【对应线代】行列式计算7种技巧7种手段

合集下载

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解. 2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A •=0, nn nn nnnn nn B A B C A •=0.例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa a a n ()()βγβγβγλ--•-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D =.再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20cos 21001cos 21001cos cos 21D 111k •-=++++k k()10cos 21001cos 21001cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n=.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9; 当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ. 即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式.4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211210,nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n a a a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()1221112211000010000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式. 4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D=n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .。

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法2.1定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.0 0 0 1 例1计算行列式0 0 2 0 0 3 0 04 0 0 0解析:这是一个四级行列式,在展开式中应该有 4!二24项,但由于出现很多的零,所以不等于零的项数就大大减少•具体的说,展开 式中的项的一般形式是a 1jl a 2j2 a 3j3a 4j4 .显然,如果人=4,那么a^二0, 从而这个项就等于零•因此只须考虑的项,同理只须考虑j 2 =3,j 3 =2, j 4 =1的这些项,这就是说,行列式中不为零的项只有 a 14a 23a 32a 41,而.4321 =6,所以此项取正号•故2.2利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形 •该方法适用于低阶行列式.2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:0 0 0 0 0 34 00 2 0 0 1 0 0 0=(—1 )耳4321 »14&23&32玄41 二 24.解析:观察行列式的特点,主对角线下方的元素与第一行元素对 应相同,故用第一行的:[-1倍加到下面各行便可使主对角线下方的元 素全部变为零•即:化为上三角形.可得2.2.2连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列) 后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计 算•这类计算行列式的方法称为连加法.1 ai a2 … a n0 bi 0 0 0Dn4i =I-a + a0 0 0 … b n=b i b2…b n .aii0 0a i2a22a i3 a 23 a33a in a 2n a3n-a ii a 22…ann,anna i1 a 21 a31a 22 a32a33—a a 丄・n aa 11a22 ann ・anian2an3ann例2计算行列式Da ia 1 -b 1 a 2 a 2a n a n a 2a n -b n解:将该行列式第一行的-1倍分别加到第2,3,(n ,1)行上去,-m2.2.3滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或 者加上另一行的若干倍, 这种方法叫滚动消去法.12 3 … n T n2 1 2 ■ ■ ■■n -2 n T例4计算行列式D n =3 9' 2 a 1 … a + n -3 n - 2 1 -(n >2).nn Tn _2…2 1解:从最后一行开始每行减去上一行,有解:计算行列式D nI iz! nX i 迟X iX i X iX 2X 2 -mn送 X j —mX 2id :1 X 2X 2X 2 _ im X 2X n X naX n _x 2「maX 2X n X n 1 X 2■'n"0 - mZ X j -m 丨,X n X naX n — mX n — mX n 0n 「1 0 0224逐行相加减2.3降阶法将高阶行列式化为低阶行列式再求解.1 2 3 … n -1 n1 2 3… n -1 n 1 -1 _ 1 … -1 -12 0 0 0-2 1 1_ 1 …-1 -1= 2 20…-2aaa + iaaa+- 3■ ・■■ ■■ ■■■■ ■ ・ ■■1 11 ・・L1 -11 11…1-1D nn 1 n -2=-1 n 12对于有些行列式,虽然前 n 行的和全相同,但却为零•用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5计算行列式D 二a 1_ a 2a 2_ a 3a n 1解:将第一列加到第二列,新的第二列加到第三列, 以此类推,得:-a nn={-1 严(-1 )n (n +1隔…a n=(—1 y (n+1 002…a2.3.1按某一行(或列)展开解:按最后一行展开,得2.3.2按拉普拉斯公式展开拉普拉斯定理如下:设在行列式 D 中任意选定了 k 1 _ k _ n -1个 行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的 和等于行列式D.即D• M 2A 2 • M n A n ,其中A i 是子式M i 对应的代数余子式.即解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加X -1 0 … 0 0 0X -1 … 0 0 090 + X9+90 00 …X -1a na n二a n2…a 2 a i例6解行列式D n =n -1n -2D n 二 a i x a 2xa n_i X a n .A nnB nn ,C nn B nnA nn *B nn ・ b例7解行列式D n = baba aaaV P P … P P YP …Paaa+a0 0 P …10 B nnA nn 0到第二列,得haaa … ab y BP …P Dn=O0-Yv -P 0…aaaa+a0 0 0 0 (V)- P人 (n -1 a a a b • n - 2 1 卜 l :' 0 0 - '■ 0V _pV _p丸(n -1 a .: b Y +(n _2 厂f ;;瞌n -2 : - n -1 ab 拚 f .2.4升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质 化简算出结果,这种计算行列式的方法叫做升阶法或加边法•升阶法 的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利 用行列式的性质把绝大多数元素化为 0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末 行首列,末行末列以及一般行列的位置.Y -P0 1 1 … 1 11 0 1 … 1 1 例8解行列式D=1 10 (1)1a9 + a1 11 … 0 11 11 …1 0解:使行列式D 变成n + 1阶行列式, 即1 1 1 ...1 1 0 0 1 (1)1 0 1 0 …1 1D = - - - +再将第一行的-1倍加到其他各行,得:1 1 1 … 1 1 -1 -1 0 … 0 0 -1 I- 0S-1… • + 0 a 0 3 -1 0 0 … -1 0 -10 …-12.5数学归纳法从第二列开始,每列乘以-1加到第一列,得:_(n _1)1 0-1 0 0 D =: : 0 0 0…1n1 n-1 .1 …1 1 0 … 0 0 -1… 0 30 30 … -1 00 … 0 -1有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明•对于高阶行列式的证明问题, 归纳法是常用的方法.解:用数学归纳法证明• 当 n =1 时,D r = cos :.猜想,D n 二 cosn :. 由上可知,当n =1, n= 2时,结论成立.假设当n = k 时,结论成立•即:D k =cosk 1 .现证当n 二k T 时,结论 也成立.COS P 1 0 01 2cos P 1… 0 0 当 n= k+1 时,Dc =0 1 2cos P … 0 0a a a + a0 0 … 2cosP 1 (1)2cosP将D k 十按取后仃展开,得cos P 1 0 00 12 cos P 1… 0 0 0 3 1 a 2 cos P …0 +a0 a 0 0 0 …2 cos P 1 0 (1)2 cos卩例9计算行列式D n数学COS : 11 2cos : =2cos 2- -1 二 cos2 :1 2cos 11= 2cos :D k -D k 」.因为D k 二cosk :,D k 」=cos k 一1 ——cos k --cosk : cos : sin k- sin :,所以Dk 1= 2cos -D k - D k 」=2cos : cosk : -cosk : cos ; -sin k : sin :二 cosk : cos : -sin k : sin :-cos k 1 :.这就证明了当n 二k 1时也成立,从而由数学归纳法可知,对一切的自 然数,结论都成立. 即:D n = cosn :.12 cos : D “=(-i ri ・2cos B 011 2 cos :1 2cos0 02.6递推法技巧分析:若n阶行列式D满足关系式aD n bD n 」 CD nt =0.则作特征方程① 若—0,则特征方程有两个不等根,则 D n 二Ax ;」-Bx 2「 ② 若尺-0,则特征方程有重根x i =X 2,则D^ A nB . 在①②中,A , B 均为待定系数,可令n =:1, n =2求出.解:按第一列展开,得Dn= 9D n4 - 20D nQ .Dn- 9D n 4 20D n / =0 .当 n =1 时,^A B ;例10计算行列式D n9 5 0 0… 0 0 0 49 5 0… 0 0 0 0 4 99' 5…亍+0 a 0 a0 0 0… 4 9 50 0 00…0 4 9作特征方程解得2x 一 9x 20 = 0.D n•42B *5n -4当 n =2 时,6仁4A 5B . 解得所以3、行列式的几种特殊计算技巧和方法3.1拆行(列)法3.1.1概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两 个或若干个行列式之和,然后再求行列式的值•拆行(列)法有两种 情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项; 二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不 变,使其化为两项和.3.1.2例题解析1 — a a2 0 … 0 0-1 1 — a 2a 3 … 0 0 例11计算行列式D n =0 a -1a1 -a 3…9+ 0aa0 0 0 … 1 - a n4a n0 …-11 — a解:把第一列的元素看成两项的和进行拆列,得A = -16,B =25 ,D n =5n1-4n :M1 - a 〔a20 … 0 0-1+01 - a2 a s … 0 00+011 - a 3 0Dn =9 i+1i0+00 0 (1)- a n/ an0+00 …― 11 - a n1 a 20 … 0 0-1 1 —a 2a 3 … 0 0—0 -1 1_a3 a… 0 +90 90 00 …1 _a nJ an0 00 … -1 1 - a n_a 2 0 … 0 00 1 -a 2a 3 … 0 00 -11 - a 3… 0 0十a+3-0 00 1- a n 」an0 0… -1 1 -a n上面第一个行列式的值为1,所以1 -a 2a3 0-1a 3 … 0 0D n =1 —a1m a+ * a0 01— a n 4an0 … -1 1- a n=1 - aQ n4.这个式子在对于任何 n( n 色2诸E 成立,因此有Dn =1 -&口4=a ?D n_2 =3i -1 .i a ? a nni i二i -m aj.Vj 43.2构造法3.2.1概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求 解的行列式,从而求出原行列式的值.3.2.2例题解析11X 1X 222例12 求行列式D n =X1 3X2 an -2 X1 nd X2n X 1n X2解:虽然D n 不是范德蒙德行列式,行列式来间接求出D n 的值.构造n + 1阶的范德蒙德行列式,得1 1 … 1 1X 1 X 2… X n X2 X1 2 … X 22 Xn 2 Xf (x )=3a+s- n-2 X 1 n-2 ■…X2 n-2 Xn n-2 Xn X X1 n 4・・・ Xn -1 Xn nJ Xn X1n・・・n X nnX将f x 按第n T 列展开,得・・I.1…Xn…X 2入n・…nd Xn… x n 入n但可以考虑构造 n 1阶的范德蒙德-A ?』1X 亠 亠A n 」1X n'-代・1,n 必“,n 1其中,X 」的系数为A n,n 1 -- 1 D n - - D n •又根据范德蒙德行列式的结果知f X = X -为 X —x 2X -X n 丨【X i -X j •由上式可求得X nJ 的系数为- X 1 • X2 …X n丨 X i - X j •故有D n = % X 2 X n 「人- X j •1」::i 岂3.3特征值法3.3.1概念及计算方法设'1, '2,…’n 是n 级矩阵A 的全部特征值,则有公式|A=,「2,n .故只要能求出矩阵A 的全部特征值,那么就可以计算出 式.3.3.2例题解析例13若’1, '2, -n 是n 级矩阵A 的全部特征值,证明: 仅当它的特征值全不为零. 证明:因为|^ = ■ 1 ■■ n,贝UA 可逆u A 式0匸九1扎2…肌式Ou 蚣式0(i=1,2…n ).f X 二 A,n 1 A 的行列A 可逆当且即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法由行列式的定义可知,ai1ai20 a 22 0 0 a a0 0a^a 21 a 22a31a32a aan1 an2a13 a 1na23a 2na 33 … 3 + a3na=a 11a22 '…ann0 … ann0 00 …a33a +0 a-a 11a22‘ "'annan3ann4.2 “爪”字型行列式4.2.1 概念4.1 三角形行列式4.1.1 概念a“ a 12 a 13a1 na 11a 22 a23a 2na21 a 22 形如 a * a ■a 33+ a3na31★a32a33aaannan1an2an3形状像个三角形,故称为 “三角形行列式.4.1.2 计算方法ann这样的行列式,422计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化 成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横.1i(i =2,3,…n.)列元素乘以-丄后都加到第一列上,原行列式可化为三 a i角形行列式.a ob 1 b 2 … b nbn …b 2b 1 a o C 1a 1a 1C 1 C 2I-a 2+a 2C 2费C na na nC n形如 C na na n+C nC 2a 2a 2C 2 C 1 a 1a 1C 1 a o b 1b 2… b nb n …b 2b 1a o这样的行列式,形状像个 4.2.3 例题解析例14计算行列式a 11 1a 2 a s,其中 q = 0,i =1,2, n.分析: 这是一个典型的“爪”字型行列式,计算时可将行列式的第字型行列式.“爪”“爪”字,故称它们为4.3.2计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角 形行列式.此方法可以归纳为:“么”字两撇相互消.C n a na ob 1 b 2C 1C 2 a 2a 1C 2 a 2C 1 a 1C na ob 1 b 2… b nb na n 概念 形如b n C nb 2 a 2b 1 a 1 C 2a o C 1 a nC n+a 2b n-b 2 , b 1a ob n b 2 b 1 a o a 1C 1a ?「 C 2a nC nC 2a 1C 1 a o b 1 b 2---b nanCnC 1 a oC 1a 1+a.+a.C 2 a 1b 1 C 2 a 2a 2C 2a 2b 2++a 1 C 1 C nb 1C n a nb n … b 2b 1a oa nb n这样的行列式, 字, 字型行列式.形状像个“么” 因此常称它们为“么” a 1 11a 2a 3a n a 2a 3a n二 a 2a 3 a n a 1 -二.i =24.3 “么” 字型行列式 4.3.1注意:消第一撇的方向是沿着“么”的方向,从后向前,利用a n消去C n,然后再用a n」消去C n」,依次类推.4.3.3例题解析1 -1例15计算n+1阶行列式,1 -1-1解:从最后一行开始后一行加到前一行(即消去第一撇),得n-1 八b ii =1n-1 1 b ii =1b n 4 b nb nn (n ~3 f n X'i=-1 T、b iI i壬丿4.4 “两线”型行列式4.4.1 概念b nD n 1二-1飞•(-1『-1 +》bj Ia i 0b ia20 …b2…形如*a a a★这样的行列式叫做“两线型”行列式.0 0 0 …b n A.b n 0 0 …a n442计算方法对于这样的行列式,可通过直接展开法求解.4.4.3例题解析a. 0 b ia20 …b2…例16求行列式D n = ■-a a a90 0 0 …b n」b n 0 0 …a n解:按第一列展开,得a2 b2...0 b. 0 0a a + a,n+a2 b2 0D n+ —a i + 0(-1):0 0 …b n j0 0 …a n0 0 …b n:= a^2…a. +(—1 广b©…4.5 “三对寸角”型行歹J式4.5.1 概念a +b ab 0 0 0…0 01 a +b ab 0 0…0 0形如0a 1-a +b-aba0…a +30这样的行列式,叫0 0 0 0 0… a + b ab0 0 0 0 0… 1 a + b做“三对角型”行列式.4.5.2计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明.4.5.3例题解析a +b ab 0 0 0…0 01 a十b ab 0 0…0 00 1 a + b ab 0 …0 0 例17求行列式D n = 5 3 +0 0 0 0 0… a + b ab0 0 0 0 0… 1 a + b 解:按第一列展开,得ab 0 0 0 ---0 01 a +b ab 0 …0 0D n = (a +b D n」-0 1 a +b ab ---0 0a-+a ■-■■ a +b ■■■0 0 0 0 --- a + b ab 0 0 0 0 … 1 a +b=a b D n u-abD n^.变形,得D n - aD n 4、=b D nd - aD n q . 由于D^a b, D2=a2ab b2,从而利用上述递推公式得D n -aD n4 二b D n 4 -aD n,二b2D n, -aD nf 廿D2 -aD i 二b n.故D n =aD nl b n =a aDnN - b nA b n = = a nJ D 1 a n ^b 2-ab nJ b n=a n a n 」b …ab nJ b n .4.6 Van derm onde 行列式4.6.1 概念列式.4.6.2计算方法解:虽然D n 不是范德蒙德行列式,但可以考虑构造 n 1阶的范德蒙德形如 a 12 a1a 2 2 a 2a s 2a s a n2a n 这样的行列式,成为n 级的范德蒙德行 n ± a1 n -1 a2n A as n -1 an 通过数学归纳法证明,可得务aj a 2 a 2a n a:n 4 a1n -J a 2n -1 a 3n -1a n4.6.3 例题解析例18求行列式X 12 X 1X 2 X n 2 Xnn -2 X1 n X1n -2 X2 n X 2n -2 Xn n Xn行列式来间接求出D n 的值. 构造n 1阶的范德蒙德行列式,得将f x 按第n 7列展开,得5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合1 1 … 1 1 X 1X 2… X nX2222X 1a X 2… a +X n- Xn_2 n _2 n_2n_2X 1 X 2 … X nXnd n A. n _1 nA X 1X 2…X n X nnnnX 1 X 2…X nXf x 二f X = A,n 1Azn 1XA|n」n,n -1X'A n 1,n l X n ,其中,X nJ 的系数为An,n 1Dn =-D..又根据范德蒙德行列式的结果知f x l=I x -X 1 X —X 2X - X n i 二[X i -X j1兰或应由上式可求得X n」的系数为 -X iX 2 X n 〕二〔X i 1卫::也_Xj故有 D n =人X 2 X n「 1当吃应X i —X j多种计算方法,使计算简便易行•下面就列举几种行列式计算方法的 综合应用.5.1降阶法和递推法2 1 0… 0 0 1 2 1 … 0 0 0 12 … 0 0 例19计算行列式D n = 一3 + -0 0 0… 2 1 0 0 0…1 2分析:乍一看该行列式,并没有什么规律•但仔细观察便会发现,按 第一行展开便可得到n-1阶的形式.解:将行列式按第一行展开,得 D n =2D n 」-D n2 即Dn - D n 4二 D n / - D n / ••I D n - D n/ 二 D n/ - D n 2 二 二- D i = 3 - 2 = 1. •- Dn =1 Dn/ = =1 1“ Dn"二 n -12 =n 1.5.2逐行相加减和套用范德蒙德行列式例20计算行列式解:从第一行开始,依次用上一行的 -1倍加到下一行,进行逐行相1 +sin 巴 sin 巴 +sin2 蓉 sin 2 巴 +sin3 出11 sin:2 sin :2 sin ;:22sin2 :2sin 3 ;:211 sin:3 sin 3 sin 23 sin23 sin 3 :31 sin 4 sin ;:4 sin :24sin2 :4 sin 3 45.3构造法和套用范德蒙德行列式行列式来间接求出D n 的值.11 1 1sin 鸣 sin 护2 sin ®3 sin ®4D =sin 2 鸣 sin 2 申2 sin 2甲3 sin 2 典sin 3 鸯 sin 3叭sin 0 sin 3 护4 再由范德蒙德行列式, 得11 1 1sin 鬻 sin 护2 sin ®3 sin ®4 D =sin 2 曙sin 2 笃 sin 2 % sin 2 申4sin 3 鸣sin 3餐sin 3陷sin 3 %加,得-JI .I I sin <1 勺 d i41 1 … 1 1 X 1X 2…X nX22 …22X 1a X 2a + X na X in-2 n-2■… n-2n-2X 1 X 2 X n Xnd n 4 ・・n -1nd X 1X 2X nX nn・nnX 1 X 2X nXf x =得例21求行列式D n 二X 12 X 1X 2 X n 2 Xnn -2 X1 n X1ndX 2 n X2 ndX n n Xn解:虽然D n 不是范德蒙德行列式,但可以考虑构造n 1阶的范德蒙德构造n 1阶的范德蒙德行列式,将f x按第n - 1列展开,得'A2,n 1X * ' A n,n 1 X ' A n -1,n 1 X其中,x nJ的系数为A n,n1=-1「n1D n 7n.又根据范德蒙德行列式的结果知f X = X — X1 X —X2 x —X n I ] X i —X j .1宜丈勺由上式可求得X nJ的系数为- X1 • X2 …X n J 丨X i - X j • 1勺丈①故有D n =人X2 X n 「人—X j •1首匕宜。

计算行列式常用的7种方法

计算行列式常用的7种方法

行列式的计算方法介绍7种常用方法1 三角化方法:通过行列初等变换将行列式化为三角型行列式.例1 计算n+1阶行列式xa a a a a x a a a a x D nnn32121211=+2 把某一行(列)尽可能化为零 例2 计算:yy x x D -+-+=222222222222222243 递归法(数学归纳法):设法找出D n 和低级行列式间的关系,然后进行递归.例4 证明:βαβαβαβααββααββα--=++++=++1110000010001000n n n D例5 证明范德蒙行列式(n ≥2)∏≤<≤-----==nj i jin nn n n n nn x x x x x x x x x x x x x x V 111312112232221321)(11114 加边法:对行列式D n 添上一适当行和列,构成行列式D n+1,且D n+1=D n 例6 证明:)11(11111111111111111111121321∑=+=++++=ni in nn a a a a a a a a D5 拆分法:将行列式表为行列式的和的方法.即如果行列式的某行(或列)元素均为两项和,则可拆分为两个行列式之和 例7 设abcd=1,求证:011111111111122222222=++++ddd d c c c c b b b ba a a a6 利用行列式的乘积:为求一个行列式D 的值,有时可再乘上一个适当的行列式∆;或把D 拆分为两个行列式的积. 例8(1)1)cos()cos()cos()cos(1)cos()cos()cos()cos(1)cos()cos()cos()cos(1121332312322113121n n n n n n D αααααααααααααααααααααααα------------=(2)设S k =λ1k +λ2k +⋯+λn k (k=1,2…),求证:∏≤<≤-+-+--=nj i j in n nn n nn s s s s s s s s s s s s s s s n 1222111432321121)(λλ7 利用拉普拉斯定理求行列式的值.拉普拉斯定理是行列式按某一行(或列)展开定理的推广.定义(1) 在n 阶行列式D 中,任取k 行k 列 (1≤k ≤n),位于这k 行k 列交叉处的k 2个元素按原来的相对位置组成的k 阶行列式S ,称为D 的一个k 阶子式.如:D=3751485210744621则D 的一个2阶子式为:S=8261 在一个n 阶行列式中,任取k 行,由此产生的k 阶子式有C kn 个.(2) 设S 为D 的一个k 阶子式,划去S 所在的k 行k 列,余下的元素按原来的相对位置组成的n-k 阶行列式M 称为S 的余子式.又设S 的各行位于D 中的第i 1,i 2…i k 行,S 的各列位于D 中的第j 1,j 2…j k 列,称A=(-1)(i1+i2+…+ik)+(j1+j2+…+jk)M.如:3751485210744621则D 的一个2阶子式为:S=8261M=3517为S 的2阶子式 M=(-1)(1+3)+(1+3)3517为S 的代数余子式.拉普拉斯定理:若在行列式D 中任取k 行 (1≤k ≤n-1),则由这k 行所对应的所有k 阶子式与它们的代数余子式的乘积等于D. 例9 计算2112100012100012100012=D 例10 块三角行列式的计算 设:⎪⎪⎭⎫ ⎝⎛=⨯⨯n n m m C B A *0或 ⎪⎪⎭⎫⎝⎛=⨯⨯n n m m C B A 0* 则:detA=(detB)(detC).特别地:若A=diag(A 1,A 2,…,A t ),则DetA=(detA 1)(detA 2)…(detA t ).例11 设分块矩阵⎪⎪⎭⎫⎝⎛=D C B A 0,其中0为零阵,B和D可逆,求A-1.例12 计算nn b b b a a a D 1001000102121 =例13 设:⎪⎪⎭⎫ ⎝⎛=C B A , BC T =0.证明:|AA T |=|BB T ||CC T |.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

线性代数行列式计算总结

线性代数行列式计算总结

线性代数行列式计算总结线性代数中的行列式是一种非常重要的数学工具,它在矩阵理论、线性方程组的解法、线性空间与线性变换以及特征值与特征向量的计算中都起到至关重要的作用。

行列式的计算方法有很多,下面我将总结一下常见的行列式计算方法。

首先,我们先来定义什么是一个行列式。

行列式是一个标量,它是一个n阶方阵所带的一个数值特征。

对于一个n阶方阵A,它的行列式表示为,A,或者det(A),它的计算方法如下所示。

1.二阶行列式的计算方法对于一个二阶方阵A=,a11a12a21a2它的行列式计算方法是:,A,=a11*a22-a12*a212.三阶行列式的计算方法对于一个三阶方阵A=,a11a12a13a21a22a2a31a32a3它的行列式计算方法是:,A,=a11*a22*a33+a12*a23*a31+a13*a21*a32-a13*a22*a31-a12*a21*a33-a11*a23*a323.高阶行列式的计算方法对于一个高阶方阵A,可以通过对其中一行或一列进行展开来计算行列式。

展开的方式有很多种,常用的有代数余子式展开和化简为三角行列式展开两种。

3.1代数余子式展开对于一个n阶方阵A,选择一行或一列展开,计算每个元素的代数余子式,然后按照正负交替的方式相乘相加得到行列式的值。

具体步骤如下:- 选择第i行展开,行列式的值为,A, = ai1*C_1i + ai2*C_2i+ ... + ain*C_ni- 其中,C_ij是元素a_ij的代数余子式,计算方法是去掉第i行和第j列剩余元素构成的(n-1)阶子阵的行列式。

3.2三角行列式展开对于一个n阶方阵A,通过初等变换将方阵化为上三角形或下三角形,然后计算对角线的乘积得到行列式的值。

除了以上两种展开的方法,还可以通过矩阵的特征值和特征向量计算行列式的值。

具体步骤是:-计算矩阵A的特征值λ_1,λ_2,...,λ_n-计算矩阵A的特征向量v_1,v_2,...,v_n-行列式的值等于特征值的乘积:,A,=λ_1*λ_2*...*λ_n行列式的计算方法还有很多,比如拉普拉斯展开、按行或按列展开等。

行列式计算7种技巧

行列式计算7种技巧

行列式计算7种技巧7种手段编者:Castelu韩【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读一.7种技巧:【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T111211121121222122221212n n n n n n nnnnnna a a a a a a a a a a a a a a a a a技巧2:互换行列式的任意两行(列),行列式的值将改变正负号111212122221222111211212n n n n n n nnn n nna a a a a a a a a a a a a a a a a a =-技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面1111121111121221222222122211212n n nn n n i n n n n n nnn n nnb a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏技巧4:行列式具有分行(列)相加性11121111211112111221212121212nnn t t t t tn tn t t tn t t tn n n nnn n nnn n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变111211112112112212121212n n s s sns t s t sn tnt t tn t t tn n n nnn n nna a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++=技巧6:分块行列式的值等于其主对角线上两个子块行列式的值的乘积111111111111111111110000m m nm mm m n m mm n nnn nmn nna a a ab b a ac c b b a a b b c c b b =技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和11(1,2,,)(1,2,,)nnik ik kj kj k k D a A i n a A j n ======∑∑二.7种手段:【手段】所谓行列式计算的手段,即在计算行列式时,观察已给出的原始行列式或进行化简后的行列式,只要它们符合已知的几种行列式模型,就可以直接计算出这些行列式手段1:对于2阶行列式和3阶行列式,可以直接使用对角线法则进行计算1112112212212122a a a a a a a a =-,111213212223112233122331132132112332122133132231313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---手段2:对于4阶以上的行列式,若行列式中有很多元素为零,则根据定义进行计算较为方便,否则较为复杂(常见于计算机程序和数学1212121112121222()1212(1)n nnn n p p p p p np p p p n n nna a a a a a a a a a a a τ=-∑运用数学软件Matlab 按定义计算4阶行列式: >> syms a b c d e f g h i j k l m n o p >> A=[a,b,c,d;e,f,g,h;i,j,k,l;m,n,o,p] A = [ a, b, c, d] [ e, f, g, h] [ i, j, k, l] [ m, n, o, p] >> det(A) ans =a*f*k*p-a*f*l*o-i*a*g*p+i*a*h*o+a*n*g*l-a*n*h*k-e*b*k*p+e*b *l*o+i*e*c*p-i*e*d*o-e*n*c*l+e*n*d*k+i*b*g*p-i*b*h*o-i*f*c*p +i*f*d*o+i*n*c*h-i*n*d*g-m*b*g*l+m*b*h*k+m*f*c*l-m*f*d*k-i*m*c*h+i*m*d*g手段3:上三角行列式,下三角行列式,主对角线行列式,副对角线行列式11121222100n nn iii nna a a a a a a ==∏,11212211200niii n n nna a a a a a a ==∏,1212()n nλλλλλλ=其余未写出元素均为零,1(1)2212(1)()n n n nλλλλλλ-=-其余未写出元素均为零手段4:若行列式中有两行( 列)对应元素相等,则此行列式的值等于零0a a e i b b f j c c g k ddhl =手段5:若行列式中有一行(列)的元素全为零,则此行列式的值为零00000a e i b f j c g k dhl =手段6:若行列式中有两行(列)元素成比例,则此行列式的值等于零0a ka e i b kb f j c kc g k dkdhl =手段7:范德蒙德(Vandermonde)行列式1222212111112111()n n i j n i j n n n nx x x x x x x x x x x ≥>≥---=-∏三.跟踪训练【解题思路】为了使读者能够巩固前文叙述的7种技巧和7种手段,本人附上一些行列式的习题以供参考.解题时,一般先观察题目所给出的原始行列式,若原始行列式能够用7种手段的其中一种进行计算,则可直接得出答案,否则,一般先利用7种技巧对原始行列式进行化简,使之转化成能够用7种手段的其中一种进行计算的行列式,再得出答案.读者在利用7种技巧时,要注意技巧之间的搭配使用计算下列行列式的值: 习题1:120114318---解答:1201141182(4)30(1)(1)0132(1)81(4)(1)4318--=⨯⨯+⨯-⨯+⨯-⨯--⨯⨯-⨯-⨯-⨯-⨯-=--[手段1] 习题2:0000000000b f d a ce解答:123412341234()12341234123433112432400000(1)0000004,3,1,4,2,()(3142)3,00000(1)00000p p p p p p p p p p p p b f d a a a a a ce p p p p p p p p bf d a a a a abcda ceτττ=-=======-=-∑观察行列式中元素的位置及由级排列中各数不能相等知因此[手段2]习题3:12345678910111213141516解答:21431234113156785171091011129111113141516131151c c c c -=-[技巧5,手段4] 习题4:3333333333333333x x x x ---+---+--解答:4122131414233333333333333333333333333333133313331333001333001333001333000000ii x x x x x x c c x x x x x x x r r x x x x r r x x x x r r xx x xr r xx x x x=-----+--+-+----+----------+--=-----------↔-=--∑[技巧2,技巧3,技巧5,手段3] 习题5:11121314122223241323333414243444a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b解答:1112131412222324132333341424344422232412131412131411233334122333341322232414243444243444243444,a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b =-+-按第一列展开1213142223242333341213141213142223242223242434442333342342342121423333412423333412234234,0,(b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b b b b b b D a a b b a b a b a b a b b a b a b a b a a a a a a a a =-=由于行列式和有两行元素成比例因此值为3234214124233334234222121412434232334243241421124332233423321421123223433414122123)()()()[()()]()()()()(b b b b b a b b a b a b a b a a a a a b b a b b a a b b a a b b a a b a b b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b -=-+--=--+-=---=--323443314111)()()i i i i i a b a b a b a b a b a b ++=--=--∏[技巧7,手段1,手段6]习题6:444443333322222(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)123411111a a a a a a a a a a a a a a a a a a a a ----------------解答:432122222533333444444321432122222,111111234(1)(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)111114321(1)(1)(4)(3)(2)(1)(4)a a a a a D a a a a a a a a a a a a a a a a a a a a a a a a a a +++++++++----=-----------------=-------将行列式上下翻转后再左右翻转不难得3333344444(3)(2)(1)(4)(3)(2)(1)4!3!2!1!288a a a a a a a a a -------==[技巧2,手段7] 习题7:12211000010000000001nn n x x x x a a a a x a -----+解答:111121232212112112121,1000100(1)000011,,,,,,n n n n n n n nn n n n n n n n n n n n n D x D xD a xx DxD a D xD a D xD a D xD a D x a x x x D x a x a x a x a +--------------=+--⇒=+=+=+=+=+=+++++按第一列展开得的递推公式将上述各式的两边分别乘以后全部相加并化简得:[技巧7,手段3]习题8:()ab a bc dc d 其余未写出元素均为零:解答:22(22)2122(1)2(1)2221,23,,2,221,23,,2,000000(1)00()()()n n n n nn n D n n n n n n a bc dabD ab c d c d D D ad bc Dad bc D ad bc --------=-==-==-=-将中的第行依此与第行行第行对调再将第列依此与第列列第列对调得[技巧2,技巧6]。

行列式的计算技巧与方法总结讲解

行列式的计算技巧与方法总结讲解

行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式0004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解.2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A ∙=0, nn nn nnnn nn B A B C A ∙=0.例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa aa n ()()βγβγβγλ--∙-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D=. 再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20000cos 21001cos 21001cos cos 21D 111k ∙-=++++k k()10cos 21001cos 2101cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n =.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--∙+∙=n n n B A D .当1=n 时,B A +=9;当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ.即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211210,nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n aa a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--∙-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()12211122110001000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式.4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的范德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D =n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用范德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由范德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用范德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=.将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .。

行列式的计算技巧窍门情况总结

行列式的计算技巧窍门情况总结行列式是线性代数中重要的概念之一,它在解决线性方程组、矩阵的逆等问题中起着关键作用。

本文将总结行列式的计算技巧和窍门,帮助读者更好地掌握行列式的计算方法。

1.定义行列式是一个方阵所对应的一个标量值。

对于一个n阶方阵A,它的行列式记作det(A),A,或者D(A)。

对于2阶和3阶方阵,行列式的计算较为简单,可以直接应用定义进行计算。

例如对于2阶方阵A:abcd对于3阶方阵A:abcdefghidet(A) = aei + bfg + cdh - ceg - bdi - afh。

2.初等变换法初等变换法是一种常用的计算行列式的方法。

初等变换指的是对行列式的行(或列)进行以下操作:①互换两行(列);②其中一行(列)与其它行(列)相加(或相减,可取加减系数为1和-1);③其中一行(列)乘以一个非零常数。

这些操作不改变行列式的值。

通过使用初等变换,可以将行列式转化为更简单的形式,从而更容易计算。

例如,在计算3阶行列式时,我们可以使用初等变换将行列式化为上三角形式,这样计算起来会更加简便。

3.拆分法则行列式有一个重要的性质,即它是线性的。

也就是说,如果将一个方阵的其中一行(列)按一定的方式进行拆分并相加(或相减),则行列式的值不变。

这个性质对于简化行列式的计算非常有帮助。

例如,在计算3阶行列式时,可以选择将第一列按照一定方式进行拆分,然后相加或相减。

这样可以将行列式化简为两个2阶行列式的形式,从而更容易计算。

4.分块矩阵法对于大规模的方阵,计算行列式将变得较为复杂。

分块矩阵法是一种较为高效的计算行列式的方法。

分块矩阵法的基本思想是将一个大的方阵分割为若干个小的方阵,并利用分块矩阵的性质进行计算。

这样可以将复杂的计算问题化简为对小方阵的计算问题,从而降低了计算的难度和复杂度。

5.逆序数法逆序数法是一种计算行列式的方法,它利用了逆序数和奇偶性的关系。

逆序数是指在一个排列中,逆序对的个数。

线性代数行列式求解的技巧

线性代数行列式求解的技巧行列式是线性代数中的一个重要概念,它可以用于求解线性方程组的解、判断矩阵是否可逆等问题。

行列式的计算通常使用展开法、性质法等多种方法,以下是一些行列式求解的技巧。

1. 展开法展开法是求解行列式的一种常用方法,其基本思想是通过将行列式展开为一系列子行列式的和来计算。

行列式的展开可以按照某一行或某一列进行展开,通常选择具有最多零元素的行或列进行展开可以减少计算的复杂度。

例如,对于一个3阶行列式:A = |a11 a12 a13||a21 a22 a23||a31 a32 a33|我们可以选择第一行或者第一列进行展开,以第一列为例:A = a11|a22 a23| - a21|a12 a13| + a31|a12 a13||a32 a33| |a32 a33| |a22 a23|展开后的每一项都是一个2阶子行列式,可以通过直接计算或继续展开来求解。

展开法的优点是较为直观,但当行列式阶数较高时计算量巨大,不适合大规模行列式的计算。

2. 元素对应法则行列式的元素对应法则指的是对于一个n阶行列式,其每一项的元素都来自于不同行不同列的n个元素的乘积。

在计算中,可以通过指定元素的位置来构造行列式。

例如,对于一个3阶行列式:A = |a11 a12 a13||a21 a22 a23||a31 a32 a33|其中,a11来自于A的第一行第一列,a22来自于A 的第二行第二列,a33来自于A的第三行第三列。

通过这种方法,可以方便地构造行列式并进行计算。

3. 行变换法行变换法是求解行列式的一种简化计算的方法,通过对行进行一系列变换,将行列式化为三角形式或对角形式,从而简化计算。

常用的行变换包括行列式的行交换、行乘法、行加法等。

行交换可以通过直接交换行的位置得到,行乘法可以将某一行的元素乘以一个常数,行加法可以将某一行的元素乘以一个常数后加到另一行,行变换不改变行列式的值。

通过行变换后,可以使行列式的某些元素为零,使得计算行列式的展开或使用性质更加方便。

行列式计算方法

行列式计算方法行列式的计算是线性代数中的重要内容,有以下几种常用的方法:1. 代数余子式法:给定一个n阶矩阵A,取A的第i行第j列元素a_ij为基准,计算它的代数余子式A_ij的值。

代数余子式的定义是,在A中划去第i行和第j列后,剩余元素构成的(n-1)阶子矩阵的行列式。

然后,根据代数余子式的符号规律,求得A_ij*(-1)^(i+j),再将所有的代数余子式乘以对应位置的元素,再求和即可得到行列式的值。

2. 拉普拉斯展开法:选择A的任意一行或一列,例如第i行,根据拉普拉斯展开定理,将行列式的计算转化为n个(n-1)阶行列式的计算,然后依次递归地计算(n-1)阶行列式,最后累加得到行列式的值。

3. 对角线法则:对于一个n×n的矩阵A,按照对角线上的元素(从左上角到右下角)出现的顺序,将对应的元素乘积相加,再减去按照对角线下方的元素(从左上角到右下角)出现的顺序,将对应的元素乘积相加。

这个过程可以用一个式子来表示:det(A) = a_11 * a_22 * ... * a_nn - a_21 * a_32 * ... * a_n1。

4. 公式法:对于一个3阶矩阵A,可以利用公式来计算行列式的值。

行列式的计算可以表示为:det(A) = a_11 * a_22 * a_33+ a_12 * a_23 * a_31 + a_13 * a_21 * a_32 - a_31 * a_22 * a_13 - a_32 * a_23 * a_11 - a_33 * a_21 * a_12。

对于4阶及以上的矩阵,复杂度较高,通常情况下不会直接使用公式法计算,而是选择其他方法。

以上是几种常用的求行列式的方法,不同的方法适用于不同的情况,在实际计算中可以根据需要选择合适的方法来求解。

行列式的计算方法和技巧大总结

行列式的计算方法和技巧大总结行列式是线性代数中的一个重要概念,用于表示线性方程组的性质和解的情况。

在计算行列式时,有许多方法和技巧可以帮助我们简化计算过程。

以下是行列式计算方法和技巧的大总结。

1. 二阶矩阵行列式:对于一个2x2的矩阵A,行列式的计算方法是ad-bc,其中a、b、c和d分别为矩阵A的元素。

2. 三阶矩阵行列式:对于一个3x3的矩阵A,行列式的计算方法是a(ei-fh) - b(di-fg) + c(dh-eg),其中a、b、c、d、e、f、g和h分别为矩阵A的元素。

3.行变换法:行变换是一种常用的简化计算行列式的方法。

行变换可以通过交换行、倍乘行和行加减法三种操作来实现。

当进行行变换时,行列式的值保持不变。

4.行列式的性质:行列式有以下性质:a)交换行,行列式的值相反;b)两行交换位置,行列式的值相反;c)同行相等,行列式的值为0;d)其中一行乘以一个数k,行列式的值变为原来的k倍;e)两行相加(减),行列式的值保持不变。

5.定义展开法:行列式的定义展开法可以通过选取任意一行或一列对行列式进行展开。

展开定理是一种递归的方法,它将一个复杂的行列式分解成若干个简单的行列式,从而简化计算过程。

6.三角矩阵行列式:对于一个上(下)三角矩阵,它的行列式等于对角线上的元素相乘。

这是因为在上(下)三角矩阵中,除了对角线上的元素外,其他元素都为0,因此它们的乘积为0。

7.克拉默法则:克拉默法则适用于解线性方程组时的行列式计算。

克拉默法则使用行列式来计算方程组的解。

具体来说,对于n个方程n个未知数的线性方程组,如果系数矩阵的行列式不为零,那么该方程组有唯一解,可以通过求解该方程组的克拉默行列式来得到方程组的解。

8.外积法则:在向量代数中,我们可以使用外积法则计算向量的叉乘。

对于两个三维向量a和b,它们的叉乘可以表示为a×b,它的模就是行列式的值。

具体计算方法是:ijka1a2a3b1b2b3其中,i、j和k是单位向量,a1、a2、a3和b1、b2、b3分别为向量a和向量b的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式计算7种技巧7种手段【说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读一7种技巧:【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T111211121121222122221212n n n n n n nnnnnna a a a a a a a a a a a a a a a a a =技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211212n n n n n n nnn n nna a a a a a a a a a a a a a a a a a =-技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 1111121111121221222222122211212n n nnn ni n n n n n nnn n nnb a b a b a a a a b a b a b a a a a bb a b a b a a a a ==∏技巧4:行列式具有分行(列)相加性 11121111211112111221212121212n n n t t t t tn tn t t tn t t tn n n nnn n nnn n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变111211112112112212121212n n s s sn s t s t sn tnt t tn t t tn n n nnn n nna a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++=技巧6:分块行列式的值等于其主对角线上两个子块行列式的值的乘积111111111111111111110000m m n m m m m n m m m n nnn nmn nna a a ab b a ac c b b a a b b c c b b =技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和11(1,2,,)(1,2,,)nnikik kjkj k k D aA i n aA j n ======∑∑二.7种手段:【手段】所谓行列式计算的手段,即在计算行列式时,观察已给出的原始行列式或进行化简后的行列式,只要它们符合已知的几种行列式模型,就可以直接计算出这些行列式 手段1:对于2阶行列式和3阶行列式,可以直接使用对角线法则进行计算 1112112212212122a a a a a a a a =-,111213212223112233122331132132112332122133132231313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---手段2:对于4阶以上的行列式,若行列式中有很多元素为零,则根据定义进行计算较为方便,否则较为复杂(常见于计算机程序和数学软件)定义:1212121112121222()1212(1)n n nn n p p p p p np p p p n n nna a a a a a a a a a a a τ=-∑运用数学软件Matlab 按定义计算4阶行列式: >> syms a b c d e f g h i j k l m n o p >> A=[a,b,c,d;e,f,g,h;i,j,k,l;m,n,o,p] A =[ a, b, c, d] [ e, f, g, h] [ i, j, k, l] [ m, n, o, p] >> det(A) ans =a*f*k*p-a*f*l*o-i*a*g*p+i*a*h*o+a*n*g*l-a*n*h*k-e*b*k*p+e*b*l*o+i*e*c*p-i*e*d*o-e*n*c *l+e*n*d*k+i*b*g*p-i*b*h*o-i*f*c*p+i*f*d*o+i*n*c*h-i*n*d*g-m*b*g*l+m*b*h*k+m*f*c*l-m*f*d*k-i*m*c*h+i*m*d*g手段3:上三角行列式,下三角行列式,主对角线行列式,副对角线行列式 11121222100n nn iii nna a a a a aa ==∏,112122112000niii n n nna a a aa a a ==∏,1212()n nλλλλλλ=其余未写出元素均为零,1(1)2212(1)()n n n nλλλλλλ-=-其余未写出元素均为零手段4:若行列式中有两行(列)对应元素相等,则此行列式的值等于零 0a a e i b b f j c c g k ddhl =手段5:若行列式中有一行(列)的元素全为零,则此行列式的值为零 00000a e ib f jc g k dhl =手段6:若行列式中有两行(列)元素成比例,则此行列式的值等于零 0a ka e i b kb f j c kc g k dkdhl =手段7:范德蒙德(Vandermonde)行列式 1222212111112111()n n i j n i j n n n nx x x x x x x x x x x ≥>≥---=-∏三.跟踪训练【解题思路】为了使读者能够巩固前文叙述的7种技巧和7种手段,本人附上一些行列式的习题以供参考.解题时,一般先观察题目所给出的原始行列式,若原始行列式能够用7种手段的其中一种进行计算,则可直接得出答案,否则,一般先利用7种技巧对原始行列式进行化简,使之转化成能够用7种手段的其中一种进行计算的行列式,再得出答案.读者在利用7种技巧时,要注意技巧之间的搭配使用计算下列行列式的值: 习题1: 120114318--- 解答: 1201141182(4)30(1)(1)0132(1)81(4)(1)4318--=⨯⨯+⨯-⨯+⨯-⨯--⨯⨯-⨯-⨯-⨯-⨯-=--[手段1] 习题2: 000000000b f d a ce解答:123412341234()12341234123433112432400000(1)000004,3,1,4,2,()(3142)3,00000(1)0000p p p p p p p p p p p p b f d a a a a a ce p p p p p p p p bf d a a a a abcda ceτττ=-=======-=-∑观察行列式中元素的位置及由级排列中各数不能相等知因此[手段2]习题3: 12345678910111213141516解答: 21431234113156785171091011129111113141516131151c c c c -=-[技巧5,手段4] 习题4: 3333333333333333x x x x ---+---+--解答:4122131414233333333333333333333333333333133313331333001333001333133300000ii x xx x x x c c x x x x xx x r r x x x xr r x x x x r r xx x x r r xxx x x=-----+--+-+----+----------+--=-----------↔-=--∑[技巧2,技巧3,技巧5,手段3]习题5: 11121314122223241323333414243444a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b解答:1112131412222324132333341424344422232412131412131411233334122333341322232414243444243444243444,a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b =-+-按第一列展开1213142223242333341213141213142223242223242434442333342342342121423333412423333412234234,0,(b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b b b b b b D a a b b a b a b a b a b b a b a b a b a a a a a a a a =-=由于行列式和有两行元素成比例因此值为3234214124233334234222121412434232334243241421124332233423321421123223433414122123)()()()[()()]()()()()(b b b b b a b b a b a b a b a a a a a b b a b b a a b b a a b b a a b a b b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b -=-+--=--+-=---=--323443314111)()()i i i i i a b a b a b a b a b a b ++=--=--∏[技巧7,手段1,手段6] 习题6: 444443333322222(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)123411111a a a a a a a a a a aa a a a a a a a a ----------------解答:432122222533333444444321432122222,111111234(1)(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)111114321(1)(1)(4)(3)(2)(1)(4)aa a a a D a a a a a a a a a a aa a a a a a a a a a a a a a a +++++++++----=-----------------=-------将行列式上下翻转后再左右翻转不难得3333344444(3)(2)(1)(4)(3)(2)(1)4!3!2!1!288a a a a a a a a a-------== [技巧2,手段7]习题7:12211000010000000001nn n x x x x a a a a x a -----+解答:111121232212112112121,1000100(1)000011,,,,,,n n n n n n n n n n n n n n n nn n n n nD xD xD a x xD xD a D xD a D xD a D xD a D x a x x x D x a xa xa x a +--------------=+--⇒=+=+=+=+=+=+++++按第一列展开得的递推公式将上述各式的两边分别乘以后全部相加并化简得:[技巧7,手段3] 习题8:()aba b c dcd其余未写出元素均为零: 解答: 22(22)2122(1)2(1)2221,23,,2,221,23,,2,00000(1)0()()()nn nn nn n Dn n n n n n a b c d ab Dabc dcdD Dad bc D ad bc Dad bc --------=-==-==-=-将中的第行依此与第行行第行对调再将第列依此与第列列第列对调得[技巧2,技巧6]。

相关文档
最新文档