利用3DMINE等软件建立三维数字矿山模型及其应用

合集下载

建立矿山三维模型中3Dmine矿业软件的应用_孙璐

建立矿山三维模型中3Dmine矿业软件的应用_孙璐
3Dmine提供了5种估值方法,选取克里格估值法 和距离幂次反比法分别进行估值,经过对比,最终确 定本模型使用距离幂次反比法估值更为准确。对比结 果见下页表。
图3为估值之后按品级对矿体进行着色的块体模 型图。
61
2 0 1 1 年第1 期 中国非金属矿工业导刊 总第8 7 期
在某矿的建模过程中,根据原矿山地质资料共选 取16个钻孔的完整数据建立了地质数据库,在实体模 型建立中用数学方法对品位估值起到关键的作用。 2.2 图形的导入及表面模型的建立
3Dmine提供了AutoCAD、MAPGIS等多种软件 的接口,可以很方便的将矿山的各种原有的平面图件 导入3DmineБайду номын сангаас进行编辑处理。图形导入可以直接将 二维图形转换成初始三维表面模型。但由于原图和转 换过程中的误差或者错误,会导致初始的三维模型变 形失真,主要表现为高程的不准确和缺失。这种情况 在建立表面模型的过程中尤为明显。
实体模型建立好之后,在创建块体模型与原矿资
料进行对比验证模型可靠性时又出现了新的问题。根 据该模型得到的各个品级的储量报告和矿山原有资料 出现了一定的误差。问题的原因是在建模的过程中, 圈定矿体时只截止到两端的勘探线,而矿体的实际赋 存情况大多不会是在勘探线处戛然而止,而是有所延 伸。因此,根据经验以及开采中的实际情况,使用 3Dmine“扩展外推线”的功能将两端的勘探线根据 经验按一定的比例向外做了延伸,再重新建立了实体 模型。经验证,在之后的储量报告的对比中误差迅速 减小。
实体模型建立好之后在创建块体模型与原矿资61克里格估值法和距离幂次反比法结果对比3dmine提供了各种形式的报告例如块体报告当前区域报告等还可以按实体分类以及线面界线分别生成报告以便于在直观地观察模型的同时全方位了解矿体的情况对下一步开采工作进行安排

3DMine矿业软件在数字矿山三维建模中的应用

3DMine矿业软件在数字矿山三维建模中的应用
的应用 。 主要 应用 在 以下几方 面 :
换 ,轻松辅助用户进行数据查询、地质解译和剖面品位 计算。操作简单直观 、 错误信息即时呈现报告。
实 体模 型 ,通 常 意 义 上包 括 两 种类 型 :一 是 表 面 模型 ( D T M) ,典 型 的特 点 是 空 间 曲 面模 型 ,如 地 表 、 煤 层 和 构造 面模 型 ;另一 个 是 矿 体模 型 ,如 地 层 、矿
1 3 D Mi n e 矿业工程软件简 介
1 . 1核心模块
核 心 模 块 是 一 个 界 面友 好 、功 能强 大 的 三维 显示
或多个工程 的地质岩性 、品位 、轨迹 和深度等数据信
息 。在屏 幕上 可 以选择容 差范 围 内的数据按 照 标高生 成
【 第一作者简 介 】 于 谦( 1 9 7 8 一 ) , 女, 河北保定人 , 工程师, 主要从事矿产资源 储量动态 监督管理以及矿山三维可视化教术推广及应用方面的工作。
部 现象 可视 化 和数 据管 理 的 问题 。
1 . 3地质模块 ( 地 质数据库 、实体模型 、块体 模 型 、地质统计、储量计算)
地 质数据 库通过 E x c e l 将 工程 ( 探 槽 、坑 道) 编录 的 数 据 、物 化探 或水 文 和煤 质数 据 按 照规 则 的表 格 录入 ,
在3 D Mi n e 软 件 中 ,服 务 于 测 量 工作 的是 一 个 交 互
性很强 的功能集 :一是实现不 同测量仪 器 ( 全站仪和
经 纬 仪 ) 数据 与 软件 的通 读 接 口 ,使 得 不 同 的实 测 数 据 快 速 导 入 成 图形 数 据 。应 用 测 量数 据 库 ,可 以全 面 存 储 不 同类 型 、阶段 和文 件 的测 量 数据 ;二 是 具 有 独 创 性 地 实 现 了实 测数 据 与E x c e l 、A u t o C A D软 件 之 间 的 数 据 与 图形 互 换 功 能 ,从 而 使 得 测 量 内业 工作 变 得 十 分 简便 、快 捷 。

基于3DMine的矿山真三维可视化构建

基于3DMine的矿山真三维可视化构建

基于3DMine的矿山真三维可视化构建董小勇;赵立军【摘要】露天矿真三维可视化是矿山数字化的重要组成部分.真三维可视技术以3DMine软件为平台,集地质、测量、采矿、管理为一体,综合运用数字化技术、图形技术、计算机技术等,用一定的方法建立矿床地质模型,对某一地区的地质地形进行准确而详细的描述,具有对地质地形信息存贮、查询、修改、计算地质储量、绘制地质地形图件,进行地质分析等功能的信息系统.它通过将各种地质信息以数字的形式载入数据库来加以成图,能够直观的反应出矿山的三维可视化图像,很大程度上方便的了矿山的总体设计、储量计算及矿山的管理.本文以义煤集团青海公司木里矿为例介绍了我公司在此软件的基础上实现真三维可视化的基本原理、方法及应用情况.【期刊名称】《露天采矿技术》【年(卷),期】2013(000)001【总页数】3页(P60-61,63)【关键词】矿床模型;真三维可视化;数据库【作者】董小勇;赵立军【作者单位】义煤集团义海能源公司,青海德令哈817000;北京三地曼矿业软件科技有限公司,北京100043【正文语种】中文【中图分类】TD671 前言真三维可视化技术是基于地理信息系统的基础上,综合运用数字化技术、图形技术、计算机计算等,采用数据库承载各种地理信息,进而达到数据的直观呈现。

以信息化、自动化和智能化带动采矿业的改造和发展,开创高效、高产和可持续发展的矿业发展新模式,是数字化发展的高端技术[1]。

它实现了矿山生产经营管理的各个环节间的生产要素网络化、数字化、模型化、可视化,为矿山的动态管理、生产方案对比决策、系统优化决策提供了可靠的依据,是我公司科技发展的重要途径。

2 数据导入与整理目前我公司所采用的制图软件为AutoCAD,其中的数据来源主要来自RTK的测量,这样的数据结果不能够直接加载,必须经过处理才能使用。

所需处理的数据主要包括钻孔的数据、当前剥岩的实际情况、煤层的分布层位显示、地质地形图数据及其他一些数据。

基于DEMINE软件的三维建模在矿山中的应用

基于DEMINE软件的三维建模在矿山中的应用

基于DIMINE软件的三维建模在数字矿山中的应用马恒亮胡晓婷摘要:三维建模是数字矿山中的核心组成部分,对于矿山工程设计和管理决策等具有十分重要的意义。

本文详细阐述了基于DIMINE 软件建立矿山三维模型的方法,及其与传统方法的对比,发现基于DIMINE软件建立的实体模型更加逼真的反映了矿山开采现状,更加直观、形象、容易理解。

最后介绍了基于DIMINE的三维模型在地质、测量、采矿设计、现场管理等领域的应用,为建立数字化矿山提供了一个探索的实例。

关键词:数字矿山三维建模 DIMINE软件生产应用数字矿山作为矿山领域的前沿技术,使得矿山工程逐渐向综合集成化、数字化、可视化的方向发展。

三维建模作为矿山数字化的核心技术,对矿山工程设计与管理决策具有十分重要的意义。

传统的平面表达方法使得矿山信息表达不充分,决策者难以理解和分析,不利于矿山的安全生产管理。

本文基于DIMINE软件,建立地表模型、巷道模型、矿体模型,与传统表达方法对比,该模型直观、形象、容易理解,能够很好的为矿山安全生产管理提供了有效和可靠地决策依据,具有很高的实用意义。

1.数字矿山和三维地质建模1.1数字矿山数字矿山也称智慧矿山,是建立在矿山数字化基础上能够完成矿山企业所有信息的精准适时采集、网络化传输、规范化集成、可视化展现、自动化操作和智能化服务的数字化智慧体。

[1]1.2三维地质建模三维地质建模(3D Geosciences Modeling),就是运用计算机技术,在三维环境下,将空间信息管理、地质解译、空间分析和预测、地学统计、实体内容分析以及图形可视化等工具结合起来,并用于地质分析的技术,它是随着地球空间信息技术的不断发展而发展起来的,由地质勘探、数学地质、地球物理、矿山测量、矿井地质、GIS、图形图像和科学计算可视化等学科交叉而形成的一门新兴学科,这一概念最早是由加拿大的Simon W Houlding于 1993年提出的[2]。

利用3DMINE等软件建立三维数字矿山模型和应用

利用3DMINE等软件建立三维数字矿山模型和应用

3Dmine矿三维数字矿山系统的步骤及简单应用这是2012年时候,我看了网友的相关帖子然后按照他们的流程,梳理出来的方法。

当时对3DMINE软件理解还不够,以为建几个实体模型就是数字矿山了,实际上还差比较远,最基本的钻孔数据库、块体模型储量估算那些部分还没有,所以题目应该叫做“利用3DMINE 等软件生成三维数字矿山模型”更恰当一些吧。

因为许多朋友问这个方法,所以我再整理一下分享给大家。

网友的方法还是比较简单实用的,能够快速生成一套三维矿山模型,我添加的一些内容仅供参考,里面还是有不少小错误,请大家以网友原创为准。

网友原创网页链接在上面,主要是两个帖子,一个是采集等高线,一个是截图的。

需要再补充一点,刚截出来的卫星图片,范围可能不是很准确,可以用PHOTOSHOP裁剪图片。

如果有CAD实测平面图,将卫星图片多次插入CAD平面图中,图片后置显示,将卫星图片与测量实测地表建筑等对比,用PHOTOSHOP多次裁剪后就非常准确了。

将裁剪准确后的卫星图片贴在DTM表面模型上,才与实际地表更吻合(如图13)。

摘要:利用3Dmine软件建立矿山地下巷道、矿体、空区、矿岩界面模型;利用Google Earth、Getscreen软件截取矿区地表高清卫星图片;利用Global Mapper 、MapGis 、3Dmine 建立地表等高线图和三维地表模型,并将高清卫星图像贴在三维地表模型表面;三维数字矿山系统在矿山生产设计中简单应用。

关键词:3Dmine ;三维建模;Google Earth ;Getscreen;Global Mapper; MapGis ;三维模型应用随着计算机软硬件不断发展,三维矿山工程设计软件在很多矿山、设计院、地勘单位、高校得到越来越多的应用,比较有代表性的软件有3Dmine、dimine、supac、micromine、sd、龙软等等。

三维软件有着许多传统二维设计软件不具备的优势,并且逐渐成为发展趋势,这里尝试用3Dmine结合其它一些软件建立铁山矿数字矿山系统,介绍详细制作流程并浅谈一下它的部分应用。

基于3DMine软件的矿山地层模型建模

基于3DMine软件的矿山地层模型建模

基于3DMine软件的矿山地层模型建模摘要:矿山三维立体模型是建立数字化矿山的基础,在地质工作中,通常理解的模型包括主要有:工程模型、地表模型、地层模型、断层模型和块体模型。

本文主要论述采用3DMine矿业软件进行三维矿山地层模型的主要流程。

关键字:3DMine软件,地层建模1 引言矿山数字化是在计算机信息技术飞速发展的前提下,伴随着数字地球而出现的新概念,这一概念的提出为三维建模和可视化的发展打下坚实的基础。

所谓三维地质建模(3D Geosciences Modeling),是指采用适当的数据结构在计算机中建立能反映地质构造的形态和各要素之间关系以及地质体物理、化学属性空间分布等地质特征的数学模型。

建立三维地质模型,普遍采用的是不规则三角网(TIN)[1]来逼近实体的表面形态。

属性模型则采用块体模型即有限元的方式来存储和处理。

随着计算机软硬件技术的飞速发展及计算机在矿业中的广泛应用,三维建模技术备受关注,并得到广泛的研究和应用。

本文以3DMine软件为平台介绍三维建模的基本过程。

2 3DMine 软件介绍3DMine矿业工程软件[2]是由北京三地曼矿业软件科技有限公司研究并开发的拥有自主知识产权、采用国际上先进的三维引擎技术、全中文操作的国产化矿业软件系统,是在多年来应用推广、总结分析国外主流软件结构的基础上,开发符合中国矿业行业规范和技术要求的全新三维矿业软件系统。

广泛应用于地质、测量、采矿和生产管理等方面,主要为固体矿产的地质勘探数据管理、矿床地质模型、构造模型、传统和现代地质储量计算、露天及地下矿山采矿设计、露天短期进度计划以及生产设施数据、规划目标数据建立实用三维可视化基础平台,为矿山资源管理、资源开采效率管理和生产数据管理提供技术支持服务。

3DMine的基本特点:二维和三维界面技术的完美整合;结合AutoCAD通用技术,方便实用的右键功能;支持选择集的概念,快速编辑和提取相关信息;集成国外同类软件的功能特点,步骤更为简单;剪贴板技术应用,使Excel、Word 以及Text数据与图形的直接转换;交互直观的斜坡道设计;快速采掘带实体生成算法以及采掘量动态调整;爆破结存量的计算和实方虚方的精确计算;多种全站仪的数据导入和南方Cass的兼容;工程图的打印绘制准确简便;兼容通用的矿业软件文件格式。

利用3DMine软件构造三维矿体模型的探讨

利用3DMine软件构造三维矿体模型的探讨

利用3DMine软件构建三维矿体模型的探讨地质体三维可视化模型构建是地质资料集成和二次开发的最佳方法。

它具有形象、直观、准确、动态、信息丰富等特点。

但国内很多金属矿山矿床成矿构造复杂,通常是将勘探线剖面矿体轮廓线切分为多个区域,逐个连接或者添加控制线。

上述方法虽然能够解决部分复杂矿体连接的问题,但对于解决形状和顶点数目差异较大的相邻轮廓线构建问题,这些方法均有一定的局限性,不能很好的构建出实体模型。

面对复杂矿体时,分区越多,加控制线越多,可能引起的自相交三角片越多。

本文利用3DMine 三维矿体建模软件提供的DTM模块和实体模块功能,先构建单独三角网,然后将三角网合并为实体,将复杂矿体很好的进行构建。

1相关概念和基本流程基本方法就是,将原本的闭合轮廓线分割为两相连接的多段线,然后利用实体模块里面的开放线到开放线功能,将人工能够定义下来的三角网先确定,然后逐步闭合实体,将自相交部分逐步集中,从而完成轮廓线间的三维形体表面构建。

2具体步骤2.1示例矿体资料图1为示例矿体20m标高水平投影轮廓线1、2、3,图2为20m标高水平投影4、5,图3为五个矿体侧视投影图。

图120m标高水平投影图图2矿体0m标高水平投影图3五个矿体轮廓线侧视2.2操作步骤1)如图4、5分别做1-4,2-4实体,再利用实体之间交线功能,做出交线。

图4做闭合线之间连接三角网图5做出两模型之间实体交线2)如图6、7。

找出实体交线与4号轮廓线的交点,找出这两交点对应的2号轮廓线对应顶点,连接直线。

然后用开放线到开放线连接功能,连接三角网,分别构建成两DTM面。

图6找出相交线与矿体圈之间的交点图7重新连接三角网。

3)如图8。

重新连接三角网后,对应两实体之间的相交部分的切口就已经做好了,因为是根据两实体之间的交线做出的三角网,所以,当重复步骤做1号矿体圈和4号矿体圈之间的三角网的时候是无缝连接,不会出现开放边、自相交等冗余部分,不需要做其余的修改操作。

DIMINE三维数字软件在矿山的应用

DIMINE三维数字软件在矿山的应用

DIMINE三维数字软件在矿山的应用摘要:近年来信息技术快速发展,数字矿山建设现已成为世界各国矿业界共同关注的课题。

目前国内外三维可视化软件日趋成熟,三维可视化技术在地矿中的应用也日益广泛。

积极地应用数字矿山三维可视化软件是提高矿山企业生产工作效率、提升信息化管理水平最突出的技术手段。

矿山利用三维建模与可视化技术,可以更直观、形象、精确地圈定地质体及矿体边界,揭示地层、断层、褶皱等地质体及地质现象的三维形态,了解矿体规模及矿体的空间分布规律,方便快捷地进行资源储量估算和动态管理,从而为矿产勘查与开发提供精确动态指导,直接推动传统矿山进行现代化改造。

基于此,本文主要对DIMINE三维数字软件在矿山的应用进行分析探讨。

关键词:DIMINE;三维数字软件;矿山;应用1前言随着科技的飞速发展,计算机和网络技术的不断进步,“数字化矿山”是最近发展的新事物。

“数字化矿山”是对真实矿山的信息化再现,是把矿山的所有数据输入计算机后分析、整理、计算集成三维模拟图形,可以真实的体现矿山地质形态与现场生产的实际情况。

DIMINE数字矿山系统是由中南大学数字矿山研究中心和长沙迪迈信息科技有限公司软件开发团队,研究开发出的一整套基于数字矿山整体解决方案的矿山数字化软件系统。

DIMINE系统采用三维可视化技术,以数据库技术、三维表面建模技术、三维实体建模技术、国际上通用的地质统计学方法、数字采矿设计方法、工程制图技术为基础,主要用于对矿床地质建模、储量计算、测量数据的快速成图及建模、地下矿开采系统设计、开采单体及回采爆破设计、地下矿生产计划、矿井通风解算与设计、露天矿开采设计、采剥计划与配矿到各种工程图表的快速生成等工作的可视化、数字化与智能化。

2、DIMINE数字软件在矿山地质中的应用DIMINE支持多用户的开发数据库技术,可用多种数据库来存储和管理地质信息。

数据库的连接十分方便快捷,数据类型主要包括模型数据和钻孔数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3Dmine矿三维数字矿山系统的步骤及简单应用这是2012年时候,我看了网友的相关帖子然后按照他们的流程,梳理出来的方法。

当时对3DMINE软件理解还不够,以为建几个实体模型就是数字矿山了,实际上还差比较远,最基本的钻孔数据库、块体模型储量估算那些部分还没有,所以题目应该叫做“利用3DMINE 等软件生成三维数字矿山模型”更恰当一些吧。

因为许多朋友问这个方法,所以我再整理一下分享给大家。

网友的方法还是比较简单实用的,能够快速生成一套三维矿山模型,我添加的一些内容仅供参考,里面还是有不少小错误,请大家以网友原创为准。

网友原创网页链接在上面,主要是两个帖子,一个是采集等高线,一个是截图的。

需要再补充一点,刚截出来的卫星图片,范围可能不是很准确,可以用PHOTOSHOP裁剪图片。

如果有CAD实测平面图,将卫星图片多次插入CAD平面图中,图片后置显示,将卫星图片与测量实测地表建筑等对比,用PHOTOSHOP多次裁剪后就非常准确了。

将裁剪准确后的卫星图片贴在DTM表面模型上,才与实际地表更吻合(如图13)。

摘要:利用3Dmine软件建立矿山地下巷道、矿体、空区、矿岩界面模型;利用Google Earth、Getscreen软件截取矿区地表高清卫星图片;利用Global Mapper 、MapGis 、3Dmine 建立地表等高线图和三维地表模型,并将高清卫星图像贴在三维地表模型表面;三维数字矿山系统在矿山生产设计中简单应用。

关键词:3Dmine ;三维建模;Google Earth ;Getscreen;Global Mapper; MapGis ;三维模型应用随着计算机软硬件不断发展,三维矿山工程设计软件在很多矿山、设计院、地勘单位、高校得到越来越多的应用,比较有代表性的软件有3Dmine、dimine、supac、micromine、sd、龙软等等。

三维软件有着许多传统二维设计软件不具备的优势,并且逐渐成为发展趋势,这里尝试用3Dmine结合其它一些软件建立铁山矿数字矿山系统,介绍详细制作流程并浅谈一下它的部分应用。

国产大型3DMine矿业工程软件可应用于地质、测量、采矿和生产管理等方面,主要为固体矿产的地质勘探数据管理、矿床地质模型、构造模型、传统和现代地质储量计算、露天及地下矿山采矿设计、露天短期进度计划以及生产设施数据、规划目标数据建立实用三维可视化基础平台。

Global Mapper 是一款地图绘制软件,不仅能够将数据(例如:SRTM数据)显示为光栅地图、高程地图、矢量地图,还可以对地图作编辑、转换、打印、记录GPS及利用数据的GIS (地理信息系统)功能;可以转换数据集的投影方式以符合项目的坐标系统,并可以同时对数据集的范围进行裁剪;还提供距离和面积计算,光栅混合、对比度调节、海拔高度查询、视线计算等。

GetScreen(全称Get Screen Copy from Google Earth)是自动截屏Google Earth地图至本地的专用软件,根据用户确定的截图区域和高程,自动计算所需要的相关数据,自动拼接成无缝隙的地图文件,支持BMP和JPEG两种存盘文件格式,并同时生成可用于OZI的GPS导航文件。

图1三维数字矿山系统侧视图铁山矿三维数字矿山系统包括地上和地下部分。

地上是带有等高线的DTM表面模型,并贴上了卫星图片。

等高线是从中科院下载的地形TIFF文件,通过Global Mapper、MAPGIS、3DMINE等软件转变而来,而卫星图片是通过GetScreen软件从Google Earth上截取而来。

地下部分就是通过3DMINE常用功能将CAD图纸转换到真实空间坐标位置的平面图、剖面图,再利用平面图、剖面图制作出巷道、矿体、空区、矿房矿柱等实体模型。

技术路线如图2。

图2 三维数字矿山系统建立技术路线方法1.数字矿山系统地下部分建立流程1.1 CAD文件前期处理图形文件中远离有效图形的无效点、线,将影响显示效果,导致图形文件在3Dmine中无法准确显示,所以应先在CAD中将图形文件远处多余点、线删除;重叠线段将导致无法正确捕捉,重叠线还会导致线段无法封闭,所以在前期CAD制图中应避免重叠线段产生。

1.2 CAD文件导入3Dmine3DMine能与多种软件格式兼容,“文件导入”命令可以能够导入文本、全站仪数据、Datamine、Surpac、MapGis、 AutoCAD、Micromine等类型的数据。

1.3 图形文件分层过多图层将增加后期处理工作量,建议分导线层、图框坐标网勘探线层、注记层、巷道层、矿岩界线层等。

1.4 巷道腰线、矿体界线处理①手动链接线选择工具>>线的基本操作>>连接2条线段或左键单击功能图标;选择需要连接两条线,点击右键,命令执行,依次链接。

②自动连接线选择工具>>自动连接线或左键点击功能图标,弹出自动连接线条对话框;用户需要输入连接距离,连接距离代表所有距离小于其数值的线条都将被合并,大于其数值的线条不作处理。

输入合适的连接距离后,框选所需要合并的线条,点击鼠标右键后,分开的线便合并为一条线。

注意:连接线前提是,没有重复和交叉线,否则将无法封闭或出现交叉线连接,无法创建模型。

1.5 平面图赋高程选择工具>>线赋高程>>赋Z值或左键单击功能图标,弹出请输入参数值对话框;在输入Z值中输入合适的数值,点击确定后选择待赋高程的图形对象,点击右键,命令执行。

1.6 查询点坐标①查询线段端点坐标运行菜单项查询>>查询点或单击工具栏图标,在界面最后一行的状态栏右边出现提示。

选择要查询的点左键单击,这时在信息栏中即可查看该点属性。

此功能还可以查询线段两端端点的坐标,点击时将只显示线段上点击位置距离端点较近的那一个端点的坐标。

②查询相交点坐标工具 >>点的操作>> 相交点,便可查询两条相交线的相交点的属性。

1.7 坐标转换①选择工具>>坐标转换>>平面2点坐标转换,弹出“2维坐标转换”对话框。

一个平面图形需要两个点控制,其中:旧的两点图形当前位置两点坐标—(x1,y1),(x2,y2)指在图形区域内控制当前图形的两个点坐标,这个坐标不一定是真实坐标,可以通过查询功能得到。

新的两点图形目标位置两点坐标—(X1,Y1),(X2,Y2)指图形的真实坐标,可以通过标注或者文字资料得到。

②得到“旧的两点”(x1,y1)(x2,y2)坐标和“新的两点”(X1,Y1),(X2,Y2)坐标后输入,点击确定,弹出“确认参数”对话框。

③点击执行后,图形就按照新旧两个点之间的缩放、旋转、X移动、Y移动确定的参数值,进行坐标转换。

注意:从缩放比例可得知坐标转换是否出错。

1.8 将图形区域内的图形的X、Y、Z坐标做调换。

选择工具>>坐标转换>>坐标调换(X-Y-Z),左键点击,弹出“坐标调换”对话框。

包括“XY调换”,“XZ调换”,“YZ调换”三种坐标调换方式;选择要坐标调换的方式,点击确定后当前图层内的图形就会进行相应的转换。

特别说明:①将图形文件从CAD导入3Dmine过程中,原图形文件的坐标如果是真实坐标,那么平面图将不需要进行坐标转换。

②如果图形文件在CAD中不是真实坐标,则在导入3Dmine后需要进行坐标转换。

因为CAD中坐标系横轴是Y轴纵轴是X轴,我们习惯将XY坐标反着输入的,才符合我们坐标网是上北下南的习惯。

而3Dmine 中坐标横轴是X轴纵轴是Y轴,所以CAD的XY坐标和3Dmine中XY坐标是相反的。

因为图形文件在CAD中XY坐标是反着输入的,所以在坐标转换时需要再将XY坐标纠正过来。

坐标转换示意旧点1 →新点1 旧点2 →新点2原来位置坐标 x1 → Y1 x2 → Y2目标位置坐标 y1 → X1 y2 → X2这个过程是两步,但是由一次转换完成。

③一个剖面图从CAD转换到3Dmine,需要进行一次Y坐标转换,一次YZ坐标调换,一次坐标ZX面内坐标转换,共三步完成。

下图是一个平面图和一个剖面图坐标移动后处在实际空间坐标位置。

图3立体空间中实际坐标位置的平面图和剖面图1.9 矿体实体模型建立1.9.1 初步建立实体①调入剖面图矿体线文件,选择实体>>连接三角网>>线之间连三角网,②根据状态栏提示,左键依次单击2根线,2根线变为虚线,并且线之间连接起三角网,这些三角网被填充了颜色,形成光滑的表面。

③在没有点击鼠标右键或Esc键结束连接三角网之前,鼠标呈星型十字状态,只需要连续点击多根线段,就可以依次连接多个三角网。

注意:连接实体的线,必须是封闭的,才可以进行封闭线段间建立实体模型;连接实体的线,上面的控制点最好是均匀并且数量适中,否则生成模型不圆滑。

图4矿体三维模型1.9 合并多个剖面线之间的实体在连接三角网时,创建了不同的体号,用合并三角网为一个实体的命令,可将不同体号的三角网合并为一个实体号文件。

实体>>实体编辑>>合并三角网为一个实体。

①调入矿体模型文件,该矿体模型由不同体号的三角网组成;②选择实体>>实体编辑>>合并三角网为一个实体命令,创建新的体号;③根据提示,框选需要合并的部分,这时该部分呈虚线显示,右键单击即可完成合并。

1.10 腰线巷道建模1.10.1 各水平巷道建模①为了在生成巷道时不被除腰线外其他线条影响而导致出错,巷道层应只保留巷道腰线。

②数据清理:一般来讲,对于巷道腰线,要求线条和其上的点比较清晰均匀,控制点数量适中,没重复和交叉,同时,保证不同区域的线条是完整闭合的,否则需要清理和编辑。

控制点不够则需要线上添加控制点加密。

③选择地下>>腰线巷道建模,弹出“腰线巷道建模”对话框。

点击“显示巷道出口”后在界面右下角最后一行状态栏将出现提示。

左键点击外侧的闭合线,再在空白处点击右键生成。

注意:此时必须选择最外侧的闭合线,选择内侧的线或体无效。

内外侧线都必须封闭。

④选择“生成拱线”:这是在产生巷道立体图时,自动在顶板上生成巷道的拱线,其中,顶板线的点即在每个角网的交点依次连接而成。

确定后,使用左键点击最外侧的巷道线,即可得到。

⑤当选择“圆弧拱巷道”、“矩形巷道”和“梯形巷道”时,操作步骤与上述相同,不同的是选择不同的巷道参数。

铁山巷道为三心拱断面2.8*2.5或者3.0*2.8,参数可以根据实际巷道断面设置,或者手工绘制断面。

图5利用CAD巷道腰线图建立巷道三维模型1.10.2 斜坡道的生成①生成铁山矿斜坡道,在斜坡道上、下口找准底板线,连接成封闭线段,依然采用腰线巷道建模的方法生成。

相关文档
最新文档