人教版五年级上册数学知识点整理
人教版小学五年级数学上册知识点总结

人教版小学五年级数学上册知识点总结人教版小学五年级数学上册知识要点总结一、数的认识1.1 万以上数的认识:学生需要掌握万、十万、百万、千万、亿等大数的读法和写法,了解十进制计数法,并能够解决相关问题。
1.2 数的读写方法:学生需要掌握任意一个数的读写方法,包括整数、小数和分数。
1.3 数的改写和近似数:学生需要掌握如何将一个数改写成指定单位,如将千米改写成米,以及如何求一个数的近似数。
二、数的运算2.1 四则运算的意义:学生需要理解加法、减法、乘法和除法的意义,并能够解决简单的四则运算问题。
2.2 运算定律和简便运算:学生需要掌握加法交换律、加法结合律、乘法交换律、乘法结合律等基本运算定律,并能够运用这些定律进行简便运算。
2.3 估算:学生需要掌握如何对一个数进行估算,并能够运用估算解决实际问题。
三、简易方程3.1 方程的意义:学生需要理解方程的意义,并能够根据题意列方程。
3.2 解方程:学生需要掌握一些基本的解方程的方法,如移项、合并同类项、系数化为1等。
3.3 应用问题:学生需要能够运用方程解决一些简单的应用问题。
四、多边形面积4.1 平行四边形和三角形面积:学生需要掌握平行四边形和三角形的面积计算公式,并能够解决相关问题。
4.2 梯形面积:学生需要掌握梯形的面积计算公式,并能够解决相关问题。
4.3 面积单位换算:学生需要掌握常用的面积单位之间的换算关系,并能够进行简单的单位换算。
五、简易代数5.1 代数式和表达式:学生需要了解什么是代数式和表达式,并能够用代数式表示简单的数量关系。
5.2 解方程组:学生需要掌握如何解二元一次方程组,并能够解决相关问题。
5.3 应用问题解方程组:学生需要能够运用方程组解决一些简单的应用问题。
六、统计与概率6.1 统计图表的认识和应用:学生需要了解各种常见的统计图表,如柱状图、折线图和饼图等,并能够运用这些图表解决实际问题。
同时,学生还需要了解一些基本的概率知识,如随机事件、概率的意义和计算方法等。
人教版五年级数学上册概念知识点整理

人教版五年级数学上册概念知识点整理目录人教版五年级数学上册概念知识点整理 (1)第一单元小数乘法 (1)第二单元位置 (2)第三单元小数除法 (2)第四单元可能性 (3)第五单元简易方程 (3)第六单元多边形的面积 (4)第七单元数学广角 (6)补充内容:观察物体 (7)第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版小学数学五年级(上册)全册知识要点梳理

人教版小学数学五年级(上册)全册知识要点梳理第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c (b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版小学五年级数学上册知识点归纳

人教版小学五年级数学上册知识点归纳第一单元《小数乘法》一.小数乘整数1.计算小数加法先把小数点对齐,再把相同数位上的数相加2.计算小数乘法末尾对齐,按整数乘法法则进行计算.3.积中小数末尾有0的乘法. 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0.如:3.60 “0”应划去 .如果乘得的积的小数位数不够要在前面用0补足,再点上小数点.如0.02×2=0.044.计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐.二.小数乘小数1.因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数.2.小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.)乘得的积的小数位数不够要在积的前面用0补足,在点小数点.3.规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数.一个数(0除外)乘小于1的数(0除外),积小于这个数.一个数(0除外)乘1,积等于这个数.4.小数乘法的验算方法(1).把因数的位置交换相乘. (2).用计算器来验算三.积的近似数1.先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示.2. 如果求得的近似数所求数位的数字是9而后一位数字又大于等于5需要进1,这是就要依次进一用0占位.如6.597 保留两位为6.60.四.连乘.乘加.乘减1.小数乘法要按照从左到右的顺序计算2.小数的乘加运算与整数的乘加运算顺序相同,先乘除,后加减.五.简便运算整数乘法的交换律.结合律和分配律,同样适用于小数乘法.常见乘法计算(敏感数字):25×4=100 125×8=1000第二单元位置1.行和列的意义:竖排叫做列,横排叫做行.2.数对可以表示物体的位置,也可以确定物体的位置.3.数对表示位置的方法:先表示列,再表示行.用括号把代表列和行的数字或字母括起来,再用逗号隔开.例如:(7,9)表示第七列第九行.4.两个数对,前一个数相同,说明它们所表示物体位置在同一列上.如:(2,4)和(2,7)都在第2列上.5.两个数对,后一个数相同,说明它们所表示物体位置在同一行上.如:(3,6)和(1,6)都在第6行上.6.物体向左.右平移,行数不变,列数减去或加上平移的格数.物体向下.上平移,列数不变,行数减去或加上平移的格数.第三单元《小数除法》1.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算.2.小数除法的计算方法:(可以先写商的小数点,再写商)(1)除数是整数的小数除法:按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,如果被除数的整数部分比除数小,不够商1,要在商的个位上写0,然后点上小数点,再继续除;如果除到被除数的末尾仍有余数时,就在余数的后面添0再继续除.(2)除数是小数的除法:先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算.3.商不变的性质:两数相除,被除数与除数同时扩大或缩小相同的倍数(0除外),商不变.4.商的变化规律:两数相除,除数不变,被除数扩大或缩小几倍,商也随着扩大或缩小几倍.两数相除,被除数不变,除数扩大或缩小几倍,商也随着缩小或扩大几倍.5.除法中比较大小时的规律:一个数(0除外)除以大于1的数,商小于被除数一个数(0除外)除以1,商等于被除数一个数(0除外)除以小于1的数(0除外),商大于被除数6.取近似数的方法:取近似数的方法有三种:①四舍五入法②进一法③去尾法一般情况下,按要求取近似数时用四舍五入法,进一法.去尾法在解决实际问题的时候选择应用.取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数.没有要求时,除不尽的一般保留两位小数.7.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.依次不断重复出现的数字,叫做这个循环小数的的循环节.8.循环小数的表示方法:(1)一种是用省略号表示,要写出两个完整的循环节,后面标上省略号.如:0.3636… 1.587587….(2)另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点.如:0.3。
人教版五年级上册数学知识点梳理

人教版五年级上册数学知识点梳理一、小数乘法。
1. 小数乘整数。
- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:2.5×3表示3个2.5相加的和是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果积的末尾有0,要先点上小数点,再把0去掉。
例如:2.5×3 = 7.5,先算25×3 = 75,因数2.5有一位小数,所以从75右边起数出一位点上小数点得7.5。
2. 小数乘小数。
- 意义:表示一个数的十分之几、百分之几、千分之几……是多少。
例如:2.5×0.3表示2.5的十分之三是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
例如:2.5×0.3 = 0.75,先算25×3 = 75,因数2.5有一位小数,0.3有一位小数,共两位小数,从75右边起数出两位点上小数点得0.75。
3. 积的近似数。
- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出近似数。
例如:2.5×0.3 = 0.75,如果保留一位小数,看百分位上的5,向十分位进1,0.75≈0.8。
4. 整数乘法运算定律推广到小数。
- 乘法交换律:a×b = b×a;乘法结合律:(a×b)×c=a×(b×c);乘法分配律:(a + b)×c=a×c + b×c。
这些运算定律在小数乘法中同样适用。
例如:2.5×0.4×0.3=(2.5×0.4)×0.3 = 1×0.3 = 0.3(运用乘法结合律);(2.5+0.3)×0.4 =2.5×0.4+0.3×0.4 = 1 + 0.12 = 1.12(运用乘法分配律)。
人教版小学五年级数学上册知识点

人教版小学五年级数学上册知识点第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版五年级上册数学知识点汇总
人教版五年级上册数学知识点汇总第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版五年级上册数学全册知识点梳理
1.小数乘法(1)小数乘法的意义:小数乘法的意义比整数乘法的意义,有了进一步的扩展.小数乘法的意义包括两种情况:A、是同整数乘法的意义相同,即求相同加数的和的简便运算.例如:0.3×5表示5个0.3的和.B、是求一个数的十分之几,百分之几……是多少.例如10×0.3表示求10的是多少,这是乘法意义上的扩展.(2)小数乘法的计算法则计算小数乘法,先按照整数乘示的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.小数计算乘法,用的是转化的思想方法.先把小数转化为整数算出积,再确定小数点的位置,还原成小数乘法的积.如6.2×0.3看作62×3相乘的积是186,因数中一共有两位小数,就从186的右边起数出两位,点上小数点还原成小数乘法的积1.86.因此,小数乘法的关键是处理好小数点.在点小数点时注意,乘得的积的小数位数不够时,要在前面用0补足,如0.04×0.2=0.008,在8的前面补两个0,点上小数点后,整数部分也写一个0(3)小数乘法的计算方法A按照整数乘法的计算方法进行。
B进行积的处理。
(点小数点)C进行结果的处理。
(最简)(4)取近似值的方法1、先算出准确的乘积;2、看被保留的下一位上的数字用四舍五入法取近似数(5)连乘、连加、乘减,整数乘法运算定律推广到小数方法:同整数的运算顺序相同,同整数乘法运算定律使用方法也是相同的。
※整数乘法运算定律:①乘法的交换率:两个数相乘,交换两个因数的位置,积不变。
乘法交换律:a×b=b×a②乘法的结合率:三个数相乘,可以先把前两个数相乘,再同第三个数相乘,或者先把第二个数、第三个数相乘,再同第一个数相乘,它们的积不变。
乘法结合律:(a×b)×c=a×(b×c)③乘法的分配率:两个数的和同一个数相乘,可以把两个数分别同这个数相乘,再把两个积相加,积不变。
人教版小学五年级上册数学知识点总结
人教版小学五年级上册数学知识点总结一、数与代数(一)小数的乘法和除法1.小数乘法•计算方法:将小数乘法转化为整数乘法进行计算,然后再将结果转化为小数形式。
•运算律:乘法交换律、乘法结合律、乘法分配律在小数乘法中仍然适用。
•积的近似值:根据题目要求,对乘积进行四舍五入。
•特殊情况:当两个小数相乘时,如果其中一个因数比1小,那么积也比另一个因数小;如果其中一个因数比1大,那么积也比另一个因数大;如果两个因数都比1大或都比1小,那么积比1大或比1小。
2.小数除法•计算方法:将小数除法转化为整数除法进行计算,然后再将结果转化为小数形式。
•商的近似值:根据题目要求,对商进行四舍五入。
•循环小数:当一个数除以另一个数时,如果结果是一个无限重复的小数,那么这个小数就是循环小数。
例如,1÷3=0.333…。
•除法的性质:除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。
(二)整数、小数四则混合运算1.运算顺序:先乘除后加减,有括号则先计算括号内的运算。
2.简便计算:利用运算律(如交换律、结合律、分配律)进行简便计算。
3.估算:对结果进行大致的估计,以判断答案的合理性。
(三)用字母表示数1.代数式:用字母和数字通过有限次的四则运算得到的式子。
2.方程:含有未知数的等式。
3.方程的解:使方程左右两边相等的未知数的值。
二、空间与图形(一)平行四边形的面积1.平行四边形面积的计算:底×高。
2.特殊平行四边形:正方形和长方形是特殊的平行四边形。
正方形的四条边都相等,长方形的对边相等。
(二)三角形的面积1.三角形面积的计算:底×高÷2。
2.等底等高的三角形:等底等高的三角形面积相等。
(三)梯形的面积1.梯形面积的计算:(上底+下底)×高÷2。
2.特殊梯形:当梯形的上底为0时,梯形变为三角形;当梯形的上底与下底相等时,梯形变为平行四边形。
人教版五年级数学上册(全册)知识点汇总
人教版五年级数学上册(全册)知识点汇总第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版五年级上册数学知识点整理人教版五年级上册数学知识点整理一、小数乘法和除法1、小数乘整数:意义:求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
小数乘整数计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义:就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
小数乘小数计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律1:①一个数(0除外)乘大于1的数,积比原来的数大;②一个数(0除外)乘小于1的数,积比原来的数小:③一个数(0除外)乘1的数,积等于原来的数。
4、求近似数的方法一般有三种:(1)四舍五入法(2)进一法(3)去尾法5、计算钱数时,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:①乘法交换律:a×b=b×a②乘法结合律:(a×b)×c=a×(b×c)③乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c除法:除法性质:a÷b÷c=a÷(b×c)例1 用简便方法计算下列各题①u00010.25⨯104②2.4⨯2.5⨯44③0.31⨯99 ④4.2⨯99+4.2例2 明明和乐乐去文具店买笔芯,明明买4支黑色的和5支蓝色的,共付5元钱,乐乐买4支黑色的和6支蓝色的共付5.6元。
每支黑色笔芯多少钱?例3 7.9468保留整数是( ),保留一位小数是( ),保留两位小数是( )。
一、基础知识填空1、小数乘法的计算先按整数乘法算出(),在给()点上()。
看因数中一共有几位(),就从积的右边起数出(),点上()。
乘得的积的小数位数不够,要在前面用()补足,再点小数点。
2、积的近似数可以根据需要,按()法保留一定的小数位数。
3、0.367保留两位小数的近似数是(),5.999保留一位小数的近似数是()。
三、用简便方法计算下面各题。
4.8×0.25 2.33×0.5×41.5×105 1.2×2.5+0.8×2.5五、解决实际问题。
1、鸵鸟的最高速度是非洲野狗的1.3倍,鸵鸟的最高速度是56千米/时, 非洲野狗的最高速度是多少千米/时?2、小明从家到学校的距离是1.8千米,计算每天从家到学校往返要走多少千米(每天往返两次),一周(按5天计算)要走多少千米?3、回收1吨废纸,可以保护16棵树,回收54.5吨废纸可以保护多少棵树?4、王老师从家骑车到学校要用0.25小时,家离学校有多远?如果他改为步行,每小时走5千米,用0.8小时能走到学校吗?二、小数除法1、小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数, 求另一个因数的运算。
如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6, 求另一个因数是多少。
2、小数除以整数计算方法,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。
如果除到末尾仍有余数,要添0再继续除。
3、除数是小数的除法计算方法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0补足。
再按照除数是整数的小数除法进行计算。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、被除数、除数和商的关系。
①被除数比除数大,商大于1。
被除数比除数小,商小于1。
②一个数(0除外)除以小于1的数(0除外),商大于被除数;③一个数(0除外)除以1,商等于被除数;④一个数(0除外)除以小于1的数(0除外),商大于被除数。
6、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
注意:A 除以B=A÷B;A 除B=B÷A;A 去除B=B÷A;A 被B 除=A÷B。
7、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
8、小数部分的位数是有限的小数,叫做有限小数。
小数部分是无限的小数叫做无限小数。
循环小数就是无限小数中的一种。
9、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。
10、写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上面各记一个循环点。
循环点最多只点两个。
11、取近似数有三种方法:1、四舍五入法;2、去尾法;3、进一法。
在解决实际问题时,要根据实际情况取商的近似值。
例:0.25×3.94(积保留一位小数) 17.6×22.92(得数保留两位小数)1.06×2.7(积精确到百分位) 0.74×0.21(积精确到十分位)3、用简便记法表示下列各循环小数。
0.06262···写作() 3.2727···()16.203203···写作() 0.33066···()4、列竖式计算下面各题,商用循环小数表示。
2.75÷6289÷90156÷11三、整数、小数四则混合运算和应用题1、四则混合运算顺序整数、小数四则混合运算的顺序与整数四则混合运算的顺序完全相同,整数四则混合运算的运算定律对小数同样适用。
一个算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算;如果有括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
2、解答应用题的步骤(1)弄清题意,并找出已知条件和所求问题;(2)分析题里数量间的关系,确定先算什么,再算什么,最后算什么;(3)确定每一步该怎样算,列出算式,算出得数;(4)进行检验,写出答案。
例4 计算1、5.52-3.12⨯0.6+8.93.2⨯0.7+5.4÷1.72、把5.8扩大()倍是58, 69缩小()倍是0.69。
3、在下面的圆圈里填上“>”、“<”或“=”符号。
4.5×0.6○4.52.76×1.52○1.521.96×1.8○1.96×10×0.13.12×0○3.124、脱式计算213.6÷0.8÷0.340.5÷0.5+10.7518.305÷0.07-85.165、用简便方法计算930÷5÷0.64.53÷0.25÷46、一只蜜蜂0.5小时飞行9.3千米,是一只蝴蝶飞行速度的2.4倍,这只蝴蝶每小时飞行多少千米?7、用一部收割机收大豆,5天可以收割20.8公顷,照这样计算,6天可以收割多少公顷?104公顷大豆需要多少天才能收割完?6、中秋节,好利来蛋糕房用一根70米长的红丝带包装月饼盒。
每个月饼盒要用1.6米长的丝带。
这根红丝带最多可以包装多少盒月饼?7、有550千克的苹果要装纸箱运走,每个纸箱最多能装17千克,至少需要多少个纸箱才能全部运走?8、一条高速公路长432千米,一辆客车4.5小时行完全程;一辆货车5.4小时行完全程。
客车的速度比货车快多少?9、张红买了3支铅笔和5本练习本,共用了8.4元。
已知每本练习本要1.2元,每支铅笔要多少元?10、机床厂计划全年生产机床480台,实际提前2个月完成全年任务的1.5倍,实际平均每月完成多少台?11、列式计算(1)21除214.2的商,乘0.7,积是多少?(2)18.305除以0.7的商,减去25.46,差是多少?四、多边形面积的计算1.长方形:周长=(长+宽)×2C长=2(a+b)面积=长×宽 S长=a b正方形:周长=边长×4 C正=4a面积=边长×边长 S正=a2、平行四边形有无数条高。
三角形有三条高。
梯形有无数条高。
3、平行四边形面积公式平行四边形的面积=底×高 S平=ah平行四边形的底=面积÷高 a平=S÷h平行四边形的高=面积÷底 h平=S÷a平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积。
因为长方形面积=长×宽,所以平行四边形面积=底×高。
4、三角形面积公式三角形的面积=底×高÷2S三=ah÷2三角形的底=面积×2÷高 a三=S×2÷h三角形的高=面积×2÷底h三=S×2÷a三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷25、梯形面积公式梯形的面积=(上底+下底)×高÷2 S梯=(a+b)h÷2梯形的高=面积×2÷(上底+下底)h梯=S×2÷(a+b)上底+下底=面积×2÷高a+b=S×2÷h梯形的上底=面积×2÷高-下底a梯 =S×2÷h-b梯形的下底=面积×2÷高-上底 b梯 =S×2÷h-a梯形面积公式推导:旋转两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷26、①等底等高的平行四边形面积相等;等底等高的三角形面积相等;②等底等高的平行四边形面积是三角形面积的2倍。