规则与不规则图形的计算公式
不规则立体图形的分类和计算

不规则立体图形的分类和计算一、不规则立体图形的定义及特点不规则立体图形是指那些没有规则几何形状的立体图形,它们由不规则的多边形组成。
不规则立体图形在生活中广泛存在,如天然石块、树枝、果实的形状等。
不规则立体图形的特点是形状复杂、无规律,但可以通过数学方法进行分类和计算。
二、不规则立体图形的分类1.根据组成元素分类:(1)单体不规则立体图形:由一个不规则的多边形组成,如天然石块、树枝等。
(2)组合不规则立体图形:由多个不规则多边形组成,如拼图、建筑物的外观等。
2.根据空间结构分类:(1)一维不规则立体图形:如线段、曲线等。
(2)二维不规则立体图形:如平面上的不规则多边形等。
(3)三维不规则立体图形:如立体拼图、建筑物等。
三、不规则立体图形的计算方法1.单体不规则立体图形的计算:(1)体积计算:通过排水法、溢水法等实验方法测量不规则立体图形的体积。
(2)表面积计算:将不规则立体图形切割成多个规则几何图形,计算每个规则图形的面积,再求和。
2.组合不规则立体图形的计算:(1)体积计算:分别计算每个单体不规则立体图形的体积,再求和。
(2)表面积计算:分别计算每个单体不规则立体图形的表面积,再求和。
四、不规则立体图形的实际应用1.建筑设计:建筑师利用不规则立体图形设计独特的建筑物,提高建筑物的美观性和实用性。
2.工业制造:在不规则立体图形的基础上,设计生产各种形状的零件、产品,满足工业生产的需求。
3.艺术创作:艺术家利用不规则立体图形进行绘画、雕塑等艺术创作,展现个性和创意。
4.自然科学研究:科学家通过研究不规则立体图形,探索自然界中的规律和奥秘。
总结:不规则立体图形的分类和计算是中学数学的重要内容,通过对不规则立体图形的认识和计算,可以提高学生的空间想象能力、创新思维能力和实际应用能力。
习题及方法:1.习题一:计算下列不规则立体图形的体积。
一个天然石块,测量其排水体积为200cm³。
答案:200cm³解题思路:根据题目所给的排水体积,直接得出天然石块的体积。
图形面积体积公式大全

图形面积体积公式大全一、平面图形的面积公式。
1. 正方形的面积公式。
正方形的面积公式为,A = a²,其中a为正方形的边长。
2. 长方形的面积公式。
长方形的面积公式为,A = l w,其中l为长方形的长度,w为长方形的宽度。
3. 圆的面积公式。
圆的面积公式为,A = πr²,其中π为圆周率(取3.14),r为圆的半径。
4. 三角形的面积公式。
三角形的面积公式为,A = 0.5 b h,其中b为三角形的底边长,h为三角形的高。
5. 梯形的面积公式。
梯形的面积公式为,A = 0.5 (a + b) h,其中a、b分别为梯形的上底和下底长,h为梯形的高。
6. 正多边形的面积公式。
正n边形的面积公式为,A = 0.25 n a² / tan(π/n),其中n为边数,a为边长。
二、立体图形的体积公式。
1. 正方体的体积公式。
正方体的体积公式为,V = a³,其中a为正方体的边长。
2. 长方体的体积公式。
长方体的体积公式为,V = l w h,其中l为长方体的长度,w为长方体的宽度,h为长方体的高度。
3. 圆柱体的体积公式。
圆柱体的体积公式为,V = πr²h,其中r为圆柱的底面半径,h为圆柱的高。
4. 圆锥体的体积公式。
圆锥体的体积公式为,V = 0.33 πr²h,其中r为圆锥的底面半径,h为圆锥的高。
5. 球体的体积公式。
球体的体积公式为,V = 4/3 πr³,其中r为球的半径。
6. 锥体的体积公式。
锥体的体积公式为,V = 0.33 πr²h,其中r为锥的底面半径,h为锥的高。
三、不规则图形的面积公式。
1. 长方形的面积公式。
不规则图形的面积可以通过分割成多个规则图形来计算,然后相加得到总面积。
2. 圆形的面积公式。
对于不规则的圆形,可以通过近似法来计算其面积,将其分割成多个小扇形,然后相加得到总面积。
3. 其他不规则图形的面积公式。
不规则图形面积的计算-精品文档

法计算组合图形面积.
作业
课本23页练习四1到4题
=105×15÷2×2 =1575(㎝² ) 答:一面锦旗需要1575平方厘 米面料。
60cm
(60+45) ×(30÷2) ÷2×2
45cm
学校开运动会要制作一 些锦旗,式样如右图。 一面锦旗需要多少平方 厘米面料?
30cm
1、草坪的面积有多少平方米?
草坪的面积=梯形面积+三角形面积 梯形的面积:(4+10)×12÷2=84㎡
三角形的面积:10-4=6m,15×6÷2=45㎡
草坪的面积:84+45=129㎡
答:这块草坪的面积是129㎡
方法四:补的方法
4m
12m
10m
15m
草坪的面积=长方形的面积-梯形的面积
长方形的面积:15×10=150㎡ 梯形的面积:15-12=3m,(4+10) 草坪的面积:150-21=129㎡ 答:这块草坪的面积是129㎡.
2、现在要给小路铺上地砖,如果9块 地砖正好铺1m2,那么至少需要多少 块地砖?
复习旧知:
平行四边形的面积=底×高
用字母表示为S=a×h
三角形面积=底×高÷2
用字母表示为S=a×h÷2
梯形面积=(上底+下底)×高÷2
用字母表示为S=(a+b)h÷2
长方形面积=长×宽用字母表示为S=a×b
×3÷2=21㎡
“割”、“补”的方法是我们今后计算复 杂图形时常用的方法,方法越简单越好。
在进行图形计算割补时,要注意以下几点:
(1)要根据原来图形的特点进行思考。 (2)要便于利用已知条件计算简单图形的面积。 (3)可以用不同的方法进行割补。
第六单元《组合图形的面积》知识点总结

第六单元《组合图形的面积》知识点总结1、组合图形的意义由几个简单的图形,通过不同的方式组合而成的图形。
2、求组合图形面积的方法(1)“分割求和”法:根据图形和所给条件的关系,将图形进行合理分割,形成基本图形。
基本图形的面积和就是组合图形的面积。
例:求法:S = S长方形 + S梯形(2)“添补求差”法:将图形所缺部分进行添补,组成几个基本图形。
几个基本图形的面积减去添补图形的面积就是组合图形的面积。
例:求法:S = S长方形- S梯形3、分割规则:分得越少,计算越简单。
4、不规则图形面积的估计与计算的方法(1)数格子的方法:数格子时,不满一格的可采用凑整法将几个合拼成一格或不满一格算半格。
(2)把不规则图形看成一个近似的基本图形,测量后计算出面积。
5、常见基本图形的面积(1)长方形:周长=(长+宽)×2字母公式:C=(a+b)×2面积=长×宽字母公式:S=ab(2)正方形:周长=边长×4字母公式:C=4a面积=边长×边长字母公式:S=a2(3)平行四边形的面积=底×高字母公式:S=ah底=面积÷高;高=面积÷底(4)三角形的面积=底×高÷2 字母公式:S=ah÷2 底=面积×2÷高;高=面积×2÷底(5)梯形的面积=(上底+下底)×高÷2 字母公式:S=(a+b)×h÷2 上底=面积×2÷高-下底;下底=面积×2÷高-上底;高=面积×2÷(上底+下底)6、常用的单位间的进率(1)长度单位:千米(km)米(m)分米(dm)厘米(cm)毫米(mm)1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米(2)面积单位:平方千米(km2)公顷平方米(m2)平方分米(dm2)平方厘米(cm2)1平方千米=100公顷=1000000平方米 1公顷=10000平方米1平方米=100平方分米=10000平方厘米 1平方分米=100平方厘米(3)质量单位:吨(t)千克(kg)克(g)1吨=1000千克 1千克=1000克【注】单位换算的方法:大化小,乘进率;小化大,除以进率。
不规则面积计算公式和方法

不规则面积计算公式和方法以下是 8 条关于不规则面积计算公式和方法的内容:1. 嘿,你知道吗?不规则图形的面积计算也有妙招呢!就像要给一块奇形怪状的拼图算面积。
比如说,咱可以把它分割成几个熟悉的图形,然后分别算出它们的面积,最后加起来不就得了嘛!就像那形状怪怪的花园,分成小块来算面积就轻松多了。
2. 哇塞,不规则面积的计算方法可多啦!其中有一种叫填补法,这就好比给不完整的东西补上缺失的那一块。
比如有个形状不规则的空洞,我们用一些规则的东西把它填满,填满部分的面积加上原来规则部分的面积,不就能算出整体面积了吗!多有意思呀!3. 嘿呀,要算不规则面积,还可以用称重法呢!这就好像通过称东西的重量来了解它的价值一样新奇。
像有块形状很怪的布料,我们可以通过称它和同样材质已知面积的布料的重量比例来算出它的面积,神奇吧!4. 哎呀呀,不规则面积还有这种计算方法咧!叫什么网格法哟。
就好像在一张大网上去数格子一样。
比如看那歪歪扭扭的池塘,我们在上面铺上网格,数数有多少个完整的和部分的格子,不就能大概知道它的面积了嘛,超好玩的!5. 哈哈,你晓得不,还有个估算不规则面积的办法呢!这就如同我们估算事情的难易程度一样。
好比有个不规则的岛屿,我们可以大致和一些熟悉的形状比较,给出个大概的面积范围哟,是不是挺简单粗暴但有用呀!6. 哇哦,对于一些不规则图形的面积计算,我们可以用相似图形法呀!就跟找相似的人一样。
比如说,有个不太规则的场地和另一个已知面积的相似场地,通过对比它们的相似之处就能算出我们要的面积啦,很妙吧!7. 咳咳,不规则面积的计算还有个投影法呢!这就好比把东西的影子投出来算大小。
像那个奇形怪状的雕塑,把它的投影画出来算面积,再根据角度推算真实面积,神奇不神奇?8. 哎哟喂,可别忘了还有蒙特卡罗法来算不规则面积哦!这就像是不断地尝试和猜测。
比如说在一个不规则的图形区域里随机扔很多点,统计在图形内的点的比例,就能算出面积啦,多酷啊!总之,计算不规则面积的方法多种多样,只要我们开动脑筋,总能找到合适的办法来搞定它们!。
五年级不规则图形面积计算

五年级不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:∵△ABE 、△ADF 与四边形AECF 的面积彼此相等,∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。
在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。
所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
思路导航:在等腰直角三角形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。
例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米.求△ABD 及△ACE 的面积.B C思路导航:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。
不规则图形面积的计算(方法总结及详解)

不规则图形计算的方法总结总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
28不规则图形的面积计算

如何利用规律实现更好记忆呢?
认识图形(二) 认识平面图形
超级记忆法-记 忆规律 第四个
记忆周 期是 1天 第五个 记忆周 期是 2天 第六个 记忆周 期是 4天
第 记七 忆个 周如何利用规律实现更好记忆呢?
期是 7天 第八个
认识图形(二) 认识平面图形
超级记忆法-场景法
例1
想一想,
怎样把这个图形 转化成已学过的图 形?小组合作,你 们怎样分的,在图
这些方法 有什么相 同点和不 同点?
上画出来,一种方
法画一张图。
12 345
返回
不规则图形的面积计算
方法一:分成一个长方形和一个梯形。
12m 4m
10m 10-4=6(m)
15m
12×4+(12+15)×6÷2=129(㎡) 答:这块草坪的面积是129㎡。
人教版七年级上册Unit4 Where‘s my backpack?
认识图形(二) 认识平面图形
超级记忆法-记 忆方法 TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的
卧室、平时上课的教室等等),这样记忆起来更加轻松;
TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
苏教版 数学 五年级 上册
2 多边形的面积
不规则图形的面积计算
情景导入
探究新知
课堂练习
课堂小结
课后作业
不规则图形的面积计算
情景导入
华丰小学校园里有一块草坪 (如下图),它的面积是多少 平方米?
你准备怎 样算?与同 学交流。