工程力学(静力学与材料力学)公式整理
工程力学知识点

工程力学知识点静力学分析1、静力学公理a,二力平衡公理:作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线。
(适用于刚体)b,加减平衡力系公理:在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应。
(适用于刚体)c,平行四边形法则:使作用在物体上同一点的两个力可以合为一个合力,此合力也作用于该点,合理的大小和方向是以两个力为邻边所构成的平行四边形的对角线来表示。
(适用于任何物体)d,作用与反作用力定律:两物体间的相互作用力,即作用力和反作用力,总是大小相等、指向相反,并沿同一直线分别作用在这两个物体上。
(适用于任何物体)e,二力平衡与作用力反作用力都是二力相等,反向,共线,二者的区别在于两个力是否作用在同一个物体上。
2、汇交力系a,平面汇交力系:力的作用线共面且汇交与一点的平面力系。
b,平面汇交力系的平衡:若平面汇交力系的力多边形自行封闭,则该平面汇交力系是平衡力系。
c,空间汇交力系:力的作用线汇交于一点的空间力系。
d,空间汇交力系的平衡:空间汇交力系的合力为零,则该空间力系平衡。
3、力系的简化结果a,平面汇交力系向汇交点外一点简化,其结果可能是①一个力②一个力和一个力偶。
但绝不可能是一个力偶。
b,平面力偶系向作用面内任一点简化,其结果可能是①一个力偶②合力偶为零的平衡力系c,平面任意力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。
d,平面平行力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。
e,平面任意力系平衡的充要条件是①力系的主矢为零②力系对于任意一点的主矩为零。
4、力偶的性质a,由于力偶只能产生转动效应,不产生移动效应,因此力偶不能与一个力等效,即力偶无合力,也就是说不能与一个力平衡。
b,作用于刚体上的力可以平移到任意一点,而不改变它对刚体的作用效应,但平移后必须附加一个力偶,附加力偶的力偶矩等于原力对于新作用点之矩,这就是力向一点平移定理。
材料力学公式完全版

材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
力学计算公式

力学计算公式Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】常用力学计算公式统计一、材料力学:1.轴力(轴向拉压杆的强度条件)σmax=N max/A≤[σ]其中,N为轴力,A为截面面积2.胡克定律(应力与应变的关系)σ=Eε或△L=NL/EA其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力)3.剪应力(假定剪应力沿剪切面是均匀分布的)τ=Q/A Q其中,Q为剪力,A Q为剪切面面积4.静矩(是对一定的轴而言,同一图形对不同的坐标轴的静矩不同,如果参考轴通过图形的形心,则x c=0,y c=0,此时静矩等于零)对Z轴的静矩S z=∫A ydA=y c A其中:S为静矩,A为图形面积,y c为形心到坐标轴的距离,单位为m3。
5.惯性矩对y轴的惯性矩I y=∫A z2dA其中:A为图形面积,z为形心到y轴的距离,单位为m4常用简单图形的惯性矩矩形:I x=bh3/12,I y=hb3/12圆形:I z=πd4/64空心圆截面:I z=πD4(1-a4)/64,a=d/D(一)、求通过矩形形心的惯性矩求矩形通过形心,的惯性矩I x=∫Ay2dAdA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy=[by3/3]h0-[by4/4h]h0=bh3/126.梁正应力强度条件(梁的强度通常由横截面上的正应力控制)σmax=M max/W z≤[σ]其中:M为弯矩,W为抗弯截面系数。
7.超静定问题及其解法对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。
材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。
在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。
1. 应力和应变。
在材料力学中,应力和应变是最基本的概念。
应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。
其中,F为受力,A为受力面积。
应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。
其中,ΔL为长度变化量,L为原始长度。
2. 弹性模量。
弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。
3. 餐极限。
屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。
4. 断裂韧性。
断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。
其中,σ为应力,c为裂纹长度。
5. 疲劳强度。
疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。
6. 塑性体积变形。
塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。
其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。
7. 岛壳理论。
岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。
其中,P为受力,A为受力面积。
8. 塑性流动理论。
塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。
其中,ε0为初始应变,εf为终止应变。
以上就是一些常用的材料力学公式,希望对大家有所帮助。
在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。
材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。
工程力学公式总结

刚体 力的三要素:大小、方向、作用点静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。
平面汇交力系平衡几何条件:力多边形自行封闭合力投影定理合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。
它表明了合力与分力在同一坐标轴投影时投影量之间的关系。
平面汇交力系平衡条件:∑F ix =0;∑F iy =0。
2个独立平衡方程 第三章 力矩 平面力偶系力矩M 0(F)=±Fh(逆时针为正) 合力矩定理:平面汇交力系的合力对平面上任一点力矩,等于力系中各分力对与同一点力矩的代数和。
Mo(F )=Mo(F1)+Mo(F 2)+...+Mo(F n)=∑Mo(F ) 力偶;由大小相等,方向相反,而作用线不重合的两个平行力组成的力系称为力偶 力偶矩M =±Fd(逆时针为正)力偶的性质:性质1 力偶既无合力,也不能和一个力平衡,力偶只能用力偶来平衡。
性质2 力偶对其作用面内任一点之矩恒为常数,且等于力偶矩,与矩心的位置无关。
性质3 力偶可在其作用面内任意转移,而不改变它对刚体的作用效果。
性质4 只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短, 而不改变其对刚体的作用效果。
平面力偶系平衡条件是合力偶矩等于零。
第四章 平面任意力系力的平移定理:将力从物体上的一个作用点,移动到另外一点上,额外加上一个力偶矩,其大小等于这个力乘以2点距离,方向为移动后的力与移动前力的反向力形成的力偶的反方向平面力向力系一点简化可得到一个作用在简化中心的主矢量和一个作用于原平面内的主矩,主矢量等于原力系中各力的矢量和,而主矩等于原力系中各力对点之矩的代数和。
平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。
工程力学公式大全-精选.pdf

wmax l
[ w] , l
max
[]
16、( 1)轴向载荷与横向载荷联合作用强度:
max ( min )
FN
M ห้องสมุดไป่ตู้ax
A WZ
( 2)偏心拉伸 (偏心压缩 ): max ( min ) FN F A WZ
( 3)弯扭变形杆件的强度计算:
r3
1 M 2 T2
1
M y2
M
2 z
T2
[]
WZ
WZ
r4
1 M 2 0.75T 2
6
32
13、 平面弯曲杆件横截面上的最大切应力:
max
FS S * zmax
K FS
bI Z
A
14、 平面弯曲杆件的强度校核: ( 1)弯曲正应力 t max [ t ] , cmax [ c ]
( 2)弯曲切应力 max [ ] ( 3)第三类危险点:第三和第四强度理论
15、 平面弯曲杆件刚度校核:叠加法
R
, IP
I
IP
WP
d4 (1
32
4) ,
WP
d3 (1
4 ) ,强度校核: max Tmax [ ]
16
WP
6、单位扭转角:
d dx
T
,刚度校核: max
GI P
T max
GI P
[ ] ,长度为 l 的一段轴两截
面之间的相对扭转角
Tl
,扭转外力偶的计算公式:
GI P
Me 9549 p( KW ) n( r /min)
tan 2 0
10、 第三和第四强度理论: 11、 平面弯曲杆件正应力:
r3
2 4 2 , r4
工程力学知识点

工程力学知识点静力学分析1、静力学公理a,二力平衡公理:作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线.(适用于刚体)b,加减平衡力系公理:在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应.(适用于刚体)c,平行四边形法则:使作用在物体上同一点的两个力可以合为一个合力,此合力也作用于该点,合理的大小和方向是以两个力为邻边所构成的平行四边形的对角线来表示。
(适用于任何物体) d,作用与反作用力定律:两物体间的相互作用力,即作用力和反作用力,总是大小相等、指向相反,并沿同一直线分别作用在这两个物体上。
(适用于任何物体)e,二力平衡与作用力反作用力都是二力相等,反向,共线,二者的区别在于两个力是否作用在同一个物体上。
2、汇交力系a,平面汇交力系:力的作用线共面且汇交与一点的平面力系.b,平面汇交力系的平衡:若平面汇交力系的力多边形自行封闭,则该平面汇交力系是平衡力系。
c,空间汇交力系:力的作用线汇交于一点的空间力系。
d,空间汇交力系的平衡:空间汇交力系的合力为零,则该空间力系平衡。
3、力系的简化结果a,平面汇交力系向汇交点外一点简化,其结果可能是①一个力②一个力和一个力偶.但绝不可能是一个力偶。
b,平面力偶系向作用面内任一点简化,其结果可能是①一个力偶②合力偶为零的平衡力系c,平面任意力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。
d,平面平行力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。
e,平面任意力系平衡的充要条件是①力系的主矢为零②力系对于任意一点的主矩为零。
4、力偶的性质a,由于力偶只能产生转动效应,不产生移动效应,因此力偶不能与一个力等效,即力偶无合力,也就是说不能与一个力平衡。
b,作用于刚体上的力可以平移到任意一点,而不改变它对刚体的作用效应,但平移后必须附加一个力偶,附加力偶的力偶矩等于原力对于新作用点之矩,这就是力向一点平移定理。
(完整word版)工程力学重点总结

第一章静力学的基本概念和公理受力图一、刚体P2 刚体:在力的作用下不会发生形变的物体。
力的三要素:大小、方向、作用点平衡:物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。
3加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。
5 刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力P7 约束:1柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体;2光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力;3光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定;4链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。