阳光刚好不能射入窗户,则AB的长度是_ 米.(假设夏至正午时的阳光与地平面的夹角是60°)13.如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(请保留画图痕迹).14.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是_________ .三、解答题15.用适当方法解方程:2(x﹣3)2=x2﹣9.217.如图,已知双曲线y=(k<0)经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.已知点A的坐标为(﹣3,2).(1)直接写出点D的坐标;(2)求△AOC的面积.18. (6分)在重阳节敬老爱老活动中,某校计划组织志愿者服务小组到“夕阳红”敬老院为老人服务,准备从初三(1)班中的3名男生小亮、小明、小伟和2名女生小丽、小敏中选取一名男生和一名女生参加学校志愿者服务小组.(1)若随机选取一名男生和一名女生参加志愿者服务小组,请用树状图或列表法写出所有可能出现的结果;(2)求出恰好选中男生小明与女生小丽的概率.20.如图,要建一个面积为130m2的养鸡场,养鸡场一边靠墙(墙长16m),并在与墙平行的一边开一道1m宽的门,其余部分为栅栏,总长32m.(1)若设仓库的垂直于墙的一边(AD)为xm,则这个养鸡场的长(AB)为_________ m.(用含x的代数式表示)(2)求这个养鸡场的长和宽.21.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?22.已知:如图,等边△ABC中,AB=1.若D、E分别是BC、AC上的点(点D与B、C不重合),且∠ADE=60°.设BD=x,AE=y.(1)找出与∠BAD相等的角,并给出证明;(2)求y关于x的函数关系式,并求出y的最小值;(3)△ADE可能为等边三角形吗?如若可能,求出此时x值,若不可能,说明理由.。

2014-2015学年新北师大版九年级上册期末考试试卷

2014-2015学年新北师大版九年级数学期末考试试卷考试时间:120分钟 考试范围:九年级上册全部 分值:120分一、选择题(第小题3分共18分)1.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值 ( )A .1B .2C .1或2D .02.已知一矩形的两边长分别为7cm 和12 cm ,其中一个内角的平分线分长边为两部分,这两部分的长分别为( )。

A .6cm 和6cmB .7cm 和5cmC .4cm 和8cmD .3cm 和9cm 3A (6,3),B (6,0)两点,以坐标原点O 为位似中心,AB 缩小到线段''A B ,则''A B 的长度等于( )A.1B.2C.3D.64.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是( )A5.若mn >0,则一次函数n mx y +=与反比例函数是( )6.如图,在平面直角坐标系中,点C 的坐标为(0,4),动点A 以每秒1个单位长的速度,从点O 出发沿x 轴的正方向运动,M 是线段AC 的中点.将线段AM 以点A 为中心,沿顺时针方向旋转90°,得到线段AB .过点B 作x E ,过点C 作y轴的垂线,交直线BE 于点D ,运动时间为t 秒.当S △BCD 时,tA .2或2+.2或2+.3或3+.3或3+二、填空题(第小题3分共24分)7.方程2)2(+=+x x x 的解是 .8.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 . 9________. 10.如图,已知梯形ABCD 中,AB ∥CD ,△COD 与△AOB 的周长比为1:2,则CD :AB= ,S △COB :S △COD = .11.现定义运算“※”,对于任意实数a 、b ,都有a ※b=a 2-3a+b ,如:3※5=32-3×3+5,若x ※2=6,则实数x 的值是 ___________.12.已知线段AB=2,点C 为线段AB 的黄金分割点(AC >BC ),则AC= 。

【北师大版】九年级数学上期末模拟试卷(带答案)(1)

一、选择题1.如果点()12,A y -,()21,B y -,()33,C y 都在反比例函(0)k y k x=<的图象上,那么1y 、2y 与3y 的大小关系是( )A .123y y y <<B .312y y y <<C .213y y y <<或312y y y <<D .123y y y == 【答案】B【分析】根据k <0,判定图像分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,从判定120y y <<,3y <0,整体比较判断即可.【详解】∵k <0,∴反比例函(0)k y k x=<的图象分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,∴120y y <<,3y <0,∴312y y y <<,故选B .【点睛】本题考查了反比例函数图像的分布,函数的增减性,熟练掌握图像的分布和增减性是解题的关键.2.对于反比例函数5y x=-,下列说法正确的是( ) A .点(1,5)在它的图象上 B .它的图象在第一、三象限C .当0x <时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而减小 【答案】C【分析】利用反比例函数的性质分别 判断后即可确定正确的选项.【详解】A 、把(1,5)代入得:左边≠右边,故A 选项错误,不符合题意;B 、k =−5<0,图象在第二、四象限,故B 选项错误,不符合题意;C 、当x <0时,y 随着x 的增大而增大,故C 选项正确,符合题意;D 、当x >0时,y 随着x 的增大而增大,故D 选项错误,不符合题意;故选:C .【点睛】本题考查了反比例函数图象的性质:①、当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②、当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.注意反比例函数的图象应分在同一象限和不在同一象限两种情况分析.3.如图,过点O 作直线与双曲线()0k y k x=≠交于A ,B 两点,过点B 作BC x ⊥轴于点C ,作BD y ⊥轴于点D .在x 轴、y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE AF =.设图中矩形ODBC 的面积为1S ,EOF △的面积为2S ,则1S ,2S 的数量关系是( )A .12S SB .122S S =C .123S S =D .124S S =【答案】B【分析】过点A 作AM ⊥x 轴于点M ,根据反比例函数图象系数k 的几何意义即可得出S 矩形ODBC =-k 、S △AOM =-12k ,再根据中位线的性质即可得出S △EOF =4S △AOM =-2k ,由此即可得出S 1、S 2的数学量关系.【详解】解:过点A 作AM ⊥x 轴于点M ,如图所示.∵AM ⊥x 轴,BC ⊥x 轴,BD ⊥y 轴,∴S 矩形ODBC =-k ,S △AOM =-12k . ∵AE=AF .OF ⊥x 轴,AM ⊥x 轴,∴AM=12OF ,ME=OM=12OE ,∴S△EOF=1OE•OF=4S△AOM=-2k,2∴2S矩形ODBC=S△EOF,即2S1=S2.故答案为:2S1=S2.【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、S△EOF=-2k是解题的关键.4.如图所示的立体图形,其俯视图正确的是()A.B.C.D.5.如图的几何体的俯视图是()A.B.C.D.6.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C .D .7.点B 把线段AC 分成两部分,如果BC AB AB AC ==k ,那么k 的值为( ) A .512+ B .512- C .5+1 D .5-1 8. OAB 在平面直角坐标系中的位置如图所示,已知点A 的坐标为()3,33,OAB 与OA B ''△关于点О成位似图形,且在点О的同一侧,OAB 与OA B ''△的位似比为1:2,则点A 的对应点A '的坐标是( )A .()6,63-B .()6,63-C .()3,33--D .()6,63 9.如图,在四边形ABCD 中,如果ADC BAC ∠=∠,那么下列条件中不能判定ADC 和BAC 相似的是( )A .DAC ABC ∠=∠B .CA 是BCD ∠的平分线C .AD DC AB AC= D .2AC BC CD =⋅ 10.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A .59B .49C .12D .1311.请你判断,320x x x -+=的实根的个数为( )A .1B .2C .3D .4 12.正方形具有而矩形没有的性质是( ) A .对角线互相平分B .每条对角线平分一组对角C .对角线相等D .对边相等二、填空题13.如图,在平面直角坐标系中,矩形ABCD 的顶点A 、D 分别在x 轴、y 轴上,对角线BD //x 轴,反比例函数y =k x(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0)、D (0,4),则反比例函数的解析式为_____.14.如图,反比例函数(0)k y k x=≠的图象经过等边ABC 的顶点A ,B ,且原点O 刚好在线段AB 上,已知点C 的坐标是()3,3-,则k 的值为________.15.某几何体是由若干个小正方体组成的,它无论从正面看还是从左面看得到的视图都是如图的样子,堆成该几何体的正方体数最少与最多的块数分别是、n ,则m n +=______.16.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高,,(点A 、E 、C 在同一直线上).已知小明身高EF 是1.6m ,则楼高AB 为______m .17.如图,在ABC 中,:1:2CE EB =,DE //AC ,已知1ABC S =△,那么AED S =△____.18.随机往如图所示的正方形区域内撒一粒豆子,豆子恰好落在空白区域的概率是______.19.方程2(1)9x -=的根是___________.20.如图,正方形ABCD 中,点E 在边AD 上,点F 在边CD 上,若BEF EBC ∠=∠,3AB AE =,则下列结论:①DF FC =;②AE DF EF +=;③45ABE CBF ∠+∠=︒;④::3:4:5DF DE EF =;其中结论正确的序号有_____.三、解答题21.电灭蚊器的电阻()y k Ω随温度()x ℃变化的大致图象如图所示,通电后温度由室温10℃上升到30℃时,电阻与温度成反比例函数关系,且在温度达到30℃时,电阻下降到最小值,随后电阻随温度升高而增加,温度每上升1℃,电阻增加415k Ω.(1)当1030x ≤≤时,求y 与x 的关系式;(2)当30x =时,求y 的值.并求30x >时,y 与x 的关系式;(3)电灭蚊器在使用过程中,温度x 在什么范围内时,电阻不超过5k Ω?22.学习了相似三角形的知识后,爱探究的小明下晚自习后利用路灯的光线去测量了一路灯的高度,并作出了示意图:如图,路灯(点P )距地面若干米,身高1.6米的小明站在距路灯的底部(O 点)20米的A 点时,身影的长度AM 为5米;(1)请帮助小明求出路灯距地面的高度;(2)若另一名身高为1.5米小龙站在直线OA 上的C 点时,测得他与小明的距离AC 为7米,求小龙的身影的长度.【答案】(1)路灯距地面的高度为8米;(2)小龙的身影的长度为3米 【分析】(1)根据MAB MOP △△得出AB AM OP OM =,代入求解即可; (2)根据NCD NOP △△得出CD CN OP ON=,结合(1)代入求解即可.【详解】解:(1)∵AB ⊥OM ,PO ⊥OM ,∴MAB MOP △△, ∴AB AM OP OM =, ∴1.65205OP =+, ∴OP=8,即路灯距地面的高度为8米;(2)∵CD ⊥OM ,PO ⊥OM ,∴NCD NOP △△,∴CD CN OP ON=, ∵OC=OA-AC=20-7=13,CD=1.5,OP=8,∴1.5813CN CN=+, ∴CN=3, 即小龙的身影的长度为3米.【点睛】本题考查相似三角形的应用,理解题意,找出相似三角形是解题的关键.23.如图,已知二次函数y =ax 2﹣5ax +2的图象交x 轴于点A (1,0)和点B ,交y 轴于点C .(1)求该二次函数的解析式;(2)过点A 作y 轴的平行线,点D 在这条直线上且纵坐标为3,求∠CBD 的正切值; (3)在(2)的条件下,点E 在直线x =1上,如果∠CBE =45°,求点E 的坐标.24.小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A ,B ,C 表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D ,E 表示),参加人员在每个阶段各随机抽取一个项目完成.请用画树状图或列表的方法,求小明恰好抽中B ,D 两个项目的概率.25.某旅游景区今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,求该旅游景区9,10两个月游客人数的平均增长率.26.如图一,在平行四边形ABCD中,AB⊥AC,AB=1,BC=5,对角线AC,BD相交于O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(所需图形须在备用图中画出)(1)试说明在旋转过程中,线段AF与EC总保持相等;(2)求证:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,当EF⊥BD,旋转的角度小于180°时,求出此时绕点O顺时针旋转的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C .【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.5.C解析:C【分析】安装几何体三视图进行判断即可;【详解】解:本几何体的俯视图是后排有三个,前排有两个,即答案为C.【点睛】本题主要考查了简单几何体的三视图,掌握是从物体正面、左面和上面看物体以及较好的空间思维能力是解答本题的关键.6.D解析:D【分析】根据从左边看到的图形是左视图解答即可.【详解】由俯视图可知,该组合体的左视图有3列,其中中间有3层,两边有2层,故选D.【点睛】本题考查了简单组合体的三视图,从左边看到的图形是左视图.7.B解析:B【分析】设AC=1,由题意得AB=k ,BC=2k ,由AC=AB+ BC=1得到关于k 的一元二次方程,解方程即可.【详解】设AC=1, ∵BC AB AB AC==k ,且0k >, ∴AB=k ,BC=2k ,∵AC=AB+ BC=1,∴21k k +=,即210k k +-=,∵1a =,1b =,1c =-,()224141150b ac =-=-⨯⨯-=>,∴152k -±=(负值舍去), ∴51k -=, 故选:B . 【点睛】本题考查了比例线段,公式法解一元二次方程,由比例线段得到一元二次方程是解题的关键.8.D解析:D 【分析】根据位似图形的性质和△OAB 和△OA B ''的位似比为1:2,即可求出两三角形的相似比为1:2,即可根据点A 的坐标求出点A '的坐标; 【详解】如图所示:作AC ⊥OB 于点C ,∵A(3,33,AC ⊥OB ,∴ OC=3, AC=33∴ 229276OA OC AC =+=+=, ∵ △AOB 和△OA B ''的位似比为1:2, ∴ OA '=2OA=12,即△AOB 和△OA B ''的相似比为1:2, ∴ A '(6,3, 故选:D . 【点睛】本题主要考查了相似图形与位似图形的性质,正确理解位似图形是解题的关键.9.D解析:D【分析】已知∠ADC =∠BAC ,则A 、B 选项可根据有两组角对应相等的两个三角形相似来判定;C 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;D 选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似. 【详解】在△ADC 和△BAC 中,∠ADC =∠BAC , 如果△ADC ∽△BAC ,需满足的条件有: ①∠DAC =∠ABC 或AC 是∠BCD 的平分线;②AD DCAB AC =; 故选:D . 【点睛】此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.10.A解析:A 【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可. 【详解】停在黑色方砖上的概率为:59, 故选:A. 【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.11.C解析:C 【分析】利用绝对值的几何意义,假设x >0或x <0,分别分析得出即可. 【详解】解:当x >0时,2320x x -+=, 解得:x 1=1;x 2=2; 当x <0时,2320x x --=,解得:x 1(不合题意舍去),x 2=32, ∴方程的实数解的个数有3个. 故选:C . 【点睛】此题主要考查的是含有绝对值符号的一元二次方程的一般计算题,理解绝对值的意义是关键.12.B解析:B【分析】首先要知道正方形和矩形的性质,正方形是四边相等的矩形,正方形对角线平分对角,且对角线互相垂直.【详解】解:A、正方形和矩形对角线都互相平分,故A不符合题意,B、正方形对角线平分对角,而矩形对角线不平分对角,故B符合题意,C、正方形和矩形对角线都相等,故C不符合题意,D、正方形和矩形的对边都相等,故D不符合题意.故选:B.【点睛】本题主要考查正方形对角线相互垂直平分相等的性质和长方形对角线平分相等性质的比较.二、填空题13.【分析】根据平行于x轴的直线上任意两点纵坐标相同可设B(x4)利用矩形的性质得出E为BD中点∠DAB=90°根据线段中点坐标公式得出E(x4)由勾股定理得出AD2+AB2=BD2列出方程求出x得到E解析:20 yx【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(12x,4).由勾股定理得出AD2+AB2=BD2,列出方程求出x,得到E点坐标,即可求得反比例函数的解析式.【详解】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(12x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得:x=10,∴E(5,4).∵反比例函数y=kx(k>0,x>0)的图象经过点E,∴k=5×4=20,∴反比例函数的解析式为:y=20x故答案为:y=20x.【点睛】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E点坐标是解题的关键.14.3【分析】连结OC过C作CD⊥x轴于DBE⊥x轴于E由对称性可知:OA=OB由△ABC是等边三角形得三线合一知OC⊥AB再根据C点坐标求出OCOB的长利用直角三角形OCD求出∠DOC=45º∠EOB解析:3【分析】连结OC,过C作CD⊥x轴于D,BE⊥x轴于E,由对称性可知:OA=OB,由△ABC是等边三角形得三线合一知,OC⊥AB,再根据C点坐标,求出OC,OB的长,利用直角三角形OCD,求出∠DOC=45º,∠EOB=45º,得到OE=BE在Rt△BEO中OE2+BE2=OB2=6求出,根据点B所在象限求出B点坐标,再代入即可求出k值.【详解】解:连结OC,过C作CD⊥x轴于D,BE⊥x轴于E,由对称性可知:OA=OB,∵△ABC是等边三角形,∴OC⊥AB,∵C(-3,3),∴OC=∴OB=3OC,∵OD=CD=3,∴∠DOC=∠DCO=45º,∴∠EOB=90º-∠DOC=90º-45º=45º,∴OE=BE,在Rt△BEO中OE2+BE2=OB2=6,∴∵点B在第三象限,∴B(把B点坐标代入y=kx,得到k=3,故答案为:3.【点睛】此题主要考查反比例函数的图像和性质,等腰直角三角的性质,勾股定理,解题的关键是利用反比例函数的对称性与等边三角形的三线合一.15.【分析】根据题意画出最少和最多的两种情况得出m和n计算即可【详解】由题意可画如图:m=5n=9∴m+n=14故答案为:14【点睛】本题考查三视图根据主视图和左视图得出画出俯视图中最多和最少的情况是解解析:【分析】根据题意画出最少和最多的两种情况,得出m和n,计算即可.【详解】由题意可画如图:m=5 n=9∴m+n=14.故答案为:14.【点睛】本题考查三视图,根据主视图和左视图得出画出俯视图中最多和最少的情况是解题关键. 16.2【解析】【分析】过点D作DN⊥AB可得四边形CDMEACDN是矩形即可证明△DFM∽△DBN从而得出BN进而求得AB的长【详解】解:过点D作DN⊥AB垂足为N交EF于M点∴四边形CDMEACDN是解析:2【解析】【分析】过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.【详解】解:过点D 作DN ⊥AB ,垂足为N .交EF 于M 点,∴四边形CDME 、ACDN 是矩形,∴AN=ME=CD=1.2m ,DN=AC=30m ,DM=CE=0.6m , ∴MF=EF-ME=1.6-1.2=0.4m , 依题意知EF ∥AB , ∴△DFM ∽△DBN , ,即:,解得:BN=20,∴AB=BN+AN=20+1.2=21.2, 答:楼高为AB 为21.2米. 【点睛】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.17.【分析】根据相似三角形相似比的平方为其对应的面积比即可求解【详解】解:∵CE :EB=1:2设CE=k 则EB=2k ∵DE ∥AC ∴△BDE ∽△BAC ∴BE :BC=2k :3k=2:3∴∵∴∵DE ∥AC ∴∴ 解析:29【分析】根据相似三角形相似比的平方为其对应的面积比,即可求解. 【详解】解:∵CE :EB=1:2,设CE=k ,则EB=2k , ∵DE ∥AC , ∴△BDE ∽△BAC ∴BE :BC=2k :3k=2:3, ∴222()()349BDE ABC S BE S BC ∆∆===, ∵1ABC S =△∴49BDES=, ∵DE ∥AC ,∴12AD CE DB BE ==,∴12ADE BDE S AD S BD ∆∆==, 则1229ADE BDE S S ∆∆==. 故答案为29. 【点睛】本题主要考查了相似三角形的判定与性质,解决本题的关键是掌握三角形的面积比与对应边之比之间的关系.18.【分析】设正方形的边长为a 则正方形的面积为阴影部分的面积=2倍扇形面积-正方形面积空白区域面积=正方形面积-阴影部分面积豆子恰好落在空白区域的概率=空白区域面积÷正方形面积【详解】解:设正方形的边长 解析:42π- 【分析】设正方形的边长为a ,则正方形的面积为2a ,阴影部分的面积=2倍扇形面积-正方形面积,空白区域面积=正方形面积-阴影部分面积,豆子恰好落在空白区域的概率=空白区域面积÷正方形面积. 【详解】解:设正方形的边长为a ,则正方形的面积为2a ,则2倍扇形面积=2×2π4a =22a π,∴ 阴影部分的面积=2倍扇形面积-正方形面积=222a a π-,∴ 空白区域面积=正方形面积-阴影部分面积=22222222a a a a a ππ⎛⎫--=- ⎪⎝⎭, ∴ 豆子恰好落在空白区域的概率=空白区域面积÷正方形面积222242==2a a a ππ--.故答案为:42π-. 【点睛】本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.此题用2倍扇形面积-正方形面积求出阴影部分的面积是解题关键.19.【分析】把1-x 看作是一个整体直接开平方解方程即可【详解】即直接开平方得:移项得:∴故答案为:【点睛】本题考察解一元二次方程-直接开平方法掌握平方根性质及意义是解题的关键 解析:1242x x ==-,【分析】把1-x 看作是一个整体,直接开平方解方程即可. 【详解】()219x -=,即()219x -=,直接开平方得:13x -=±, 移项得:13x =±, ∴14x =,22x =-, 故答案为:1242x x ==-,. 【点睛】本题考察解一元二次方程-直接开平方法,掌握平方根性质及意义是解题的关键.20.①②③④【分析】设正方形的边长为3假设F 为DC 的中点证明进而证明PE=PB 可得假设成立故可对①进行判断;由勾股定理求出EF 的长即可对②进行判断;过点E 作EH ⊥BF 利用三角形BEF 的面积求出EH 和BH解析:①②③④ 【分析】设正方形的边长为3,假设F 为DC 的中点,证明Rt Rt EDF PCF ∆≅∆进而证明PE=PB 可得假设成立,故可对①进行判断;由勾股定理求出EF 的长即可对② 进行判断;过点E 作EH ⊥BF ,利用三角形BEF 的面积求出EH 和BH 的长,判断△BEH 是等腰直角三角形即可对③进行判断;根据DE ,DF ,EF 的长可对④进行判断; 【详解】如图,设正方形ABCD 的边长为3,即3AB BC CD DA ====,3AB AE =,1AE ∴=,2DE =,①假设F 为CD 的中点,延长EF 交BC 的延长线于点P , 在Rt EDF ∆和Rt PCF 中90DF CF EFD PFC D PCF =⎧⎪∠=∠⎨⎪∠=∠=︒⎩Rt Rt EDF PCF ∴∆≅ 2PC DE ∴==由勾股定理得,52EF PF ===, 5PE EF PF ∴=+=,325BP BC PC =+=+=,PE PB ∴=,PEB PBE ∴∠=∠,故假设成立, DF FC ∴=,故①正确;②1AE =,32DF =,35122AE DF ∴+=+=,而52EF =,AE DF EF ∴+=,故②正确; ③过E 和EH BF ⊥,垂足为H ,∵154BEF S =,又2BF BC ==11524BEFSEH BF ∴=⋅⋅=, EH ∴=在RtEHF 中,EH =52EF =,HF ∴=BH ∴=在t R ABE 中,1AE =,3AB =BE ∴=而222+=222BH EH BE ∴+=BHE ∴是等腰直角三角形, 45EBF ∴∠=︒,9045ABE CBE EBF ∴∠-∠︒+∠==︒,故③正确;④32DF =,2DE =,52EF =::3:4:5DF DE EF ∴=,故④正确; 综上所述,正确的结论是①②③④. 故答案为:①②③④. 【点睛】本题考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,设出AB=3是解答此题的关键.三、解答题21.(1)60y x = (2)2;4615y x =- (3)112414x ≤≤ 【分析】 (1)设ky x=,将(10,6)代入即可求出结论; (2)将x=30代入(1)中解析式即可求出y 的值;当30x >时,设y ax b =+,利用待定系数法即可求出结论;(3)分别求出y=5时对应的两个自变量的值,然后结合图象及增减性即可得出结论. 【详解】解:(1)由通电后温度由室温10℃上升到30℃时,电阻与温度成反比例函数关系,可设k y x=, 过点(10,6),∴10660k xy ==⨯=.60y x∴=. (2)由60y x =,当30x =时,60230y ==. 当30x >时,设y ax b =+, 过点(30,2),温度每上升1℃,电阻增加415k Ω. ∴过点3431,15⎛⎫ ⎪⎝⎭302343115a b a b +=⎧⎪∴⎨+=⎪⎩,解得4156a b ⎧=⎪⎨⎪=-⎩,∴当30x >时,4615y x =-; (3)由60y x=,当5y =时,得12x = ∵反比例函数在第一象限内y 随x 的增大而减小∴当x≥12时,电阻不超过5k Ω; 由4615y x =-,当5y =时,得1414x = ∵该一次函数y 随x 的增大而增大 ∴当1414x ≤时,电阻不超过5k Ω;;答:温度x 取值范围是112414x ≤≤.【点睛】此题考查的是反比例函数与一次函数的应用,掌握利用待定系数法求反比例函数解析式、一次函数解析式和利用图象求自变量的取值范围是解题关键. 22.无23.(1)215222y x x =-+;(2)13;(3)点E 坐标为(1,9)或(1,﹣1) 【分析】(1)利用待定系数法可求解析式;(2)先求出点C ,点B ,点D 坐标,由两点距离公式可求CD ,BD ,BC 的长,由勾股定理的逆定理可求∠CDB =90°,即可求解;(3)分两种情况讨论,由相似三角形的性质可求解.【详解】解:(1)∵二次函数y =ax 2﹣5ax +2的图象交x 轴于点A (1,0),∴0=a ﹣5a +2,∴a =12, ∴二次函数的解析式y =12x 2﹣52x +2; (2)∵二次函数y =12x 2﹣52x +2的图象交x 轴于点A (1,0)和点B ,交y 轴于点C . ∴点C (0,2),点B (4,0),∵点D (1,3),∴CD =22(10)(32)-+-=2,DB =22(41)(30)-+-=32,BC =164+=25,∵CD 2+DB 2=20,BC 2=20,∴CD 2+DB 2=BC 2,∴∠CDB =90°,∴tan ∠CBD =CD DB =232=13; (3)如图,当点E 在x 轴上方时,在AB 上截取AH=AF ,连接HF∵点C (0,2),点B (4,0),∴直线BC 解析式为y=-12x+2, 当x=1时,y=32, ∴点H (1,32), ∴AH=32, ∴AH=AF=32,HF=322, ∴∠AFH=45°,BF=32, ∴∠BFH=135°,∵点A (1,0),点B (4,0),点D (1,3),∴AD=3=AB ,2∴∠ADB=∠ABD=45°=∠CBE ,∴∠ABC=∠EBD ,∠BDE=∠HFB=135°,∴△BFH ∽△BDE ,∴BD DE BF HF=,∴332DE =, ∴DE=6,∴点E (1,9);当点E'在x 轴下方时,∵∠E'BC=45°=∠EBC ,∴∠EBE'=90°,∴∠BEE'+∠EE'B=90°=∠BEE'+∠ABE=∠BE'E+∠ABE',∴∠BEE'=∠ABE',∠EBA=∠AE'B ,∴△ABE ∽△AE'B , ∴AB AE AE AB'=, ∴9=9×AE',∴AE'=1,∴点E'(1,-1),综上所述:点E (1,9)或(1,-1).【点睛】本题是二次函数综合题,考查了待定系数法可求解析式,相似三角形的判定和性质,勾股定理的逆定理,利用分类讨论思想解决问题是本题的关键.24.16【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】小明在两个阶段参加项目的所有可能的结果如下表:其中抽中B ,D 两个项目的结果有1中,所以小明恰好抽中B ,D 两个项目的概率为P =16【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.25.该旅游景区9,10两个月游客人数的平均增长率是56%【分析】根据增长后的游客人数=增长前的游客人数×(1+增长率),设9月、10月游客人数的平均增长率是x ,根据今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,据此即可列方程解出即可.【详解】解:设该旅游景区9,10两个月游客人数的平均增长率是x ,根据题意,得()()()21144%169%x +=+⨯+,解得10.5656%x ==,2 2.56x =-(不合实际,舍去).答:该旅游景区9,10两个月游客人数的平均增长率是56%.【点睛】考查了一元二次方程的应用.若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a ()21a ±.增长用“+”,下降用“−”.26.(1)答案见解析;(2)证明见解析;(3)45°.【分析】(1)根据平行四边形的对边平行可得AD ∥BC ,对角线互相平分可得OA=OC ,再根据两直线平行,内错角相等求出∠FAO=∠ECO ,然后利用“角边角”证明△AOF 和△COE 全等,根据全等三角形对应边相等即可得到AF=CE ;(2)根据垂直的定义可得∠BAO=90°,然后求出∠BAO=∠AOF ,再根据内错角相等,两直线平行可得AB ∥EF ,然后根据平行四边形的对边平行求出AF ∥BE ,再根据两组对边分别平行的四边形是平行四边形证明;(3)根据(1)的结论可得AF=CE ,再求出DF ∥BE ,DF=BE ,然后根据一组对边平行且相等的四边形是平行四边形求出四边形BEDF 平行四边形,再求出对角线互相垂直的平行四边形是菱形可得EF ⊥BD 时,四边形BEDF 是菱形;根据勾股定理列式求出AC=2,再根据平行四边形的对角线互相平分求出AO=1,然后求出∠AOB=45°,再根据旋转的定义求出旋转角即可.【详解】解:(1)如图一∵四边形ABCD 是平行四边形,∴AO =CO ,AD ∥BC ,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE(ASA),∴AF=EC,∴在旋转过程中,线段AF与EC总保持相等.(2)如备用图一:证明:∵AB⊥AC,∴∠BAC=90°.∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF.∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形ABEF是平行四边形.(3)如备用图二:在Rt△ABC中,AC22.BC AB∵AO=OC,∴AO=1=AB.∵∠BAO=90°,∴∠AOB=45°∵EF⊥BD,∴∠BOF=90°,∴∠AOF=45°,即AC绕点O顺时针旋转45°.【点睛】本题考查了平行四边形的性质和判定,菱形的性质和判定,旋转的性质,勾股定理的应用,能综合运用知识点进行推理是解此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末考试将至,下面这篇九年级数学上册期末模拟试题会让你对自己的学习有一个全面的评价,仔细审题,认真答题,你就会有出色的表现,相信自己的实力,祝你成功!一、选择题(每题3分,共30分)1.下列成语所描述的事件是必然发生的是【】A. 水中捞月 B. 拔苗助长
C. 守株待免
D. 瓮中捉鳖2.已知一元二次方程,若,则该方程一定有一个根为( )A. 0 B.
1 C. -1 D. 23.如图是由六个完全相同的正方体堆成的物体,则这一物体的正视图是A. B. C.
D.4.若x=2是关于x的一元二次方程的一个解,则m的值是( )A.6 B.5 C.2 D.-65.已知直线y=kx(k0)与双曲线y= 交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6 B.﹣9 C.0 D.96.如图(1)放置的一个机器零件,其主(正)视图如图(2)所示,则其俯视图是()7.若一元二次方程有一个根为,则下列等式成立的是( )A. B. C. D.8.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( )A. B. C. D.9.如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是A.2 B.3 C.4 D.510.计算:的结果是( )A. B. C. D.二、填空题(每题3分,共18分)11.一元二次方程x2 = x的根是 .12.把 =0化成的形式,则 = .13. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.14.六一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为 .15.关于x的一元二次方程(a-1)x2-x+a2-1=0的一个根是0,那么a的值为______.16.在抛掷正六面体的试验中,如果正六面体的六个面分别标有数字1、2、3、4、5和6,如果试验的次数增多,出现数字1的频率的变化趋势是___________.三、解答题(共52分)17.解下列方程【18分,(1)、(2)题各4分、(3)(4)题各5分】(1) (2)(3).求中的值。

(4).(x+3)2﹣x(x+3)=0.18.(满分6分)给出三个多项式:① ; ② ; ③ .请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.19(满分6分).一个不透明的布袋里装有3个大小、质地均相同的乒乓球,分别标有数字1,2,3,小华先从布袋中随即取出一个乒乓球,记下数字后放回,再从袋中随机取出一个乒乓球,记下数字.求两次取出的乒乓球上数字相同的概率.20.(满分6分)某校生物兴趣小组有一块正方形种植基地,现要对它进行扩建,若把边长增加2米,则所得的新正方形种植基地面积比原来增加了32平方米,求:原来正方形种植基地的边长是多少?21.(满分8分)已知:如图,△ABC中,BAC=90,分别以AB、BC为边作正方形ABDE和正方形BCFG,延长DC、GA交于点P. 求证:PDPG.22.(本题满分8分)在一个不透明的盒子里,装有三个分别标有数字1,2,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放同盒子摇匀后,再由小华随机取山一个小球,记下数字为y.(1)写出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数的图象上的概率.参考答案1.D【解析】解:A、水中捞月是不可能事件,故本选项错误;B、拔苗助长是一定不会发生的事件,是不可能事件,故本选项错误;C、守株待兔是可能发生也可能不发生的事件,是随机事件,故本选项错误;D、瓮中捉鳖是一定能发生的事件,属必然事件,故本选项正确;故选D2.B【解析】分析:将c=-a-b代入原方程左边,再将方程左边因式分解即可.解答:解:依题意,得
c=-a-b,原方程化为ax2+bx-a-b=0,即a(x+1)(x-1)+b(x-1)=0,(x-1)(ax+a+b)=0,3.A【解析】试题分析:找到从正面看所得到的图形即可,从正面看易得共有2列,左边一列有2个正方形,右边一列有一个正方形。

故选A。

4.A 【解析】将x=2代入解得m=6 故选A5.A【解析】试题分析:先根据点A(x1,y1),B(x2,y2)是双曲线y= 上的点可得出x1y1=x2y2=3,再根据直线y=kx(k0)与双曲线y= 交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可.解:∵点A(x1,y1),B(x2,y2)是双曲线y= 上的点 x1y1=x2y2=3①,∵直线y=kx(k0)与双曲线y= 交于点A(x1,y1),B(x2,y2)两点,x1=﹣x2,y1=﹣y2②,原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6. 故选A.6.D【解析】考点:简
单组合体的三视图. 分析:找到从上面看所得到的图形即可.7.B 【解析】试题分析:把x=-1代入得a-b+c=0.选B。

8.A试题分析:概率问题,由题意已知前面三次抛硬币的均是正面朝上则第四次正面朝上的概率是故选A9.C【解析】试题分析:先根据俯视图判断出最下面一层有3个正方体,再结合主视图及左视图进行分析即可.由图可得该几何体所用的正方形的个数是3+1=4,故选C.10.B 【解析】 = ,故选B11.x1 =0,x2 =1 【解析】。

12.m=3 【解析】本题考查代数式配方。

为一次项系数的一半。

【答案】 ,【解析】列举出所有情况,看甲队战胜乙队和甲队以2:0战胜乙队的情况数占总情况数的多少即可.解答:解:列出树状图如下所示:共8中情况,甲队战胜乙队的情况有4种,故其概率为4甲队以2:0战胜乙队的情况有2中,故其概率为:28= .故答案为:, .14.10%【解析】设每次降价的百分率为x,第二次降价后价格变为100(x-1)2元,根据题意得:100(x-1)2=81,解之得x1=1.9,x2=0.1.因x=1.9不合题意,故舍去,所以x=0.1.即每次降价的百分率为0.1,即10%.15.-1 【解析】试题分析:由题意把x=0代入方程(a-1)x2-x+a2-1=0,即可得到关于a的方程,再结合一元二次方程的二次项系数不为0求解即可.16.接近【解析】求概率,投一次的概率为,在投一次的概率还是,多次投的概率接近于17.(1)X1.2 (2).X1=1 X2=【解析】此题考查解一元二次方程思路:解一元二次方程的两种基本方法:(1)分解因式(十字相乘法)(3).【解析】(4).x=﹣3【解析】试题分析:方程左边提取公因式变形后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解:(x+3)2﹣x(x+3)=0,18.①+②: ;①+③: ; ②+③:【解析】试题分析:①+②: ; ①+③: ;19.1/3【解析】解:列表得:1 2 31 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3)3 (3,1) (3,2) (3,3)∵有9种可能结果,两个数字相同的只有3种,P(两个数字相同)=3/ 9 =1/3 .首先根据题意列出表格,然后由表格求得所有等可能的结果与两次取出的乒乓球上数字相同的情况,再利用概率公式求解即可求得答案.20.7米【解析】试题分析:设原来正方形种植基地的边长是米,依题意得所以原来正方形种植基地的边长是7米21、见解析【解析】试题分析:先根据正方形的性质可得△ABG≌△DBC,即可得到BGA=BCD,从而可以证得结论.∵正方形ABDE和正方形BCFGBG=BC,BA=BD,GBC=ABD=90GBA=CBD△ABG≌△DBCBGA=BCD∵BAC=90PAC+PCA=90P=90。

相关文档
最新文档