北师大版初一数学上册探索与表达规律

合集下载

北师大版七年级数学上册探索与表达规律课件

北师大版七年级数学上册探索与表达规律课件
新知探索 星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
规律: “M”形中 七数之和=7×中间数
北师大版七年级《数学》上册 3.5.1 探索与表达规律
北师大版七年级《数学》上册
第三章 整式及其加减
3.5.1 探索与表达规律
北师大版七年级《数学》上册 3.5.1 探索与表达规律
学情分析
本节内容是在学生学习了“用字母表示数”、“ 列代数式”、“去括号”、“合并同类项”等知识的基 础上进行的,它既是对前面所学知识的综合应用, 也是对这些知识的拓展与延伸,对学生体会数学建 模具有重要的作用。
拓展训练
1. 用火柴棒按下图中的方式搭图形。


(1) 按图示规律填空:
图形符号 ①


火柴棒根数 4
6
8



10
12
(2)按照这种方式搭下去,搭第n个图形需要多少根火柴?
2n+2或2(n+1)
北师大版七年级《数学》上册 3.5.1 探索与表达规律
考考你 视察图1至图5中小黑点的摆放规律,并按照这样的规 律继续摆放.记第n个图中小黑点的个数为y.解答下列 问题:
作业:
习题3.8第1、2题
随堂练习
1.照这样的规律摆下去,摆第7、8个正方形
需要多少颗棋子? 2.探究:摆第n个正方形
需要多少颗棋子?
北师大版七年级《数学》上册 3.5.1 探索与表达规律

北师大版初一上册3.5《探索与表达规律》

北师大版初一上册3.5《探索与表达规律》

北师大版初一上册3教材分析:探究规律是北师大版七年级数学上册第三章第五节,探究规律本身是数学课中比较抽象的一部分内容,学生需要积存一定的体会和差不多的探究方法才能够找到题目的规律,本章学习的整式及其加减正好用来表示这种规律,因此表达规律是整式应用专门好的范例,教材在本章安排了几种简单的规律探究问题,其目的要紧是让学生把握解决这类问题的差不多方法即:探究分析——归纳表示——验证结论,体会解决问题的差不多思想即:从专门到一样的思想。

教学目标:1.知识目标:会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探究的规律。

2.能力目标:培养学生的观看能力、动手能力、创新能力以及交往协作能力,并提高其分析问题和解决问题的能力。

3.情感目标:让学生体会数学就在周围,激发学生的探究热情,体验数学活动的探干脆及制造性,培养学生实事求是的科学态度。

教学重难点:【教学重点】探究实际问题中蕴涵的关系和规律。

【教学难点】用字母、运算符号表示一样规律。

课前预备:见PPT教学过程:一、问题引入这是2021年3 月的日历,你能填空吗?【设计意图】通过简单的问题,学生快速回答从而获得对数字规律的直观体验,为用字母表示规律埋下伏笔。

二、合作探究1.学生探究活动项目单:(1)说一说日历中的数字排列有什么规律?(同一排或同一列)(2)若用一个方框任意框出九个数,这九个数字之间有什么数量关系?(3)用字母表示这种数量关系。

(4)这九个数的和与中间数有什么关系?(5)尝试使用较为简练的语言和同桌说一说你发觉的规律。

学生摸索、猜想、交流,个别学生展现。

应鼓舞学生大胆探究,积极发言。

(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) = __9a____可得到:蓝色方框中九个数之和=9×正中间的数。

进一步挑战:给出几个图形,如“十”字形、“H”形,“W”形,让学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,并分小组展现。

北师大版数学七年级上册(2024)探索与表达规律课件

北师大版数学七年级上册(2024)探索与表达规律课件
a27586 a28697 a239708 32081 3219 30
尝试练习
将连续的奇数1,3,5, 1 3 5 7 9 11
7…,排成如图数表,十 13 15 17 19 21 23
字框内有五个数。
4132、、十十若字字将设形框 十 中框内 字 间中五 形 的五个 框 数个数上为数的下a,之左如和 25 27 29 31 33 35
北师大版七年级上册
学习目标
1.能用代数式表示数与图形的变化规律.(重点) 2.进一步培养学生视察、分析、抽象、概括等思维 能力和应用意识.(难点)
导入新课
情境引入
请同学们伸出左手,一起 做下面的游戏:从大拇指开始, 像图中显示的这只手那样依次 数数字1,2,3,4,5,……, 请问数字20落在哪个手指上?
探知规律
如图,是用火柴棒拼成的图形。
(2)拼成第n个图形需要_(2_n__+_1_)根火柴棒。
(1) (2) (3)
(4)
图案编号
水平的火柴根数 倾斜的火柴根数 总的火柴根数
(1)
(2) (3) (4)
… 第n个
1 234
n
2 3 45
n+1
3 5 7 9 … 2n+1
探知规律
如图,是用火柴棒拼成的图形。
(2)拼成第n个图形需要_(2_n__+_1_)根火柴棒。
(图1)形的变(2化) 规律(问3)题要多视(察4)图形,从中 找图出案编排号 列(1)的规(2律) ,或(转3) 化为一(4)组数…字再第探n索个其
火柴根数 3 3+2×1 3+2×2 3+2×3 … 3+2×(n-1)
规律,要与图形的序号相联系。

北师大版(2024)数学七年级上册+第三章 +3 探索与表达规律 +第1课时 探索数字与图形规律

北师大版(2024)数学七年级上册+第三章 +3 探索与表达规律  +第1课时 探索数字与图形规律

11.下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为 ( C)
A.135 B.153 C.170 D.189
12.如图,下列图形都由同样大小的十字星图案按一定的规律组成,其中第一个 图形有1个十字星图案,第二个图形有2个十字星图案,第三个图形有5个十字星图 案,第四个图形有10个十字星图案……则第101个图形有 _____1_0_0_0_1__个十字星图 案.
13.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所 填整数之和都相等,则第2023个格子中的整数是_____-__4_.
14.观察下列一组图形(如图所示),它反映了图中点的个数与第n个图形之间的某 种变化规律.
(1)填写下表:
(2)设第n个图形中点的个数为S,写出S与n的关系式; (3)求出第10个图形中S的值.
解:(1)∵22+40+58+42+26+44+62=294=7×42,∴图中“H”字形框中七个 数的和是中间数的7倍
(2)成立,理由:设中间数为x,则其余六个数分别为x-2,x+2,x-20,x+20, x-16,x+16,∴x-2+x+2+x-20+x+20+x-16+x+16+x=7x,所以图中 “H”字形框中七个数的和是中间数的7倍
数学 七年级上册 北师版
3 探索与表达规律 第1课时 探索数字与图形规律
知识点 1:探索整式的数字规律
1.一列数 1,5,11,19……按此规律排列,第 7 个数是( C )
A.37 B.41
C.55 D.71
2.(2024·云南)按一定规律排列的代数式:2x,3x2,4x3,5x4,6x5,…,第 n 个代
(3)不能,理由:2023÷7=289,∵此数阵是非负偶数数阵,而289是奇数,∴不 能框出和为2023的七个数

北师大版数学七年级上册第三章第五节探索与表达规律

北师大版数学七年级上册第三章第五节探索与表达规律

第三章第五节探索与表达规律一、基本知识点1.探究规律;2.计算二、基本方法数字探究;图形探究三、知识讲练【例1】图形题用棋子摆出下列一组图形:(1)(2)(3)图形编号 1 2 3 4 5 6图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?〖针对练习1〗1.用同样大小的黑色棋子按图6所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚(用含n的代数式表示).…第1个图第2个图第3个图2. 下列每个图是由若干盆花组成的形如三角形的图案,按此规律写出第n个图形花盆的总数______________________;3. 下列每个图是由若干盆花组成的形如正方形的图案,按此规律写出第n个图形花盆的总数__________4. 下列每个图是由若干盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断,花盆的总数S=______________________;5. 下列每个图是由若干盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断,花盆的总数S=______________________;6. 下图中所有正方体的边长都是1. 例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。

依此规律。

则第(6)个图形的表面积个平方单位。

【例2】数字题1. 有若干个数,第1个数记为1a,第二个数记为2a,第三个数记为3a……,第n个记为na,若211-=a,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数。

”(1)试计算__________,__________________,432===aaa(2)根据以上结果,请你写出___________1999=a,_______2001=a。

北师大版七年级数学上册探索与表达规律

北师大版七年级数学上册探索与表达规律

2.用棋子摆出下列一组图形:
(1)填写下表:
图形编号
12 3 456
图形中棋子的枚数
(2)照这样的方式摆下去,写出摆第n个图 形棋子的枚数; (3)如果某一图形共有99枚棋子,你知道它 是第几个图形吗?
1、探索规律的主要过程: 特殊——一般——特殊
2、探索规律的一般方法: (1)寻找数量关系; (2)用代数式表示规律; (3)验证规律。
桌子张数 3
4
5
6 …… n
可坐人数 14 18 22 26
4n+2
(3)你能用不同的方法解释你所表示的规律吗? (4)一家餐厅有这样的长方形桌子30张,按照上图方 式每5张拼成一张大桌子,共可坐多少人?若按照上图 方式每6张拼成一张大桌子,共可坐多少人?若现在有 131个客人去吃饭,那该如何拼摆桌子?
以得到一条折痕,继续对折,对折时每次折痕 与上次的折痕保持平行,连续折6次后,可以得 到几条折痕?如果对折10次呢?对折n次呢?
大家来归纳
对折1次,折痕为1. 对折2次,折痕为3,即3=22-1 对折3次,折痕为7,即7=23-1
对折4次,折痕为15,即15=24-1 对折5次,折痕为31,即31=25-1。
妙的大门,按照这种规律写出的第七个数据( ).
A、
B、
C、
D、
请完成下面的作业:
1.有若干个数,第一个数记为 ,第二个数
记为 ,…,第n个数记为 。若 = , 从第二个数起,每个数都等于“1与它前面那个 数的差的倒数”。试计算: =______,
=____, =_____, =______。你发现 这排数有什么规律吗?由你发现的规律,请计 算 是多少?
13 14 15 16 17 18 19

3.3探索与表达规律 课件(共23张PPT) 北师大版初中数学七年级上册

3.3探索与表达规律  课件(共23张PPT)  北师大版初中数学七年级上册
3.3探索与表达规律
情境导入
观察下图日历,请你回答以下问题:
日 一二三四五六 1234
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(1)横向相邻的数之间的 关系是什么?
后一个数比前一个数多1.



探索数字与图形之间的规律的过程:
发现规律→表示规律→揭示规律.
家庭作业
教科书第100页(习题3.9) 第2、3题
(3)斜下方三个相邻的数 之间的关系是什么?
右下比左上的数多8
用字母表示: a-8,a,a+8 a-8+a+a+8=3a
斜下方三个相邻数的和是中间的数的3倍.
情境导入
观察下图日历,请你回答以下问题:
日 一二三四五六 1234
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(2)纵向相邻的数之间的 关系是什么?
下边一个数比上边一个数多7.
用字母表示: a-7,a,a+7 a-7+a+a+7=3a
纵向相邻三个数的和是中间的数的3倍.
情境导入
观察下图日历,请你回答以下问题:
日 一二三四五六 1234
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
我的结果是93
那你心里 想的是78.
我的结果是27
那你心里 想的是12

2024年北师大七年级数学上册3.3 探索与表达规律(课件)

2024年北师大七年级数学上册3.3 探索与表达规律(课件)

4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
探究1:观察日历图,日历图中的数有什么规律?
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
+(a+8) = __9_a___
结论:绿色方框中九个数之和 = 9×正中间的数
尝试·思考
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26Leabharlann 27 28 29 30 31
(1) 如图所示的日历图中,能否使框中 9 个数的和为
27 28 29 30 31
探究2:这个关系对任何一个月的日历都成立吗? 为什么? 成立
猜想: 绿色方框中九个数之和 = 9×正中间的数
用代数式表示: a-8 a-7 a-6
a-1 a a+1
a+6 a+7 a+8 (a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)
“H”形中的数字有何规律?你是如何验证的?
星期日 星期一 星期二 星期三 星期四 星期五 星期六
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索与表达规律
教学目标:
1.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律,培养学生通过观察已知数据或图形,探索数量之间的关系得到规律的能力.
2. 通过动手操作、观察、思考,经历探索数量关系、运用符号表示规律、通过运算验证规律的过程,体验数学活动是充满着探索性和创造性的过程.
3. 体验在解决问题的过程中与他人合作的重要性.
二、教学重难点
重点:探索发现规律,并会用代数式表示规律.
难点:用代数式表示规律.
(一)儿歌规律
这节课我们将一起探究数学中的规律,从而引出课题:探索规律
(二)合作探究
探究:数的变化规律
1.请同学们快速记住日历中的数字并能准确的说出它们的位置.
2.请同学填空,并说说是以什么方法记忆日历的?
学生通过观察,找到每一行、每一列、每一条对角线上相邻两数之间的关系.
3.探究方框中九个数的和与正中间数的关系.(所给的是今年十月份的日历)
(1)请思考方框中九个数的和与正中间的数有什么关系?
(2)请同学们拿出日历,任意用方框框住这份日历中其它的九个数,这个关系是否成立?
(3)这个关系对十月份的日历成立,那对其他月份的日历成立吗?
从而得到猜想:蓝色方框中九个数之和=9×正中间的数
(4)我们应该如何进行验证?
学生根据方框中数的不确定性,引导他们想到用字母表示数,学生可能设任意一个方格的数为字母(任意),表示出其余的八个数,通过代数和运算发现,设正中间的数为字母的计算较为简单,得到“问什么设什么”,根据代数和的运算验证了猜想的正确性.
从而得到规律:蓝色方框中九个数之和=9×正中间的数
挑战:给出几个图形,如“十”字形、“H”形,“M”形,让学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,分小组展示.
探究:图形的变化规律
按下图方式用火柴棒搭三角形:

1.照这样的规律搭下去,搭8个三角形需要多少根火柴棒?
2.探究:搭n个这样的三角形需要多少根火柴棒?
学生可以通过摆放的多种方式得到规律,同时经过去括号、合并同类项等化简运算得到结果相同,也可以引导学生将图形的规律转化为数来研究.
挑战:将一张长方形纸按如图方式连续对折,每一次的
折痕都与第一次的折痕平行,对折1次后,纸为几层?
对折2次后,纸为几层? 对折n次呢?
先研究层数,再研究折痕的条数,并让学生认识到有时
仅从图形是不容易发现规律的,需要借助于数来猜想得
到规律,并用具体图形来验证.
(三)归纳提炼
让学生对本节课所学的基本方法和数学思想进行归纳.
(四)拓展延伸
设置游戏,拓展有关整除的规律.
(五)布置作业
请学生自己设置包含数字规律的数阵,并写出探究的过程.。

相关文档
最新文档