实际问题与二次函数练习题及答案
中考数学高频考点《实际问题与二次函数》专项练习题-带答案

中考数学高频考点《实际问题与二次函数》专项练习题-带答案一、单选题1.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球从弹起后又回到地面所经过的总路程是()A.5米B.10米C.1米D.2米2.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB的长度)是1米.当喷射出的水流距离喷水头2米时,达到最大高度1.8米,水流喷射的最远水平距离OC是()A.6米B.5米C.4米D.1米3.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣ x2D.y= x24.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m 2A.45B.83C.4 D.565.如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y= √32x2B.y= √3x2C.y=2 √3x2D.y=3 √3x26.如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD的面积最大值是().A.12 B.18 C.20 D.247.如图,正方形ABCD的顶点A(0,√22),B(√22,0),顶点C,D位于第一象限,直线x=t,(0≤t≤√2),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.8.从地面竖直向上抛出一小球,小球的高度 h (单位: m )与小球运动时间t(单位: s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是 40m ;②小球运动的时间为 6s ;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④二、填空题9.飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s=60t-1.5t2,则飞机着陆后滑行直到停下来滑行了米.10.如图,在平面直角坐标系中,抛物线y=(x-2)2与x轴交于点A,与y轴交于点B,过点B作BC∥x轴,交抛物线于点C,过点A作AD∥y轴,交BC于点D,点P在BC下方的抛物线上(不与点B,C重合),连接PC,PD,设△PCD的面积为S,则S的取值范围是。
22.3 实际问题与二次函数 同步练习(附答案)

22.3 实际问题与二次函数第1课时二次函数与图形面积1.如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积为() A.60 m2B.63 m2C.64 m2D.66 m22.如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=时,矩形场地的面积最大,最大值为.第1题图第2题图第3题图第4题图3.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B 点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q 分别从A,B同时出发,当△PBQ的面积最大时,运动时间t为s.4.如图,在正方形ABCD中,E为BC上的点,F为CD边上的点,且AE=AF,AB=4,设EC =x,△AEF的面积为y,则y与x之间的函数关系式是.5.用长为20 cm的铁丝,折成一个矩形,设它的一边长为x cm,面积为y cm2.(1)求出y与x的函数关系式;(2)当边长x为多少时,矩形的面积最大?最大面积是多少?6.如图,要利用一面墙(长为30 m)建羊圈,用100 m长的围栏围成两个大小相同的矩形羊圈,每个羊圈留有一个1 m宽的门(留门部分不需要围栏),若宽用x(m)表示,总面积用y(m2)表示.(1)写出总面积y(m2)与宽x(m)的函数关系式;(2)当面积y=624时,求羊圈的宽x的值.7.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?8.用一段长为24 m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长8 m,则这个养鸡场最大面积为 m2.9.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是cm2.10.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12 cm,点P是AB边上的一个动点,过点P作PE⊥BC于点E,PF⊥AC于点F,当PB=时,四边形PECF的面积最大,最大值为.11.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.(1)若花园的面积为192 m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.12.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数解析式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.13.如图,正方形ABCD 的边长为2 cm ,△PMN 是一块直角三角板(∠N =30°),PM >2 cm ,PM 与BC 均在直线l 上,开始时M 点与B 点重合,将三角板向右平行移动,直至M 点与C 点重合为止.设BM =x cm ,三角板与正方形重叠部分的面积为y cm 2.下列结论:①当0≤x ≤233时,y 与x 之间的函数关系式为y =32x 2;②当233<x ≤2时,y 与x 之间的函数关系式为y =2x -233;③当MN 经过AB 的中点时,y =32cm 2; ④存在x 的值,使y =12S 正方形ABCD (S 正方形ABCD 表示正方形ABCD 的面积).其中正确的是 (写出所有正确结论的序号).第2课时 二次函数与商品利润1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x 元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y(元)与售价x(元)之间的函数关系式为( )A .y =-10x 2-560x +7 350 B .y =-10x 2+560x -7 350 C .y =-10x 2+350x D .y =-10x 2+350x -7 3502.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为 元.3.中考前,某校文具店以每套5元购进若干套考试用具,为让利考生,该店决定售价不超过7元,在几天的销售中发现每天的销售数量y(套)和售价x(元)之间存在一次函数关系,绘制图象如图.(1)y与x的函数关系式为(要求写出x的取值范围);(2)设销售该套文具每天获利w元,则销售单价应为多少元时,才能使文具店每天的获利最大?最大利润是多少?4.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A.5元B.10元C.0元D.6元5.某商场销售一批品牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1 200元,每件衬衫应降价多少元?(2)想要平均每天盈利最多,每件衬衫应降价多少元?6.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x 元(x 为正整数),每星期销售该商品的利润为y 元,则y 与x 的函数关系式为( )A .y =-10x 2+100x +2 000 B .y =10x 2+100x +2 000 C .y =-10x 2+200x D .y =-10x 2-100x +2 0007.某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为 元.8.某工厂生产的某种产品按产量分为10个档次,第1档次(最低档次)的产品一天能生产95件产品,每件利润6元(第一档).每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x 档次的产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数解析式;(2)若生产第x 档次的产品一天的总利润为1 120元,求该产品的质量档次.9.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m 2),种草所需费用y 1(元)与x(m 2)的函数关系式为y 1=⎩⎪⎨⎪⎧k 1x (0≤x<600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x(m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1 000 m 2空地的绿化总费用为W(元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用W 的最小值.10.某网店销售某款童装,每件售价60元,每星期可卖300件.为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)若该网店每星期想要获得不低于6 480元的利润,每星期至少要销售该款童装多少件?第3课时实物抛物线1.河北省赵县的赵州桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=-125x2.当水面离桥拱顶的高度DO是4 m时,这时水面宽度AB为()A.-20 m B.10 m C.20 m D.-10 m2.某隧道横截面由抛物线与矩形的三边组成,尺寸如图所示.以隧道横截面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求得该抛物线对应的函数关系式为.3.有一个抛物线形的立交拱桥,这个拱桥的最大高度为16 m,跨度为40 m,现把它的图形放在坐标系中(如图).若在离跨度中心5 m处的M点垂直竖立一铁柱支撑拱顶,则这根铁柱的长为m.4.(绵阳中考)如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加 m.5.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16 m ,AE =8 m ,抛物线的顶点C 到ED 的距离是11 m .试以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系,求题中抛物线的函数解析式.6.王大力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=-148x 2+2324x +2,则王大力同学投掷标枪的成绩是 m.7.一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系式是y =-112x 2+23x +53,铅球运行路线如图. (1)求铅球推出的水平距离;(2)通过计算说明铅球行进高度能否达到4 m.8.某种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h =-5t 2+150t +10表示.经过 s ,火箭达到它的最高点.9.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式是y =ax 2+bx.小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.10.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y =-15x 2+85x ,如图,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2 m.(1)请写出抛物线的开口方向、顶点坐标、对称轴; (2)请求出球飞行的最大水平距离;(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线?求出其解析式.11.如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的平面直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到墙面OB的水平距离为3 m ,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?22.3 实际问题与二次函数第1课时 二次函数与图形面积1.C2.20m ,800__m 2. 3.2.4.y =-12x 2+4x .5.解:(1)已知一边长为x cm ,则另一边长为(10-x )cm.则y =x (10-x ),化简,得y =-x 2+10x (0<x <10).(2)y =10x -x 2=-(x 2-10x )=-(x -5)2+25. ∴当x =5时,y 取最大值,为25.答:当边长x 为5 cm 时,矩形的面积最大,最大面积是25 cm 2. 6.解:(1)y =x (100-3x +2),即y =-3x 2+102x (24≤x ≤34).(2)由题意得-3x 2+102x =624,解得x 1=8(不合题意,舍去),x 2=26. 则羊圈的宽x =26.7.解:(1)S =-12x 2+30x.(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大面积为450 cm 2. 8.64 . 9.18.10.6cm ,3__cm 2.11.解:,得x (28-x )=192,解得x 1=12,x 2=16. ∴x =12或16.(2)S =x (28-x )=-(x -14)2+196.由题意知⎩⎪⎨⎪⎧x ≥6,28-x ≥15,解得6≤x ≤13.在6≤x ≤13范围内,S 随x 的增大而增大.∴当x =13时,S 最大=-(13-14)2+196=195.12.解:(1)y =x (16-x )=-x 2+16x (0<x<16).(2)当y =60时,-x 2+16x =60, 解得x 1=10,x 2=6.∴当x =10或6时,围成的养鸡场的面积为60平方米.(3)当y =70时,-x 2+16x =70,整理得 x 2-16x +70=0.∵Δ=256-280=-24<0, ∴此方程无实数根.∴不能围成面积为70平方米的养鸡场. 13.①②④.第2课时 二次函数与商品利润1.B3.(1)y=-20x+200(5≤x≤7);(2)解:根据题意得w=(x-5)(-20x+200)=-20x2+300x-1 000=-20(x-7.5)2+125,∵当x<7.5时,w随x的增大而增大,∴当x=7时,文具店每天的获利最大,最大利润是-20×(7-7.5)2+125=120(元).答:销售单价为7元时,才能使文具店每天的获利最大,最大利润是120元.4.A5.解:(1)设每件衬衫应降价x元,∵商场平均每天要盈利1 200元,∴(40-x)(20+2x)=1 200.整理,得2x2-60x+400=0.解得x1=20,x2=10.因为要扩大销售,在获利相同的情况下,降价越多,销售越快,故每件衬衫应降价20元.(2)设商场平均每天赢利w元.则 w=(20+2x)(40-x),=-2x2+60x+800,=-2(x-15)2+1 250.∴当x=15时,w取最大值,为1 250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1 250元.6.A7.55.8.解:(1)y=[6+2(x-1)]×[95-5(x-1)],整理,得y=-10x2+180x+400(1≤x≤10).(2)由-10x2+180x+400=1 120,化简,得x2-18x+72=0.解得x1=6,x2=12(不合题意,舍去).∴该产品为第6档次的产品.9.解:(1)k1=30,k2=20,b=6 000.(2)当0≤x<600时,W=30x+(-0.01x2-20x+30 000)=-0.01x2+10x+30 000=-0.01(x-500)2+32 500,∵-0.01<0,∴当x=500时,W取最大值为32 500元.当600≤x≤1 000时,W=20x+6 000+(-0.01x2-20x+30 000)=-0.01x2+36 000,∵-0.01<0,∴当600≤x≤1 000时,W随x的增大而减小.∴当x=600时,W取最大值为32 400元.∵32 400<32 500,∴W的最大值为32 500元.(3)由题意,得1 000-x≥100,解得x≤900.又∵x≥700,∴700≤x≤900.∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取最小值为27 900元.10.解:(1)y=300+30(60-x)=-30x+2 100.(2)设每星期的销售利润为W元,依题意,得W=(x-40)(-30x+2 100)=-30x2+3 300x-84 000=-30(x-55)2+6 750.∵-30<0,∴当x=55时,W最大=6 750.答:当每件售价定为55元时,每星期的销售利润最大,最大利润是6 750元.(3)由题意,得-30(x -55)2+6 750=6 480,解得x 1=52,x 2=58.∵抛物线W =-30(x -55)2+6 750的开口向下,∴当52≤x ≤58时,每星期销售利润不低于6 480元.∵在y =-30x +2 100中,y 随x 的增大而减小,∴当x =58时,y 最小=-30×58+2 100=360.答:每星期至少要销售该款童装360件.第3课时 实物抛物线1. C2.y =-13x 2. 345解:如图所示.由题知抛物线的顶点坐标为(0,11),过点B (8,8),设抛物线的解析式为y =ax 2+11,将点B 的坐标(8,8)代入抛物线的解析式,得64a +11=8.解得a =-364, ∴抛物线的解析式为y =-364x 2+11. 6.48.7.解:(1)当y =0时,-112x 2+23x +53=0, 解得x 1=10,x 2=-2(不合题意,舍去). ∴铅球推出的水平距离是10 m.(2)y =-112x 2+23x +53=-112(x 2-8x +16)+43+53=-112(x -4)2+3. 当x =4时,y 取最大值3.∴铅球行进高度不能达到4 m ,最高能达到3 m.8.15s .9.36.10.解:(1)y =-15x 2+85x =-15(x -4)2+165. ∴抛物线y =-15x 2+85x 开口向下,顶点坐标为(4,165),对称轴为直线x =4. (2)令y =0,得-15x 2+85x =0. 解得x 1=0,x 2=8.∴球飞行的最大水平距离是8 m.(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10 m. ∴抛物线的对称轴为直线x =5,顶点为(5,165).设此时对应的抛物线解析式为y =a (x -5)2+165. 又∵点(0,0)在此抛物线上,∴25a +165=0,a =-16125. ∴y =-16125(x -5)2+165, 即y =-16125x 2+3225x. 11.解:(1)由题意,得点B 的坐标为(0,4),点C 的坐标为(3,172), ∴⎩⎪⎨⎪⎧4=c ,172=-16×32+3b +c. 解得⎩⎪⎨⎪⎧b =2,c =4. ∴该抛物线的函数关系式为y =-16x 2+2x +4. ∵y =-16x 2+2x +4=-16(x -6)2+10, ∴拱顶D 到地面OA 的距离为10 m.(2)当x =6+4=10时,y =-16x 2+2x +4=-16×102+2×10+4=223>6, ∴这辆货车能安全通过.(3)当y =8时,-16x 2+2x +4=8,即x 2-12x +24=0,∴x 1=6+23,x 2=6-2 3. ∴两排灯的水平距离最小是6+23-(6-23)=43(m ).。
26.3_实际问题与二次函数_(含答案)

实际问题与二次函数一、自主学习1.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t -4.9t 2(t 的单位:s ;h 的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( ) A.0.7l s B.0.70 s C.0.63 s D.0.36 s2.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)间有下述的函数关系式:s=0.01x 2+0.002x ,现该车在限速140km ∠h 的高速公路上出了交通事故,事后测得其刹车距离为46.5 m ,请推测刹车时汽车________(填“是”或“不是”)超速.3.有一座抛物线型拱桥(如图26-10所示),正常水位时桥下河面宽20 m ,河面距拱顶4 m(1)在如图26-10所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上涨多少米时,就会影响过往船只?图26-104.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大?二、基础巩固5.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?6.如图26-11所示,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8 m ,宽AB 为2 m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6 m.(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2 m ,宽2.4 m ,这辆货运卡车能否通过该隧道?通过计算说明你的结论.图26-117.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产x 只玩具熊猫的成本为R(元),售价每只为P(元)且R 、P 与x 的关系式为R=500+30x ,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元;(2)当日产量为多少时,可获得最大利润?最大利润是多少?8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表26-2所示.表26-2若日销售量y是销售价x的一次函数;(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?9.图26-12是某段河床横断面的示意图.查阅该河段的水文资料,得到表26-3中的数据.图26-12图26-13表26-3(1)请你以表26-3中的各对数据(x,y)作为点的坐标,尝试在图26-13所示的坐标系中画出y关于x的函数图象;(2)①填写表26-4.表26-4②根据所填表中数据呈现的规律,猜想出用x表示y的二次函数关系式:________.(3)当水面宽度为36 m时,一船吃水深度(船底部到水面的距离)为1.8 m的货船能否在这个河段安全通过?为什么?三、能力提高10.学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线距径落下.且在过OA的任意平面上的抛物线如图26-14所示,建立平面直角坐标系(如图26-15所示),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+2325x,请回答下列问题:图26-14 图26-15(1)花形柱子OA的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?11.《西游记》中的孙悟空对花果山的体制进行全面改革后,为了改善旅游环境,决定对水帘洞进行改造翻新,计划在水帘洞前建一个由喷泉组成的水帘门洞,让游客在进入水帘洞前先经过一段由鹅卵石铺就的小道,小道两旁布满喷水管,每个喷管喷出的水最高达4 m ,落在地上时距离喷水管4 m ,现在设如图26-16是喷泉所经过的路线,与喷头A 和喷泉落地点B 的连线为横轴,AB 垂直平分线为纵轴建立直角坐标系.问小道的边缘距离喷水管至少应为多少米,才能使身高不大于1.75 m 的游客进入水帘洞时不会被水淋湿?图26-112.我区某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x 万元,所获利润为P=501-(x -30)2+10万元.为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x 万元可获利润Q=308)50(5194)50(50492+-+--x x 万元.(1)若不进行开发,求10年所获利润的最大值是多少?(2)若按此规划进行开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法.13.在体育测试时,初三的一名高个子男同学在推铅球.已知铅球所经过的路线是某个二次函数图象的一部分,如图26-17所示,如果这个男同学的出手处A 点的坐标(0,2),铅球路线的最高处B 点的坐标为(6,5).(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01 m ,15=3.873)图26-17四、模拟链接1 14、设抛物线y=2x 2+kx+1-2k(k 为常数)与x 轴交于A 、B 两点,与y 轴交于C 点,且A 点在原点O 的左侧,B 点在原点O 的右侧,满足(OA+OB)2-OC=429(1)求抛物线的解析式;(2)在抛物线上是否存在D 、E 两点,使AO 恰为△ADE 的中线,若存在,求出△ADE 的面积,若不存在,说明理由.15.已知抛物线y=x 2+(2n -1)x+n 2-1(n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式; (2)如图26-18所示,设A 是(1)所确定的抛物线上位于x 轴下方且在对称轴左侧的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,再作AB ⊥x 轴于B ,DC ⊥x 轴于C.①当BC=1时,求矩形ABCD 的周长;②试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;如果不存在,请说明理由.图26-1816.已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=6.(1)如图26-19甲所示,在OA 上选取一点D ,将△COD 沿CD 翻折,使点O 落在BC 边上,记为E.求折痕CD 所在直线的解析式;(2)如图26-19乙所示,在OC 上选取一点F ,将△AOF 沿AF 翻折,使点O 落在BC 边,记为G.①求折痕AF 所在直线的解析式;②再作GH ∥AB 交AF 于点H ,若抛物线y=121x 2+h 过点H ,求此抛物线的解析式,并判断它与直线AF 的公共点的个数.(3)如图26-19丙所示:一般地,在以OA 、OC 上选取适当的点I 、J ,使纸片沿IJ 翻折后,点O 落在BC 边上,记为K ,请你猜想:①折痕IJ 所在直线与第(2)题②中的抛物线会有几个公共点;②经过K 作KL ∥AB 与IJ 相交于L ,则点L 是否必定在抛物线上.将以上两项猜想在(1)的情形下分别进行验证.图26-19参考答案一、自主学习1.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t -4.9t 2(t 的单位:s ;h 的单位:m)可以描述他跳跃时重心高度的变化.如图26-9所示,则他起跳后到重心最高时所用的时间是( )A.0.7l sB.0.70 sC.0.63 sD.0.36 s图26-9答案:D2.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)间有下述的函数关系式:s=0.01x 2+0.002x ,现该车在限速140km ∠h 的高速公路上出了交通事故,事后测得其刹车距离为46.5 m ,请推测刹车时汽车________(填“是”或“不是”)超速. 答案:是3.有一座抛物线型拱桥(如图26-10所示),正常水位时桥下河面宽20 m ,河面距拱顶4 m(1)在如图26-10所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上涨多少米时,就会影响过往船只?图26-10答案:(1)y=251-x+4; (2)0.76 m 4.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大? 答案:(1)y=-10x+280x -1600;(2)14y=(x -8)×[l00-(x -10)×10]=(x -8)(100-10x+100) =(x -8)(-l0x+200)=-10x+280x -1600 当x=)10(22802-⨯-=-a b =14,因为y=-10x+280x -1600中的a <0,故此时y 有最大值.二、基础巩固5.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?答案:(1)y=-4x+64x+30720;(2)增加8台机器,最大生产总量是30976件 y=(80+x)(384-4x)=4x+64x+30720因为y=-4x+64x+30720=-4(x -8)2+30976 所以x=8时,y 最大值=30976.6.如图26-11所示,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8 m ,宽AB 为2 m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6 m.图26-11(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2 m ,宽2.4 m ,这辆货运卡车能否通过该隧道?通过计算说明你的结论. 答案:(1)y=41-x+6;(2)这辆货运卡车能通过隧道. 由图可设抛物线解析式为y=ax+c ,由题可知A(-4,2),E(0,6),c=6,代入,得2=(41-)2a+6,a=41-,故解析式为y=41-x+6;当x=2.4时,y=41-×2.42+6=4.56>4.2,所以这辆货运卡车能通过隧道.7.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产x 只玩具熊猫的成本为R(元),售价每只为P(元)且R 、P 与x 的关系式为R=500+30x ,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元; (2)当日产量为多少时,可获得最大利润?最大利润是多少? 答案:(1)日产量为25只;(2)当日产量为35只时,可获得最大利润,最大利润是1950元.设生产x 只玩具熊猫的利润为y 元,依题意得y=px --2x)x -(500+30x)=-2x+140x -500,令y=1750,即--500=1750,解得x 1=25,x=45,但x=45>40去,所以当日产量为25只时,每日获得的利润为1750元. 对于y=-2x+140x -500,a=-2<0,x=)2(21402-⨯-=-a b =35时,y 最大值=)2(4140)500()2(44422-⨯--⨯-⨯=-ab ac =1950. 8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表26-2所示.表26-2若日销售量y 是销售价x 的一次函数;(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?答案:(1)9=-x+40; (2)应定为25元,此时每日获得最大销售利润为225元.9.图26-12是某段河床横断面的示意图.查阅该河段的水文资料,得到表26-3中的数据.图26-12 表26-3(1)请你以表26-3中的各对数据(x ,y)作为点的坐标,尝试在图26-13所示的坐标系中画出y 关于x 的函数图象;图26-13(2)①填写表26-4.表26-4②根据所填表中数据呈现的规律,猜想出用x 表示y 的二次函数关系式:________.(3)当水面宽度为36 m 时,一船吃水深度(船底部到水面的距离)为1.8 m 的货船能否在这个河段安全通过?为什么? 答案:(1)略; (2)表略, y=2001x ; (3)这货船不能通过这河段.三、能力提高10.学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线距径落下.且在过OA 的任意平面上的抛物线如图26-14所示,建立平面直角坐标系(如图26-15所示),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x 2+2325+x ,请回答下列问题:图26-14 图26-15 (1)花形柱子OA 的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?答案:(1)1.5m ;(2)半径至少是3m ,一段由鹅卵石铺就的小道,小道两旁布满喷水管,每个喷管喷出的水最高达4 m ,落在地上时距离喷水管4 m ,现在设如图26-16是喷泉所经过的路线,与喷头A 和喷泉落地点B 的连线为横轴,AB 垂直平分线为纵轴建立直角坐标系.问小道的边缘距离喷水管至少应为多少米,才能使身高不大于1.75 m 的游客进入水帘洞时不会被水淋湿?图26-1答案:小道边缘距离喷水管至少应为1 m.由已知,得A(-4,0),B(4,0),抛物线的顶点C(0,4). 设抛物线的关系式为y=ax+4,把x=4,y=0代入,得16a+4=0,解得a=41-,故抛物线的关系式为y=41-x+4;为了让身高1.75m 的游客不会被喷泉淋湿,抛物线上的点到小道的边缘的距离应不小于1.75 m 设E 是抛物线上纵坐标为1.75的点,当y=1.75时,41-x+4=1.75,解得x=±3,所以E 点的坐标为(-3,1.75).作ED ⊥x 轴,则D(-3,0),从而AD=1.12.我区某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x 万元,所获利润为P=501-(x -30)2+10万元.为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=308)50(5194)50(50492+-+--x x 万元. (1)若不进行开发,求10年所获利润的最大值是多少? (2)若按此规划进行开发,求10年所获利润的最大值是多少? (3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法. 答案:(1)10年所获利润的最大值是100万元;(2)3547.5万元; (3)该项目有极大的开发价值.若不开发此产品,按照原来的投资方式,由P=501-(x -30)2+10知,只需从50万元专款中拿出30万元投资,每年即可获得最大利润10万元,则10年的最大利润M 1=10×10=100万元.若对产品开发,在前5年中,当x=25时,每年最大利润是P=501-(25-30)2+10=9.5万元,则前5年的最大利润M 2=9.5×5=47.5万元.设5年中x 万元是用于本地销售的投资,则Q=5049-(50-x)2+5194(50-x)+308知,将余下的(50-x)万元全部用于外地销售的投资,才有可能获得最大利润,则后5年的利润是M 3=[501-(x -30)2+10]×5+(5049-x+5194x+308)×5 =-5(x -20)2+3500,故x=20时,M 3取得最大值为3500万元,所以10年的最大利润为M=M 2+M 3=47.5+3500=3547.5万元,因为3547.5>100,故该项目有极大的开发价值. 13.在体育测试时,初三的一名高个子男同学在推铅球.已知铅球所经过的路线是某个二次函数图象的一部分,如图26-17所示,如果这个男同学的出手处A 点的坐标(0,2),铅球路线的最高处B 点的坐标为(6,5). (1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01 m ,15=3.873)图26-17答案:(1)y=121-x+x+2;(2)13.75m 设二次函数的解析式为y=a(x -h)2+k ,顶点坐标为(6,5) ∴y=a(x -6)2+5, A(0,2)在抛物线上, ∴2=62·a+5∴a=121- ∴y=121-(x -6)2+5,y=121-x+x+2. 当y=0时,121-x+x+2=0, x=6±52(舍6-52).∴x=6+52≈13.75m四、模拟链接14.设抛物线y=2x 2+kx+1-2k(k 为常数)与x 轴交于A 、B 两点,与y 轴交于C 点,且A 点在原点O 的左侧,B 点在原点O 的右侧,满足(OA+OB)2-OC=429(1)求抛物线的解析式;(2)在抛物线上是否存在D 、E 两点,使AO 恰为△ADE 的中线,若存在,求出△ADE 的面积,若不存在,说明理由.答案:(1)y=2x+3x -5;(2)存在抛物线上的D 、E 两点,使AO恰为△ADE 的中线,S △ADE =41015.设x 1,x 是方程2x -kx+1-2k=0的两根. A(x 1,0),B(x ,0),x 1<0<x. ∴OA=-x 1,OB=x. ∴x 1+x=2k -①x 1·x=221k -<0②∴k >21在抛物线解析式中,令x=0,则y=1-2k.. ∴C(0,1-2k),∴OC=|1-2k|=2k -1,由(OA+OB)2-OC=429,则(-x+x)2-(2k -1)429∴(x 1+x)2-4x 1 x -(2k -1)=429①②代入得(2k -)2-4×221k --2k+1=429.∴k 2-8k -33=0 ∴k 1=3或k 2=-11. 但k >21, ∴k=-11不合题意,舍去,∴k=3. 则所求抛物线的解析式为y=2x+3x -5.设存在抛物线上的D 、E 两点,使AO 恰为△ADE 的中线. ∴O 是DE 的中点,即D 、E 关于原点对称. 设直线DE 的解析式为y=kx ,联⎩⎨⎧-+==5322x x y kxy∴2x+(3-k)x -5=0 ③设D(x 1,y 1),E(x ,y 2),x 1,x 是方程③的解, ∴x 1+x=23k--=0, ∴k=3代入方程③中. ∴2x -5=0,∴x=±210,∴y=±2103. 易求A(25-,0),B(1,0). ∴S △ADE =2S △AOE =2×21·AO·|y E |=2×21×25×2103=41015 15.已知抛物线y=x 2+(2n -1)x+n 2-1(n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)如图26-18所示,设A 是(1)所确定的抛物线上位于x 轴下方且在对称轴左侧的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,再作AB ⊥x 轴于B ,DC ⊥x 轴于C. ①当BC=1时,求矩形ABCD 的周长;②试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;如果不存在,请说明理由.图26-18答案:(1)y=x -3x ;(2)① 6 ②存在最大值,A(21,45-) 由已知条件,得n 2-1=0,解这个方程,得n 1=1,n 2=-1 当n=1时,得y=x+x ,此抛物线的顶点不在第四象限; 当n=-1时,得y=x -3x ,此抛物线的顶点在第四象限, ∴所求的函数关系为y=x -3x.由y=x -3x ,令y=0,得x -3x=0,解得x 1=0,x=3. ∴抛物与x 轴的另一个交点为(3,0), ∴它的顶点为(49,23-),对称轴为直线x=23.①∵BC=1,由抛物线和矩形的对称性易知OB=21×(3-1)=1, ∴B(1,0).∴点A 的横坐标x=1,又点A 在抛物线y=x -3x 上,∴点A 的纵坐标y=12-3×1=-2, ∴AB=|y|=|-2|=2,∴矩形ABCD 的周长为2(AB+BC)=2×(2+1)=6.②∵点A 在抛物线y=x -3x 上,故可设A 点的坐标为(x ,x -3x),∴B 点的坐标为(x ,0)·(0<x <23) ∴BC=3-2x ,A 在x 轴下方,∴x -3x <0, ∴AB=|x -3x|=3x -x.∴矩形ABCD 的周长P=2[(3x -x)+(3-2x)]=-2(x -21)2+213. ∵a=-2<0,∴当x=21时,矩形ABCD 的周长P 最大值为213,此时点A 的坐标为A(21,45-)16.已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=6. (1)如图26-19甲所示,在OA 上选取一点D ,将△COD 沿CD 翻折,使点O 落在BC 边上,记为E.求折痕CD 所在直线的解析式;(2)如图26-19乙所示,在OC 上选取一点F ,将△AOF 沿AF翻折,使点O 落在BC 边,记为G. ①求折痕AF 所在直线的解析式;②再作GH ∥AB 交AF 于点H ,若抛物线y=121-x 2+h 过点H ,求此抛物线的解析式,并判断它与直线AF 的公共点的个数.图26-19(3)如图26-19丙所示:一般地,在以OA 、OC 上选取适当的点I 、J ,使纸片沿IJ 翻折后,点O 落在BC 边上,记为K ,请你猜想:①折痕IJ 所在直线与第(2)题②中的抛物线会有几个公共点;②经过K 作KL ∥AB 与IJ 相交于L ,则点L 是否必定在抛物线上.将以上两项猜想在(1)的情形下分别进行验证. 答案:(1)CD 的解析式为y=-x+6 由折法知:四边形ODEC 是正方形, ∴OD=OC=6 ∴D(6,0),C(0,6).设直线CD 的解析式为y=kx+b ,则⎩⎨⎧=-=⎩⎨⎧+=+=610660b k b b k 解得∴直线CD 的解析式为y=-x+6. (2)①AF ∶y=31-x+310③AF 与抛物线只有一个公共点 在Rt △ABG 中.因AG=AO=10, 故BG=22610-=8,∴CG=2. 没OF=t ,则FG=t ,CF=6-t , 在Rt △CFG 中,t 2=(6-t)2+22,解得t=310, 则F(0,310) 设直线AF ∶y=k′x+310,将A(10,0)代入,得k′=31- ∴AF ∶y=31-x+310∵GH ∥AB ,且G(2,6),可设H(2,y F ), 由于H 在直线AF 上, ∴把H 代入直线AF ∶y F =31-×2+310=38,知H(2,38),又H 在抛物线上,38=121-×22+h ,得h=3. ∴抛物线的解析式为y=121-x+3,再将直线y=31-x+310,代入抛物线y=121-x+3, 得121-x+31x 31-=0∵△=(31)2-4×(121-)×(31-)=0,∴直线AF 与抛物线只有一个公共点. (3)可以猜想以下两个结论: ①折痕所在直线与抛物线y=121-x+3只有一个公共点; ②若作KL ∥AB 与IJ 相交于点L ,则L 一定在抛物线y=121-x+3上. 验证①,在图甲中,将折痕CD :y=-x+6代入y=121-x+3特殊情形I 即为D,J 即为C ,G 即为E ,K 也是E ,KL 即为ED.L就是D ,得121-x+x -3=0. ∵△=1-4×(-3)×(121-)=0,∴.折痕CD 所在直线的确与抛物线y=121-x+3 只有一个公共点.验证②,在图甲的特殊情况中,I 就是C,J 就是D , 那么L 就是D(6,0),当x=6时,y=21-×62+3=0. ∴点L 在这条抛物线上. 。
22.3.2 实际问题与二次函数(销售最大利润问题)(练习)(解析版)

第二十二章二次函数22.3.2 实际问题与二次函数(销售最大利润问题)精选练习答案基础篇一、单选题(共12小题)1.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为()A.60元B.70元C.80元D.90元【答案】C【解析】设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.2.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元【答案】D【解析】设利润为w,由题意得,每天利润为:w=(2+x)(20–2x)=–2x2+16x+40=–2(x–4)2+72.所以当涨价4元(即售价为14元)时,每天利润最大,最大利润为72元.故选D.3.某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件.若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系为()A.y=10x2﹣100x﹣160B.y=﹣10x2+200x﹣360C.y=x2﹣20x+36D.y=﹣10x2+310x﹣2340【答案】B【分析】根据等量关系“利润=(售价﹣进价)×(50+10×降价)”列出函数关系式即可.【详解】根据题意得:y=(x ﹣2)[50+10(13﹣x )]整理得:y=﹣10x 2+200x ﹣360.故选:B .【点睛】此题考查了从实际问题中抽象出二次函数关系式,掌握销售问题中的基本数量关系是解决问题的关键.4.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x 元,所获利润为y 元,可得函数关系式为( )A .y =−10x 2+110x +10B .y =−10x 2+100xC .y =−10x 2+100x +110D .y =−10x 2+90x +100【答案】D【分析】根据总利润=单件利润×数量建立等式就可以得出结论.【详解】解:由题意,得y=(10+x -9)(100-10x ),y=-10x 2+90x+100.故选:D .【点睛】本题考查了销售问题的数量关系的运用,总利润=单件利润×数量的运用,解答时找准销售问题的数量关系是关键.5.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 【答案】C【解析】y=x (6-x )=-x 2+6x,x =-2b a =32=3.故选C. 6.在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( )A .1月份B .2月份C .5月份D .7月份【答案】C【分析】先根据图中的信息用待定系数法表示出每千克售价的一次函数以及每千克成本的二次函数,然后每千克收益=每千克售价﹣每千克成本,得出关于收益和月份的函数关系式,根据函数的性质得出收益的最值以及相应的月份.【详解】设x 月份出售时,每千克售价为y 1元,每千克成本为y 2元,根据图甲设y 1=kx+b ,∴ {3k +b =56k +b =3, ∴ {k =−23b =7, ∴y 1=﹣23x+7,根据图乙设y 2=a (x ﹣6)2+1,∴4=a (3﹣6)2+1,∴a=13,∴y 2=(13x ﹣6)2+1,∵y=y 1﹣y 2,∴y=﹣23x+7﹣[13(x ﹣6)2+1], ∴y=﹣13x 2+103x ﹣6.∵y=﹣13x 2+103x ﹣6,∴y=﹣13(x ﹣5)2+73.∴当x=5时,y 有最大值,即当5月份出售时,每千克收益最大.故选C .【点睛】本题主要考查了一次函数和二次函数的应用,要注意需先根据图中得出两个函数解析式,然后再表示出收益与月份的函数式,再求解.7.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( )A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )]【答案】C【解析】分析:设销售单价定为每千克x 元,获得利润为y 元,则可以根据成本,求出每千克的利润.以及按照销售价每涨1元,月销售量就减少10千克,可求出销量.从而得到总利润关系式.详解:设销售单价为每千克x 元,此时的销售数量为500−10(x −50),每千克赚的钱为x −40, 则y =(x −40)[500−10(x −50)].故选C.点睛:此题主要考查了二次函数在实际问题中的运用,根据利润=(售价-进价)×销量,列出函数解析式,求最值是解题关键.8.某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出8件,店里每周利润要达到8450元.若设店主把该商品每件售价降低x 元,则可列方程为( )A .()()8020088450x x -+=B .()()4020088450x x -+=C .()()40200408450x x -+=D .()()402008450x x -+=【答案】B【解析】利润=售价﹣进价,由每降价1元,每星期可多卖出8件,可知每件售价降低x 元,每星期可多卖出8x 件,从而列出方程即可.解:原来售价为每件80元,进价为每件40元,利润为每件40元,所以每件售价降价x 元后,利润为每件(40﹣x )元.每降价1元,每星期可多卖出8件,因为每件售价降低x 元,每星期可多卖出8x 件,现在的销量为(200+8x ).根据题意得:(40﹣x )×(200+8x ) =8450.故选B .点睛:本题主要考查列一元二次方程解决实际问题.解题的关键在于要理解题意,并根据题中的数量关系建立方程.9.某商店经营皮鞋,所获利润y(元)与销售单价x(元)之间的关系为2242956y x x =-++,则获利最多为( ).A .3144B .3100C .144D .2956【答案】B【解析】试题解析:利润y (元)与销售的单价x (元)之间的关系为2242956y x x =-++, 2(12)3100.y x ∴=--+∵−1<0∴当x =12元时,y 最大为3100元,故选B.10.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y (万元)和月份n 之间满足函数关系式y=﹣n 2+14n ﹣24,则企业停产的月份为( )A .2月和12月B .2月至12月C .1月D .1月、2月和12月【答案】D【分析】知道利润y 和月份n 之间函数关系式,求利润y 大于0时x 的取值.【详解】由题意知,利润y 和月份n 之间函数关系式为y=-n 2+14n -24,∴y=-(n -2)(n -12),当n=1时,y <0,当n=2时,y=0,当n=12时,y=0,故停产的月份是1月、2月、12月.故选:D .【点睛】考查二次函数的实际应用,判断二次函数y >0、y=0、y <0,要把二次函数写成交点式,看看图象与x 轴的交点,结合开口分析,进行判断.11.某产品进货单价为90元,按100元一件出售时能售出500件.若每件涨价1元,则销售量就减少10件.则该产品能获得的最大利润为( )A .5000元B .8000元C .9000元D .10000元 【答案】C【解析】设单价定为x ,总利润为W ,则可得销量为:500-10(x -100),单件利润为:(x -90),由题意得,W=(x -90)[500-10(x -100)]=-10x2+2400x -135000=-10(x -120)2+9000,故可得当x=120时,W 取得最大,为9000元,故选C .【点睛】本题考查了二次函数的应用,解答本题的关键是表示出销量及单件利润,得出W 关于x 的函数解析式,注意掌握配方法求二次函数最值的应用.12.(2019·黑龙江中考真题)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ).A .20%;B .40%;C .18%;D .36%. 【答案】A【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20%故选:A .【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.二、填空题(共5小题)13.(2018·北京101中学初三月考)数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100 110 120 130 … 月销量(件) 200 180 160 140 …已知该运动服的进价为每件60元,设售价为x (x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x 的式子表示).【答案】 2x +400 −2x 2+520x −24000【解析】分析:运用待定系数法求出月销量;根据月利润=每件的利润×月销量列出函数关系式. 详解:设月销量y 与x 的关系式为y=kx+b ,由题意得,{100k +b =200110k +b =180, 解得{k =−2b =400 . 则y=-2x+400;由题意得,y=(x -60)(-2x+400)=-2x 2+520x -24000点睛:本题考查的是二次函数的应用,一次函数的运用,掌握待定系数法求函数解析式是解题的关键. 14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x 元,可列方程为_________.【答案】(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭【解析】利润=单件利润⨯数量,本题中,单件利润=售价-成本单价 (50)30x =--提升篇5030x =--. 数量100205x =+⨯. ∴利润为1400时,单价利润⨯数量1400=,得到(5030)1002014005x x ⎛⎫--+⋅= ⎪⎝⎭. 15.(2008·吉林中考真题)某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.【答案】70【解析】解:设销售单价定为每千克x 元,获得利润为y 元,则:y=(x -40)[500-(x -50)×10],=(x -40)(1000-10x ),=-10x 2+1400x -40000,=-10(x -70)2+9000,∴当x=70时,利润最大为9000元.16.某种商品的进价为40元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件,当x=____时才能使利润最大.【答案】70【分析】根据题意可以得到利润与售价之间的函数关系式,然后化为顶点式即可解答本题.【详解】解:设获得的利润为w 元,由题意可得,w=(x ﹣40)(100﹣x )=﹣(x ﹣70)2+900,∴当x=70时,w 取得最大值,故答案是:70.【点睛】考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.17.某旅行社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种变化方法变化下去,每床每日提高____元可获最大利润。
二次函数与实际问题

二次函数解决实际问题【典型例题】类型一、利用二次函数求实际问题中利润的最大(小)值1. 某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y ,(元)与销售月份x (月)满足关系式13368y x =-+,而其每千克成本2y (元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b ,c 的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(不要求指出x 的取值范围)(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? 【答案与解析】(1)把(3,25),(4,24)代入2218y x bx c =++中,得 19325,8116424.8b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解方程组得15,859.2b c ⎧=-⎪⎪⎨⎪=⎪⎩ (2)根据题意,得212311559368882y y y x x x ⎛⎫⎛⎫=-=-+--+ ⎪ ⎪⎝⎭⎝⎭2311559368882x x x =-+-+-21313822x x =-++.所以y 与x 的函数关系式为21313822y x x =-++.(3)由(2)得,21(6)118y x =--+,因为108a =-<,所以当x <6时,y 随x 的增大而增大,所以“五一”之前,四月份出售这种水产品每千克的利润最大,最大利润为10.5元.【点评】在用二次函数知识解决实际问题时,有的同学易忽略自变量的取值范围,有的题目结果中的值看上去有意义,但不一定符合题意,有的题目本身就隐含着对自变量的限制,常常考虑不周而造成错解.举一反三:【例2】某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?(总利润=总销售额-总成本)【答案】(1)设y 与x 的函数关系式为:y kx b =+(k≠0),∵函数图象经过点(60,400)和(70,300)∴⎩⎨⎧+=+=b k bk 7030060400 解得⎩⎨⎧=-=100010b k∴100010+-=x y(2))100010)(50(+--=x x P 500001500102-+-=x x P (50≤x ≤70)∵752015002=--=-a b ,10-=a <0∴函数500001500102-+-=x x P 图象开口向下, 对称轴是直线x=75∵50≤x ≤70,此时y 随x 的增大而增大, ∴当x =70时,6000=最大值P .练习:1.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元? (成本=进价×销售量) 【答案】解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+) 21070010000x x =-+-352b x a=-=.答:当销售单价定为35元时,每月可获得最大利润. ························· 3分(2)由题意,得:210700100002000x x -+-=解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. (6)分(3)法一:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000.∵x ≤32,∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得: 20(10500)P x =-+ 20010000x =-+ ∵200k =-<0, ∴P 随x 的增大而减小.∴当x = 32时,P 最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.类型二、利用二次函数解决抛物线形的建筑问题3. 某大学的校门如图所示,是抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,你能计算出大学校门的高吗?【答案与解析】以拱门所在平面与地平面的交线为x 轴,以拱门的对称轴为y 轴建立直角坐标系(如图所示),D 、E 为铁环. 则A(-4,0),B(4,0),D(-3,4),E(3,4).设抛物线的解析式为2y ax c =+.法二:∵10a =-<0, ∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2000. ∵x ≤32, ∴30≤x ≤32时,w ≥2000. ∵10500y x =-+,100k =-<,∴y 随x 的增大而减小. ∴当x = 32时,y 最小=180. ∵当进价一定时,销售量越小, 成本越小, ∴201803600⨯=(元).∵ A(-4,0),D(-3,4)在抛物线上.∴ 160,9 4.a c a c +=⎧⎨+=⎩ 解得4,764.7a c ⎧=-⎪⎪⎨⎪=⎪⎩∴ 246477y x =-+,当0x =时,647y =,∴ 647OC =. 即校门的高为647m .【点评】因为校门是抛物线形,不妨将这一问题转化为二次函数进行研究,建立适当的直角坐标系,将已知数据转化为点的坐标,从而确定函数关系式,再根据关系式求大门的高.【练习1】(2012·武汉·中考)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED=16米,AE=8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h=﹣(t ﹣19)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?类型三、利用二次函数求跳水、投篮、喷水池等实际问题4. 如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐,已知篮筐中心到地面O的距离为3.05 m ,若该运动员身高1.8 m ,在这次跳投中,球在头顶上方0.25 m 处出手,问:球出手时,他跳离地面的高度是多少?【答案与解析】如图所示,在直角坐标系中,点A(1.5,3.05)表示篮筐,点B(0,3.5)表示球运行的最大高度,点C 表示球员篮球出手处,其横坐标为-2.5,设C 点的纵坐标为n ,过点C 、B 、A 所在的抛物线的解析式为2()y a x h k =-+,由于抛物线开口向下,则点B(0,3.5)为顶点坐标,∴ 23.5y ax =+. ∵ 抛物线23.5y ax =+经过点A(1.5,3.05), ∴ 3.05=a ·1.52+3.5, ∴ 15a =-. ∴ 抛物线解析式为21 3.55y x =-+. ∴ 21( 2.5) 3.55n =-⨯-+,∴ n =2.25.∴ 球出手时,球员跳离地面的高度为2.25-(1.8+0.25)=0.20(米).【点评】首先要建立适当的平面直角坐标系,构造函数模型,将已知数据转化为点的坐标,然后利用待定系数法求出函数解析式,再利用解析式求出抛物线上已知横坐标的点的纵坐标,结合已知条件,得到实际问题的解.5. (2012·武汉·五月调考)某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为335米,问此次跳水会不会失误?并通过计算说明理由.【答案与解析】练习 1. (2012·武汉·四月调考)要修建一个圆形喷水池,在池中心竖直安装一根 2.25m 的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,高度为3m.(1)建立适当的平面直角坐标系.,使水管顶端的坐标为(0,2.25),水柱的最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不要求写取值范围); (2)如图;在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相邻轨道之间的宽度为0.3 m ,最内轨道的半径为r m ,其上每0.3 m 的弧长上安装一个地漏,其它轨道上的 地漏个数与最内轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏,求当r 为多少时池中安装的地漏的个数最多?【答案与解析】类型四、利用二次函数求图形的边长、面积的最大(小)值问题6. 一条隧道的截面如图所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S(m)2关于半径r(m)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米)【答案与解析】(1)2S π=半圆(米2);(2)①∵ AD =2r ,AD+CD =8,∴ CD =8-AD =8-2r , ∴ 2221112(82)416222S r AD CD r r r r r πππ⎛⎫=+=+-=-+ ⎪⎝⎭.②由①知,CD =8-2r ,又∵ 1.2米≤CD≤3米, ∴ 2≤8-2r≤3,∴ 2.5≤r≤3.由①知,214162S r r π⎛⎫=-+ ⎪⎝⎭228642.4316 2.434 2.43 2.43r r ⎛⎫-+=--+ ⎪⎝⎭≈. ∵ -2.43<0,∴ 函数图象为开口向下的抛物线,函数图象对称轴83.32.43r =≈, 又2.5≤r≤3,由函数图象知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值.21431632S π⎛⎫=-⨯+⨯ ⎪⎝⎭最大1 3.14494826.12⎛⎫⨯-⨯+ ⎪⎝⎭≈≈(米2).【点评】解此类问题,一般先应用几何图形的面积公式,写出图形的面积与边长之间的关系,再用配方法或公式法求顶点坐标,结合二次函数性质与自变量的取值范围确定最大面积.①根据几何图形的面积公式可求关于面积的函数解析式,②利用二次函数的有关性质,在自变量的取值范围内确定面积的最大值.举一反三:【练习1.】已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积【答案与解析】解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PH BH BF AF =,即3412--=y x, ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.【练习2.】(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.【答案与解析】解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.(3)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.。
人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学22.3 实际问题与二次函数同步训练一、单选题1.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该二次函数的解析式可以是() A .y 2= 2(x 1)+B .y 2= 2(x 1)-C .=-y 2 2(x 1)+D .=-y 2 2(x 1)-2.在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线214y x bx c =-++的一部分,其中出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m ,那么这条抛物线的解析式是( ) A .213144y x x =-++B .213144y x x =-+-C .213144y x x =--+D .213144y x x =---3.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是( )A .12米B .13米C .14米D .15米4.把一根长4a 的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A .2aB .2aC .22aD .24a5.某商品的利润y (元)与售价x (元)之间的函数关系式为y =﹣x 2+8x +9,且售价x 的范围是1≤x ≤3,则最大利润是( ) A .16元B .21元C .24元D .25元6.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽 1.6m AB =时,涵洞顶点与水面的距离是2m .这时,离开水面1.5m 处,涵洞的宽DE 为( )A B C .0.4 D .0.87.从底面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是:h =30t ﹣5t 2,这个函数图象如图所示,则小球从第3s 到第5s 的运动路径长为( )A .15mB .20mC .25mD .30m8.小敏在某次投篮中,篮球的运动路线是抛物线215y x =-+3.5的一部分(如图),若命中篮圈中心,则他与篮底的水平距离l 是( )A .3.5mB .3.8mC .4mD .4.5m二、填空题9.矩形的周长为12cm ,设其一边长为xcm ,面积为2cm y ,则y 与x 的函数关系式及自变量x 的取值范围是_________.10.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是21.560s t t =-+,飞机着陆后滑行_____秒才能停下来.11.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =96t ﹣1.2t 2,那么飞机着陆后_____秒停下.12.有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m ,跨度为40m .现将它的图形放在坐标系里(如图所示).若在离跨度中心M 点10m 处垂直竖立一铁柱支撑拱顶,这铁柱长______米.13.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是: 21251233y x x =-++,则该运动员此次掷铅球的成绩是________ m .14.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为整数),每个月的销售利润为y 元,那么y 与x 的函数关系式是____________.15.“十一”黄金周,某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元),满足关系:m =140-x .写出商场卖这种商品每天的销售利润 y 与每件的售价x 之间的函数关系式是_________.16.按照防疫要求,学生在进校时必须排队接受体温检测,某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数y 随时间x (单位:分钟)的变化情况的图象是如图所示的某抛物线的一部分,则校门口排队等待体温检测的学生最多时有 ______人.三、解答题17.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件:(2)当每件商品降价多少元时,该商店每天销售利润最大?18.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,如调整价格,每上涨1元,每天的销售量就减少10件.(1)请写出商场销售这种文具,每天所得的销售利润w(元)与销售价格/x(元件)之间的函数关系式;(2)销售价格为多少元时,该文具的销售利润最大?(3)商场的营销部结合上述情况,提出了A,B两种营销方案.方案A:该文具的销售价格高于进价且不超过30元/件;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请通过计算说明哪种方案的最大利润更高.19.如图,在△ABC中,△ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为2cm/s,点Q的速度为1cm/s,点P移动到B点后停止,点Q也随之停止运动,设P、Q从点A、B同时出发,运动时间为ts,四边形APQC的面积是S(1)试写出S与t之间的函数关系式,并确定自变量的取值范围;(2)若S是21cm2时,确定t值;(3)t为何值时,S有最大(或最小)值,求出这个最值.20.某商厦灯具部投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元,那么每月的单价定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?参考答案:1.B 2.A 3.D 4.C 5.C 6.D 7.B 8.C9.y =−x 2+6x (0<x <6) 10.20 11.40 12.12 13.1014.()2101002000012y x x x =-++≤≤15.21704200y x x =-+- 16.164 17.(1)26(2)当每件商品降价15元时,该商店每天销售利润最大. 18.(1)w = -10x 2+700x -10000(2)销售价格为35元/件时,该文具每天的销售利润最大 (3)方案A 的最大利润更高,理由见解析 19.(1)S =t 2-4t +24(0≤t ≤4) (2)t =1或t =3(3)t =2时,S 有最小值2020.(1)w =-10x 2+700x -10000(20≤x ≤32)(2)如果张明想要每月获得的利润为2000元,张明每月的单价定为30元 (3)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元。
初三数学实际问题与二次函数试题

初三数学实际问题与二次函数试题1.如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D.(1)求:经过A、B、C三点的抛物线的解析式;(2)求四边形ABDC的面积;(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.【答案】(1) y=-x2+2x+3;(2)9;(3)相似,证明见解析.【解析】(1)已知A、B、C三点坐标,由待定系数可求出抛物线解析式;(2)求出顶点坐标,作辅助线把四边形ABDC的面积拆为二个三角形面积加上一梯形的面积,从而求出四边形ABDC的面积;(3)判断△BCD与△COA是否相似,验证是否满足相似比例关系.试题解析:(1)由题意,得,解之,得,∴y=-x2+2x+3;(2)由(1)可知y=-(x-1)2+4,∴顶点坐标为D(1,4),设其对称轴与x轴的交点为E,∵S=|AO|•|OC|,△AOC=×1×3,=,S=(|DC|+|DE|)×|OE|,梯形OEDC=(3+4)×1,=,=|EB|•|DE|,S△DEB=×2×4,=4,S 四边形ABDC =S △AOC +S 梯形OEDC +S △DEB ,=++4,=9;(3)△DCB 与△AOC 相似,(9分)证明:过点D 作y 轴的垂线,垂足为F ,∵D (1,4),F (0,4), ∴Rt △DFC 中,DC=,且∠DCF=45°,在Rt △BOC 中,∠OCB=45°,BC=3,∴∠AOC=∠DCB=90°,,∴△DCB ∽△AOC .考点: 1.二次函数综合题;2.相似三角形的判定与性质.2. 如图所示,抛物线y=x 2+bx+c 与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若tan ∠OAC=2.(1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l 上是否存在点P ,使∠APC=90°?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点,过点M 作直线l′∥l ,交抛物线于点N ,连接CN 、BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?【答案】(1) y=x 2-3x+2;(2)存在,理由见解析;(3)当t=1时,S △BCN 的最大值为1.【解析】(1)已知了C 点的坐标,即可得到OC 的长,根据∠OAC 的正切值即可求出OA 的长,由此可得到A 点的坐标,将A 、C 的坐标代入抛物线中,即可确定该二次函数的解析式;(2)根据抛物线的解析式即可确定其对称轴方程,由此可得到点P 的横坐标;若∠APC=90°,则∠PAE 和∠CPD 是同角的余角,因此两角相等,则它们的正切值也相等,由此可求出线段PE 的长,即可得到点P 点的坐标;(用相似三角形求解亦可)(3)根据B 、C 的坐标易求得直线BC 的解析式,已知了点M 的横坐标为t ,根据直线BC 和抛物线的解析式,即可用t 表示出M 、N 的纵坐标,由此可求得MN 的长,以MN 为底,B 点横坐标的绝对值为高,即可求出△BNC 的面积(或者理解为△BNC 的面积是△CMN 和△MNB 的面积和),由此可得到关于S (△BNC 的面积)、t 的函数关系式,根据所得函数的性质即可求得S 的最大值及对应的t 的值.试题解析::(1)∵抛物线y=x 2+bx+c 过点C (0,2),∴x=2;又∵tan ∠OAC==2,∴OA=1,即A (1,0);又∵点A 在抛物线y=x 2+bx+2上,∴0=12+b×1+2,b=-3;∴抛物线对应的二次函数的解析式为y=x 2-3x+2;(2)存在.过点C 作对称轴l 的垂线,垂足为D ,如图所示,∴x=-; ∴AE=OE-OA= ,∵∠APC=90°, ∴tan ∠PAE=tan ∠CPD ,∴, 即 ,解得PE=或PE=,∴点P 的坐标为(,)或(,).(3)如图所示,易得直线BC 的解析式为:y=-x+2,∵点M 是直线l′和线段BC 的交点, ∴M 点的坐标为(t ,-t+2)(0<t <2), ∴MN=-t+2-(t 2-3t+2)=-t 2+2t ,∴S △BCN =S △MNC +S △MNB =MN▪t+MN▪(2-t )=MN▪(t+2-t )=MN=-t 2+2t (0<t <2), ∴S △BCN =-t 2+2t=-(t-1)2+1,∴当t=1时,S △BCN 的最大值为1.考点: 二次函数综合题3. 某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如何提高售价,才能在半月内获得最大利润?【答案】售价为35元时,在半月内可获得最大利润【解析】本题考查了二次函数的应用.设销售单价为x元,销售利润为y元.求得方程,根据最值公式求得.解:设销售单价为x元,销售利润为y元.根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000当x==35时,才能在半月内获得最大利润4.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是.请回答下列问题:(1)柱子OA的高度是多少米?(2)喷出的水流距水平面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?【答案】(1)(2)(3)【解析】本题考查了二次函数的应用.(1)本题需先根据已知条件把x=0代入抛物线的解析式,从而得出y的值,即可求出答案.(2)通过抛物线的顶点坐标求得(3)本题需先根据已知条件把y=0代入抛物线求出所要求的式子,再得出x的值,即可求出答案.解:(1)把x=0代入抛物线的解析式得:y=,即柱子OA的高度是(2)由题意得:当x=时,y=,即水流距水平面的最大高度(3)把y=0代入抛物线得:=0,解得,x1=(舍去,不合题意),x2=故水池的半径至少要米才能使喷出的水流不至于落在池外5.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v2来表示,其中v(千米/分)表示汽车的速度.①列表表示I与v的关系;②当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?【答案】①见解析②4倍【解析】本题考查了二次函数的应用.(1)可取v等于0左右的值解方程求对应的I值,根据所得数据列表;(2)求当速度为2V时I的值与I=2v2比较可得结论.解:(1)如下表(2)I=2•(2v)2=4×2v2.当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的4倍.6.如图,正方形EFGH的顶点在边长为a的正方形ABCD的边上,若AE=x,正方形EFGH的面积为y.(1)求出y与x之间的函数关系式;(2)正方形EFGH有没有最大面积?若有,试确定E点位置;若没有,说明理由.【答案】(1)y=2x2-2ax+a2 (2) 有.当点E是AB的中点时,面积最大.【解析】本题考查了二次函数的应用.(1)先由AAS证明△AEF≌△DHE,得出AE=DH=x米,AF=DE=(a-x)米,再根据勾股定理,求出EF2,即可得到S与x之间的函数关系式;(2)先将(1)中求得的函数关系式运用配方法写成顶点式,再根据二次函数的性质即可求解.解:∵四边形ABCD是边长为a米的正方形,∴∠A=∠D=90°,AD= a米.∵四边形EFGH为正方形,∴∠FEH=90°,EF=EH.在△AEF与△DHE中,∵∠A=∠D,∠AEF=∠DHE=90°-∠DEH,EF=EH∴△AEF≌△DHE(AAS),∴AE=DH=x米,AF=DE=(a-x)米,∴y=EF2=AE2+AF2=x2+(a-x)2=2x2-2ax+ a2,即y=2x2-2ax+ a2;(2)∵y=2x2-2ax+ a2=2(x-)2+,∴当x=时,S有最大值.故当点E是AB的中点时,面积最大.7.已知某型汽车在干燥的路面上, 汽车停止行驶所需的刹车距离与刹车时的车速之间有下表所示的对应关系.(1)请你以汽车刹车时的车速V为自变量,刹车距离s为函数, 在图所示的坐标系中描点连线,画出函数的图象;(2)观察所画的函数的图象,你发现了什么?(3)若把这个函数的图象看成是一条抛物线,请根据表中所给的数据,选择三对,求出它的函数关系式;(4)用你留下的两对数据,验证一个你所得到的结论是否正确.【答案】(1)见解析(2) 图象可看成是一条抛物线这个函数可看作二次函数(3)(4)证明见解析【解析】本题考查二次函数的实际应用,借助二次函数解决实际问题.(1)在直角坐标系上作图;(2)图象可看成是一条抛物线这个函数可看作二次函数;(3)设所求函数关系式为:s=av2+bv+c,代入点求得a、b、c;(4)带两个数据验证.(1)函数的图象如答图所示.(2)图象可看成是一条抛物线这个函数可看作二次函数.(3)设所求函数关系式为:s=av2+bv+c,把v=48,s=22.5;v=64,s=36;v=96,s=72分别代入s=av2+bv+c,得, 解得.∴(4)当v=80时,∵s="52.5," ∴当v=112时,∵s=94.5,∴经检验,所得结论是正确的.8.某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元, 已知P=x2+5x+1000,Q=-+45.(1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元? 这时每吨的价格又是多少元?【答案】(1) W=(2) 150吨, 2000元,40元【解析】本题考查根据实际问题,列二次函数关系式解决实际应用题.根据:产品所获利润W=每吨售价Q元×吨数x-x吨需费用P元,建立函数关系式,并运用关系式求最大值.(1)∵P=x2+5x+1000,Q=-+45.∴W=Qx-P=(-+45)-(x2+5x+1000)= .(2)∵W==-(x-150)2+2000.∵-<0,∴W有最大值.当x=150吨时,利润最多,最大利润2000元.当x=150吨,Q=-+45=40(元).9.如图,在Rt△ABC中,∠ACB=90°,BC>AC,以斜边AB 所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA2+OB2=" 17," 且线段OA、OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0的两个根.(1)求C点的坐标;(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E 三点的抛物线的关系式,并画出此抛物线的草图.(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.【答案】(1) C(0,2) (2) y=(3) 存在,(0,-2)和(3,-2)【解析】本题是二次函数与圆以及全等三角形相结合的题目,难度较大(1)线段OA、OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0的两个根.根据韦达定理就可以得到关于OA,OB的两个式子,再已知OA2+OB2=17,就可以得到一个关于m的方程,从而求出m的值.求出OA,OB.根据OC2=OA•OB就可以求出C点的坐标;(2)由第一问很容易求出A,B的坐标.连接AB的中点,设是M,与E,在直角△OME中,根据勾股定理就可以求出OE的长,得到E点的坐标,利用待定系数法就可以求出抛物线的解析式;(3)E点就是满足条件的点.同时C,E关于抛物线的对称轴的对称点也是满足条件的点.解:(1)线段OA,OB的长度是关于x的一元二次方程x2-mx+2(m-3)="0" 的两个根,∴又∵OA2+OB2=17,∴(OA+OB)2-2·OA·OB=17.③把①,②代入③,得m2-4(m-3) =17,∴m2-4m-5=0.解之,得m=-1或m=5.又知OA+OB=m>0,∴m=-1应舍去.∴当m=5时,得方程:x2-5x+4=0,解之,得x=1或x=4.∵BC>AC,∴OB>OA,∴OA=1,OB=4,在Rt△ABC中,∠ACB=90°,CO⊥AB,∴OC2=OA·OB=1×4=4.∴OC=2,∴C(0,2)(2)∵OA=1,OB=4,C,E两点关于x轴对称,∴A(-1,0),B(4,0),E(0,-2).设经过A,B,E三点的抛物线的关系式为y=ax2+bx+c,则 ,解之,得∴所求抛物线关系式为y=.(3)存在.∵点E是抛物线与圆的交点.∴Rt△ACB≌Rt△AEB,∴E(0,-2)符合条件.∵圆心的坐标(,0 )在抛物线的对称轴上.∴这个圆和这条抛物线均关于抛物线的对称轴对称.∴点E关于抛物线对称轴的对称点E′也符合题意.∴可求得E′(3,-2).∴抛物线上存在点P 符合题意,它们的坐标是(0,-2)和(3,-2)10. 已知抛物线y=mx 2-(m+5)x+5.(1)求证:它的图象与x 轴必有交点,且过x 轴上一定点;(2)这条抛物线与x 轴交于两点A(x 1,0),B(x 2,0),且0<x 1<x 2,过(1) 中定点的直线L;y=x+k 交y 轴于点D,且AB=4,圆心在直线L 上的⊙M 为A 、B 两点,求抛物线和直线的关系式,弦AB 与弧围成的弓形面积.【解析】本题主要考查了二次函数与一元二次方程的联系、根的判别式、函数图象与坐标轴交点坐标的求法、函数解析式的确定、扇形面积的计算方法等(1)若抛物线于x 轴有交点,那么当y=0时,所得方程的根的判别式恒大于等于0,可据此进行证明;将抛物线解析式的右边,用十字相乘法进行因式分解,可得:y=(mx-5)(x-1),由此可看出抛物线一定经过点(1,0).(2)由于抛物线交x 轴于A 、B 两点,且A 在B 左侧,且A 、B 都在原点的右侧,因此A (1,0),B (5,0),根据A 点坐标,可确定直线的解析式,根据A 、B 的坐标,可确定抛物线的解析式;若⊙M 同时经过A 、B 两点,根据抛物线和圆的对称性知:点M 必为抛物线对称轴与直线的交点,由此可求得点M 的坐标为(3,2),而AB=4,因此△ABM 是个等腰直角三角形,即可得到 的圆心角,那么扇形MAB 的面积减去等腰直角三角形MAB 的面积即为所求弓形的面积.(1)证明:∵y=mx 2-(m+5)x+5,∴△=[-(m+5)]2-4m×5=m 2+10m+25-20m="(m-" 5)2.不论m 取任何实数,(m-5)2≥0,即△≥0,故抛物线与x 轴必有交点.又∵x 轴上点的纵坐标均为零,∴令y=0,代入y=mx 2-(m+5)x+5,得mx 2-(m+5)x+ 5=0,(mx-5)(x-1)=0,∴x=或x=1.故抛物线必过x 轴上定点(1,0).(2)解:如答图所示,∵L:y=x+k,把(1,0)代入上式,得0=1+k,∴k=-1,∴y="x-1."又∵抛物线与x 轴交于两点A(x 1,0),B(x 2,0),且0<x 1<x 2,AB=4, ∵x 1x 2>0,∴x 1="1," x 2=5,∴A(1,0),B(5,0),把B(5,0)代入y=mx 2-(m+5)x+5,得0=25m-(m+5)×5+5. ∴m=1,∴y=x 2-6x+5. ∵M 点既在直线L:y=x-1上,又在线段AB 的垂直平分线上,∴M 点的横坐标x 1+=1+.把x=3代入y=x-1,得y=2.∴圆心M(3,2),∴半径r=MA=MB=, ∴MA 2=MB 2=8.又AB 2=42= 16,∴MA 2+MB 2=AB 2,∴△ABM 为直角三角形,且∠AMB=90°,∴S 弓形ACB=S 扇形AMB- S △ABM=.。
实际问题与二次函数解答题专题训练含答案

实际问题与二次函数解答题专题训练含答案姓名:__________ 班级:__________考号:__________一、解答题(共20题)1、如图,在平面直角坐标系中,正比例函数和二次函数的图像都经过点和点B ,过点A 作的垂线交x 轴于点C .D 是线段上一点(点D 与点A 、O 、B 不重合),E 是射线上一点,且,连接,过点D 作x 轴的垂线交抛物线于点F ,以、为邻边作.( 1 )填空:________ ,________ ;( 2 )设点D 的横坐标是,连接.若,求t 的值;( 3 )过点F 作的垂线交线段于点P .若,求的长.2、甲车在弯路作刹车试验,收集到的数据如下表所示:速度x(千米/小时)0 5 10 15 2025…刹车距离y(米)0 2 6 …(1)请用上表中的各对数据(x,y)作为点的坐标,(2)在图所示的坐标系中画出甲车刹车距离y(米)与速度x(千米/时)的函数图象,并求函数的解析式x(千米/时)(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了。
事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车的刹车距离y(米)与速度x(千米/时)满足函数,请你就两车的速度方面分析相撞的原因。
3、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?4、如图,八一广场要设计一个矩形花坛,花坛的长、宽分别为200 m、120 m,花坛中有一横两纵的通道,横、纵通道的宽度分别为3x m、2x m.(1)用代数式表示三条通道的总面积S;当通道总面积为花坛总面积的时,求横、纵通道的宽分别是多少?(2)如果花坛绿化造价为每平方米3元,通道总造价为3168 x元,那么横、纵通道的宽分别为多少米时,花坛总造价最低?并求出最低造价.(以下数据可供参考:852 = 7225,862 = 7396,872 = 7569)5、.张伯伯准备利用40m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花圈.围成的花圈是如图所示的矩形ABCD、矩形CDEF、矩形EFGH.设AB边的长为x米.矩形ABCH 的面积为S平方米.’(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时.S有最大值?并求出最大值.6、某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?7、某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到600元?【利润=销售量×(销售单价-进价)】(3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的利润最大是多少?8、某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12999数学网
26.3 实际问题与二次函数
1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货
员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。
商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。
(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。
问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员?
2.某宾馆有50个房间供游客居住。
当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。
如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。
房价为多少时,宾馆利润最大?
3.
心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中?
(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目?
224100(010)240(1020)
7380(2040)t t t y t t t ⎧-++<≤⎪⎪=<≤⎨⎪-+<≤⎪⎩
4.有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去。
假设放养期内蟹的个体重量基本保持不变。
现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时的市场价为每千克30元。
据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。
(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;
(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q与x 的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用)?增大利润是多少?
5.如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。
(1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式;
(2)当AP的长为何值时,S△PCQ= S△ABC
6.1在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。
如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:
(1)运动开始后第几秒时,△PBQ的面积等于8cm2
(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并
指出自变量t的取值范围;t为何值时S最小?求出S的最小值。
Q
12999数学网。