中考数学二模试卷A卷

合集下载

2020年吉林省名校调研(省命题A卷)中考数学二模试卷 (解析版)

2020年吉林省名校调研(省命题A卷)中考数学二模试卷 (解析版)

2020年中考数学二模试卷一、选择题1.下列各点中,在反比例函数y=的图象上的是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)2.下列方程中,有两个不相等的实数根的是()A.x2=0B.x﹣3=0C.x2﹣5=0D.x2+2=03.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是()A.B.C.D.4.将抛物线y=2x2﹣1先向左平移1个单位长度,再向上平移2个单位长度,得到的抛物线的顶点坐标为()A.(0,﹣1)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)5.如图,OA、OB是⊙O的半径,C是上一点,连接AC、BC.若∠AOB=128°,则∠ACB的大小为()A.126°B.116°C.108°D.106°6.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为am,已知冬至时长春的正午光入射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m二、填空题(每小题3分,共24分)7.计算:6•cos60°﹣(﹣1)0=.8.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为.9.如图.E是正方形ABCD的边DC上一点.连接AE.将AE绕若点A顺时针旋转90°得到AF.连接EF、BF.若AB=3,DE=1,则EF的长为.10.如图,在平面直角坐标系中,点A(2,4)和点B(n,2)在反比例函数的图象上,过点A作AC⊥x轴于点C,连接AB、BC,则△ABC的面积为.11.如图,AB∥CD∥EF.若AD:AF=3:5,BC=6,则CE的长为.12.如图,一位同学通过调整自己的位置,设法使三角板DEF的斜边DF保持水平,并且边DE与点B在同一直线上,已知两条边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB为m.13.如图,OA、OB是⊙O的半径,连接AB并延长到点C,连接OC,若∠AOC=80°,∠C=40°,⊙O的半径为2,则的长为(结果保留π).14.如图,抛物线y=(x+2)2﹣1与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,作直线AC.动点P是线段AC上一点,过点P作x轴的垂线交该抛物线于点Q,则线段PQ长的最大值为.三、解答题(每小题5分,共20分)15.计算:sin60°+×﹣tan60°.16.2019年11月1日5G商用套餐正式上线,某移动营业厅为了吸引用户,设计了A、B 两个可以自由转动的转盘(如图).A转盘被等分为2个扇,分别为红色和黄色;B转盘被等分为3个扇形,分别为黄色、红色、蓝色.指针固定不动,营业厅规定,每位5G 新用户可分别转动两个转盘各一次,转盘停止后,若指针所指区域颜色相同,则该用户可免费领取100G通用流量(若指针停在分割线上,则重转).小王办理5G业务获得一次转转盘的机会,求他能免费领取100G通用流量的概率.17.小明同学解一元二次方程x2﹣2x﹣2=0的过程如下:解:x2﹣2x=2,第一步;x2﹣2x+1=2,第二步;(x﹣1)2=2,第三步;x﹣1=±,第四步;x1=1+,x2=1﹣,第五步.(1)小明解方程的方法是,他的求解过程从第步开始出现错误;(2)请用小明的方法完成这个方程的正确解题过程.18.某公司去年4月的营业额为2800万元,由于改进销售方式,营业额连月上升,6月营业额达到3388万元,假设该公司5月、6月营业额的月平均增长率相同,求月平均增长率.四、解答题(每小题7分,共28分)19.如图是由边长相等的小正方形组成的网格,点A、B均在格点上.(1)在网格中,用无刻度的直尺画等腰直角三角形ACB.使∠ACB=90;(2)在(1)的条件下,点D在AC上(点D可以不在格点上).在网格中,用无刻度的直尺画出∠CBD,使tan∠CBD=.20.某单位为了创建城市文明单位,准备在单位的墙外开辟一处矩形的地进行绿化,其中边靠墙,且墙长为20m,除墙体外三面要用栅栏围起来,计划用栅栏50m,设AB的长为xm,矩形的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求y的最大值.21.如图,在△ABC中,∠ABC=45°,它的外接圆的圆心O在其内部,连结OC,过点A 作AD∥OC,交BC的延长线于点D.(1)求证:AD是⊙O的切线;(2)若∠BAD=105°,⊙O的半径为2,求劣弧AB的长.22.宋家州主题公园拟修建一座柳宗元塑像,如图所示,柳宗元塑像(塑像中高者)DE在高13.4m的假山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进10m 到达B处,测得塑像顶部D的仰角为60°,求柳宗元塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,≈1.73)五、解答题(每小题8分,共16分)23.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴正半轴上(点B在点A的右侧),AB=3,AD=8,AD⊥x轴,CD在第一象限,边AD的中点E在函数y=(x >0)的图象上,边BC交该函数图象于点F.连接BE.(1)求BE的长;(2)若CF﹣BE=2,求k的值.24.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,E为边BC的中点,将△DEF绕点E旋转,旋转过程中,边DE与边AB相交于点P,边EF 与边CA延长线相交于点Q.(1)求证:△PBE∽△ECQ.(2)若BP=3,CQ=8,求BC的长.六、解答题(每小题10分,共20分)25.如图,抛物线y=﹣x﹣1与y轴交于点A,点B是抛物线上的一点,过点B 作BC⊥x轴于点C,且点C的坐标为(9,0).(1)求直线AB的表达式;(2)若直线MN∥y轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;(3)在(2)的条件下,当四边形MNCB是平行四边形时,求点Q的坐标.26.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.参考答案一、选择题(每小题2分,共12分)1.下列各点中,在反比例函数y=的图象上的是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)【分析】根据反比例函数解析式可得xy=6,然后对各选项分析判断即可得解.解:∵y=,∴xy=6,A、∵2×3=6,∴点(2,3)在反比例函数y=图象上,故本选项符合题意;B、∵2×(﹣3)=﹣6≠6,∴点(2,﹣3)不在反比例函数y=图象上,故本选项不符合题意;C、∵﹣2×3=﹣6≠6,∴点(﹣2,3)不在反比例函数y=图象上,故本选项不符合题意;D、∵﹣3×2=﹣6≠6,∴点(﹣3,2)不在反比例函数y=图象上,故本选项不符合题意.故选:A.2.下列方程中,有两个不相等的实数根的是()A.x2=0B.x﹣3=0C.x2﹣5=0D.x2+2=0【分析】利用直接开平方法分别求解可得.解:A.由x2=0得x1=x2=0,不符合题意;B.由x﹣3=0得x=3,不符合题意;C.由x2﹣5=0得x1=,x2=﹣,符合题意;D.x2+2=0无实数根,不符合题意;故选:C.3.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是()A.B.C.D.【分析】直接从上往下看,看到平面图形就是俯视图,选择正确选项即可.解:根据题意,从上面看原图形可得到在水平面上有一个由两个小正方形和两个小长方形组成的长方形.故选:B.4.将抛物线y=2x2﹣1先向左平移1个单位长度,再向上平移2个单位长度,得到的抛物线的顶点坐标为()A.(0,﹣1)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.解:抛物线y=2x2﹣1向左平移1个单位长度,得:y=2(x+1)2﹣1;再向上平移2个单位长度,得:y=2(x+1)2+1.此时抛物线顶点坐标是(﹣1,1).故选:D.5.如图,OA、OB是⊙O的半径,C是上一点,连接AC、BC.若∠AOB=128°,则∠ACB的大小为()A.126°B.116°C.108°D.106°【分析】作所对的圆周角∠APB,如图,利用圆周角定理得到∠APB=∠AOB=64°,然后根据圆内接四边形的性质计算∠ACB的度数.解:作所对的圆周角∠APB,如图,∵∠APB=∠AOB=×128°=64°,而∠APB+∠ACB=180°,∴∠ACB=180°﹣64°=116°.故选:B.6.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为am,已知冬至时长春的正午光入射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.解:由题意可得,立柱根部与圭表的冬至线的距离为:=m,故选:C.二、填空题(每小题3分,共24分)7.计算:6•cos60°﹣(﹣1)0=2.【分析】原式利用特殊角的三角函数值,以及零指数幂法则计算即可求出值.解:原式=6×﹣1=3﹣1=2.故答案为:2.8.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为2020.【分析】把x=m代入方程计算即可求出所求.解:把x=m代入方程得:m2﹣m﹣2019=0,即m2﹣m=2019,则原式=2019+1=2020,故答案为:20209.如图.E是正方形ABCD的边DC上一点.连接AE.将AE绕若点A顺时针旋转90°得到AF.连接EF、BF.若AB=3,DE=1,则EF的长为2.【分析】根据正方形的性质得到∠DAB=∠D=90°,AB=AD=3,由勾股定理得到AE ==,根据旋转的性质得到AF=AE=,∠FAE=90°,于是得到结论.解:∵四边形ABCD是正方形,∴∠DAB=∠D=90°,AB=AD=3,∵DE=1,∴AE==,∵将AE绕若点A顺时针旋转90°得到AF,∴AF=AE=,∠FAE=90°,∴EF=AE=2,故答案为:2.10.如图,在平面直角坐标系中,点A(2,4)和点B(n,2)在反比例函数的图象上,过点A作AC⊥x轴于点C,连接AB、BC,则△ABC的面积为4.【分析】根据反比例函数系数k的几何意义得出k=2×4=2n,求得n=4,然后根据三角形面积公式即可求得.解:设反比例函数解析式为y=,∵点A(2,4)和点B(n,2)在反比例函数的图象上,∴k=2×4=2n,∴n=4,∴B(4,2),∴△ABC的面积为:=4,故答案为4.11.如图,AB∥CD∥EF.若AD:AF=3:5,BC=6,则CE的长为4.【分析】三条平行线截两条直线,所得的对应线段成比例.解:∵AB∥CD∥EF,∴,∴BE===10,∴CE=BE﹣BC=10﹣6=4,故答案为4.12.如图,一位同学通过调整自己的位置,设法使三角板DEF的斜边DF保持水平,并且边DE与点B在同一直线上,已知两条边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB为 5.5m.【分析】利用Rt△DEF和Rt△BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.解:∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米).故答案为:5.5.13.如图,OA、OB是⊙O的半径,连接AB并延长到点C,连接OC,若∠AOC=80°,∠C=40°,⊙O的半径为2,则的长为π(结果保留π).【分析】根据三角形内角和定理求出∠A,得到△AOB为等边三角形,根据等边三角形的性质得到∠AOB=60°,根据弧长公式计算即可.解:∵∠AOC=80°,∠C=40°,∴∠A=180°﹣80°﹣40°=60°,∵OA=OB,∠A=60°,∴△AOB为等边三角形,∴∠AOB=60°,∴的长==π,故答案为:π.14.如图,抛物线y=(x+2)2﹣1与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,作直线AC.动点P是线段AC上一点,过点P作x轴的垂线交该抛物线于点Q,则线段PQ长的最大值为.【分析】首先求得直线AC的解析式,然后设出点P的坐标并表示出点Q的坐标,从而表示出线段PQ的二次函数,求得最大值即可.解:令y=(x+2)2﹣1=0,解得:x=﹣3或x=﹣1,∴点A的坐标为(﹣3,0),令x=0,则y=(0+2)2﹣1=3,∴点C的坐标为(0,3),设直线AC的解析式为y=kx+b,则:,解得:k=1,b=3,∴直线AC的解析式为y=x+3,设P点的横坐标为a,则纵坐标为a+3,∵PD⊥x轴,∴Q的坐标为(a,a2+4a+3),∴PQ=a+3﹣(a2+4a+3)=﹣a2﹣3a=﹣(a+)2+,∴PQ的最大值为.三、解答题(每小题5分,共20分)15.计算:sin60°+×﹣tan60°.【分析】根据特殊角的三角函数值和二次根式的乘法法则运算.解:原式=×+﹣×=+6﹣3=.16.2019年11月1日5G商用套餐正式上线,某移动营业厅为了吸引用户,设计了A、B 两个可以自由转动的转盘(如图).A转盘被等分为2个扇,分别为红色和黄色;B转盘被等分为3个扇形,分别为黄色、红色、蓝色.指针固定不动,营业厅规定,每位5G 新用户可分别转动两个转盘各一次,转盘停止后,若指针所指区域颜色相同,则该用户可免费领取100G通用流量(若指针停在分割线上,则重转).小王办理5G业务获得一次转转盘的机会,求他能免费领取100G通用流量的概率.【分析】根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后有概率公式即可得出答案.解:画树状图如图所示:共有6个等可能的结果,指针所指区域颜色相同的结果有2个,∴小王能免费领取100G通用流量的概率==.17.小明同学解一元二次方程x2﹣2x﹣2=0的过程如下:解:x2﹣2x=2,第一步;x2﹣2x+1=2,第二步;(x﹣1)2=2,第三步;x﹣1=±,第四步;x1=1+,x2=1﹣,第五步.(1)小明解方程的方法是配方法,他的求解过程从第二步开始出现错误;(2)请用小明的方法完成这个方程的正确解题过程.【分析】(1)根据解答过程即可得出答案;(2)利用配方法解方程的步骤依次计算可得.解:(1)小明解方程的方法是配方法,他的求解过程从第二步开始出现错误,故答案为:配方法,二;(2)x2﹣2x=2,第一步;x2﹣2x+1=2+1,第二步;(x﹣1)2=3,第三步;x﹣1=±,第四步;x1=1+,x2=1﹣,第五步18.某公司去年4月的营业额为2800万元,由于改进销售方式,营业额连月上升,6月营业额达到3388万元,假设该公司5月、6月营业额的月平均增长率相同,求月平均增长率.【分析】设月平均增长率为x,根据题意列出方程即可求出答案.解:设月平均增长率为x,由题意可知:2800(1+x)2=3388,解得:x=或x=(舍去),答:月平均增长率为10%.四、解答题(每小题7分,共28分)19.如图是由边长相等的小正方形组成的网格,点A、B均在格点上.(1)在网格中,用无刻度的直尺画等腰直角三角形ACB.使∠ACB=90;(2)在(1)的条件下,点D在AC上(点D可以不在格点上).在网格中,用无刻度的直尺画出∠CBD,使tan∠CBD=.【分析】(1)根据勾股定理取点C,使AC=BC=,根据勾股定理的逆定理可知:△ABC是等腰直角三角形;(2)根据矩形的性质和三角函数的定义作出图形即可.解:(1)如图1所示,△ABC即为所求;(2)如图2,作法:①取两点G,H,并连接GH,根据矩形的对角线互相平分,可知AD=CD,②连接BD,则CD=AC=BC则∠CBD即为所求;20.某单位为了创建城市文明单位,准备在单位的墙外开辟一处矩形的地进行绿化,其中边靠墙,且墙长为20m,除墙体外三面要用栅栏围起来,计划用栅栏50m,设AB的长为xm,矩形的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求y的最大值.【分析】(1)根据长方形的面积等于长乘以宽及墙体长度为20米,即可求出y与x的函数关系式及自变量x的取值范围;(2)将y与x的函数关系式配方,写成顶点式,根据二次函数的性质及自变量的范围即可得解.解:(1)y=x(50﹣2x)=﹣2x2+50x,∵墙长为20m,∴0<50﹣2x≤20,∴15≤x<25,∴y与x的函数关系式为:y=﹣2x2+50x,自变量x的取值范围为15≤x<25;(2)∵y=﹣2x2+50x=﹣2(x﹣12.5)2+312.5,∵二次项系数为﹣2,对称轴为x=12.5,又∵15≤x<25,∴y随x的增大而减小,∴当x=15m,即AB=15m,BC=50﹣15×2=20m时,长方形的面积最大,最大面积为:20×15=300m2.∴y的最大值为300m2.21.如图,在△ABC中,∠ABC=45°,它的外接圆的圆心O在其内部,连结OC,过点A 作AD∥OC,交BC的延长线于点D.(1)求证:AD是⊙O的切线;(2)若∠BAD=105°,⊙O的半径为2,求劣弧AB的长.【分析】(1)连接AO,根据圆周角定理和平行线的性质以及切线的判定定理即可得到结论;(2)连接OB,根据已知条件得到∠OAB=15°,根据三角形的内角和得到∠AOB=150°,根据弧长的计算公式即可得到结论.【解答】(1)证明:连接AO,∵∠ABC=45°,∴∠AOC=2∠B=90°,∵OC∥AD,∴∠OAD=90°,∴AD是⊙O的切线;(2)解:连接OB,∵∠BAD=105°,∠OAD=90°,∴∠OAB=15°,∵OB=OA,∴∠ABO=15°,∴∠AOB=150°,∴劣弧AB的长==π.22.宋家州主题公园拟修建一座柳宗元塑像,如图所示,柳宗元塑像(塑像中高者)DE在高13.4m的假山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进10m 到达B处,测得塑像顶部D的仰角为60°,求柳宗元塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,≈1.73)【分析】由三角函数求出AC==20m,得出BC=AC﹣AB=10m,在Rt△BCD 中,由三角函数得出CD=BC=17.3m,即可得出答案.解:∵∠ACE=90°,∠CAE=34°,CE=13.4m,∴,∴,∵AB=10m,∴BC=AC﹣AB=20﹣10=10m,在Rt△BCD中,,∴,∴DE=CD﹣EC=17.3﹣13.4=3.9≈4m.答:柳宗元塑像DE的高度约为4m.五、解答题(每小题8分,共16分)23.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴正半轴上(点B在点A的右侧),AB=3,AD=8,AD⊥x轴,CD在第一象限,边AD的中点E在函数y=(x >0)的图象上,边BC交该函数图象于点F.连接BE.(1)求BE的长;(2)若CF﹣BE=2,求k的值.【分析】(1)由题意可知AE=4,根据勾股定理即可求得BE的长;(2)求得BF=1,设E(m,4),则F(m+3,1),根据反比例函数系数k的几何意义得出k=4m=(m+3)×1,解得即可.解:(1)由题意可知AE=4,∵矩形ABCD的边AB在x轴正半轴上,AD⊥x轴,且AB=3,∴BE===5;(2)∵BE=5,CF﹣BE=2,∴CF=7,∵BC=AD=8,∴BF=8﹣7=1,设E(m,4),则F(m+3,1),∵点E、F在函数y=(x>0)的图象上,∴k=4m=(m+3)×1,24.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,E为边BC的中点,将△DEF绕点E旋转,旋转过程中,边DE与边AB相交于点P,边EF 与边CA延长线相交于点Q.(1)求证:△PBE∽△ECQ.(2)若BP=3,CQ=8,求BC的长.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP =AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,(2)解:∵△BPE∽△CEQ,∴=,∵BP=3,CQ=8,BE=CE,∴BE2=24,∴BE=CE=2,六、解答题(每小题10分,共20分)25.如图,抛物线y=﹣x﹣1与y轴交于点A,点B是抛物线上的一点,过点B 作BC⊥x轴于点C,且点C的坐标为(9,0).(1)求直线AB的表达式;(2)若直线MN∥y轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;(3)在(2)的条件下,当四边形MNCB是平行四边形时,求点Q的坐标.【分析】(1)B为抛物线上的一点,BC⊥x轴,C(9,0),B点的横坐标为9,纵坐标为,即B(9,2).即可求解;(2)设线段MN的长为L,由抛物线和直线AB的解析式,得:==.即可求解;(3)若四边形MNCB是平行四边形,则需要MN=BC,由点B、C的坐标可知BC=2,即,即可求解.解:(1)令x=0,则y=﹣1,即A(0,﹣1).∵B为抛物线上的一点,BC⊥x轴,C(9,0),∴B点的横坐标为9,纵坐标为,即B(9,2).设直线AB的函数解析式为y=kx+b,将A(0,﹣1),B(9,2)代入上式并解得:直线AB的函数解析式为;(2)设线段MN的长为L,由抛物线和直线AB的解析式,得:==.故线段MN长度的最大值为;(3)若四边形MNCB是平行四边形,则需要MN=BC,由点B、C的坐标可知BC=2,∴,解得:x=1或x=8.故当点Q的坐标为(1,0)或(8,0)时,四边形MNCB是平行四边形.26.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为8﹣4t(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.【分析】(1)通过证明△BPQ∽△BAC,可得,即可求解;(2)分两种情况讨论,由菱形的性质和相似三角形的性质可求解;(3)分两种情况讨论,由梯形的面积公式和三角形的面积公式可求解;(4)分两种情况讨论,由相似三角形的性质可求解.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.。

2023年山东省烟台市龙口市中考数学二模试卷(含解析)

2023年山东省烟台市龙口市中考数学二模试卷(含解析)

2023年山东省烟台市龙口市中考数学二模试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,图1可列式计算为(+1)+(―1)=0,由此可推算图2中计算所得的结果为( )A. +1B. +7C. ―1D. ―72. 下列运算正确的是( )A. 2a2⋅a=2a3B. (a+1)2=a2+1C. (a2)÷(2a)=2aD. (2a2)3=6a63. 如图是我国四家新能车企的标志,其中是中心对称图形但不是轴对称图形的是( )A. B.C. D.4. 餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A. 5×1010千克B. 50×109千克C. 5×109千克D. 0.5×1011千克5.实数a,b,c在数轴上的对应点的位置如图所示,如果a+c=0,那么下列结论正确的是( )A. b<0B. a<―bC. ab>0D. b―c>06. 下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面对于中位数的说法正确的是( )年龄13141516频数5713■A. 中位数是14B. 中位数可能是14.5C. 中位数是15或15.5D. 中位数可能是167. 在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆O处用一根细线悬挂,左端A处挂一重物,右端B处挂钩码,每个钩码质量是50g.若OA=20cm,OB=40cm,挂3个钩码可使轻质木杆水平位置平衡.设重物的质量为x g,根据题意列方程得( )A. 20x=40×50×3B. 40x=20×50×3C. 3×20x=40×50D. 3×40x=20×508.如图所示,电路图上有A、B、C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A、B,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( )A. 14B. 13C. 23D. 129. 运用我们课本上采用的计算器进行计算时,下列说法不正确的是( )A. 计算5的按键顺序依次为B. 要打开计算器并启动其统计计算功能应按的键是C. 启动计算器的统计计算功能后,要清除原有统计数据应按键D. 用计算器计算时,依次按如下各键,最后显示结果是0.510. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x⋯―1012⋯y⋯0―1.5―2―1.5⋯根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x―1)2―2的形式;②二次函数y=ax2+bx+c的图象开口向下;③关于x的一元二次方程ax2+bx+c+1.5=0的两个根为0或2;④若y>0,则x>3,其中所有正确的结论为( )A. ①④B. ②③C. ①③D. ②④二、填空题(本大题共6小题,共18.0分)11. 因式分解:4m2n―4n3=______ .12. 已知反比例函数y=m―1的图象的一个分支位于第三象限,则m的取值范围是x______.13. 对于实数a,b定义新运算:a※b=ab2―b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围为______ .14. 如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为______ .15.如图,▱ABCD中,AB=4,AD=6,∠A=60°,点E在AB的延长线上,F为DE的中点,连接CF,若BE=10,则CF的长为______ .16. 国际象棋的棋盘上共有64个小方格,假设在棋盘上摆米,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒,16粒,32粒…一直到64格,故棋盘上可摆的米粒总数S=1+2+4+8+16+32+…+263,则S的个位数字为______ .三、解答题(本大题共8小题,共64.0分。

山西省晋城市泽州县多校2024届九年级下学期中考二模数学试卷(含答案)

山西省晋城市泽州县多校2024届九年级下学期中考二模数学试卷(含答案)

2024年初中学业水平考试——模拟测评(二)数学注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.的相反数是()A.3B.C.D.2.在中国,鼓是精神的象征,舞是力量的表现,先贤孔子曾说过“鼓之舞之”,可见“鼓舞”一则起之早,如图是集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的左视图是()A.B.C.D.3.下列运算结果正确的是()A.B.C.D.4.山西省2024年政府工作报告中指出,山西省煤炭产量在连续两年每年增产1亿多吨的基础上.再增产万吨,达到亿吨数据“8亿吨”用科学记数法表示为()A.吨B.吨C.吨D.吨5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.小明在探究二次函数的性质时,先用配方法将表达式化为顶点式,得到函数图象的顶点坐标及对称轴,然后在对称轴两侧对称地取值、列表、描点、连线得到函数图象,再借助函数图象研究该函数的增减性、对称性、最值等性质.这种研究方法主要体现的数学思想是()A.数形结合思想B.类比思想C.分类讨论思想D.公理化思想7.如图,、分别表示两块互相平行的平面镜,一束光线照射到平面镜上,反射光线为,光线经平面镜反射后的反射光线为(反射角等于入射角).若,的度数为()A.B.C.D.8.如图,内接于,为的直径,直线与相切于点C,过点O作,交于点E.若,则的度数为()A.B.C.D.9.在物理活动课上,某小组探究电压一定时,电流与电阻之间的函数关系,通过实验得到如下表所示的数据:根据表中数据,下列描述正确的是()A.在一定范围内,随的增大而增大B.与之间的函数关系式为C.当时,D.当时,10.如图,在中,,,,以点C为圆心作半圆,其直径.将沿方向平移5个单位长度,得到,则图中阴影部分的面积为()A.B.C.D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分.请将答案直接写在答题卡相应的位置)11.计算:.12.烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等的原料,通常用碳原子的个数命名为甲烷、乙烷、丙烷、…癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……).甲烷的化学式为,乙烷的化学式为,丙烷的化学式为,…,其结构式如图所示,依此规律,十一烷的化学式为.13.李明计划利用周末的时间从“山西博物院”“山西青铜博物馆”“晋商博物院”“山西地质博物馆”四个博物馆中随机地选择两个博物馆参观.他制作了四个博物馆的卡片(除内容外,其余完全相同),将这四张卡片背面朝上,洗匀放好,从中随机抽取一张,不放回.再从中随机抽取一张,则恰好抽到“山西青铜博物馆”和“山西地质博物馆”的概率为.14.如图,在平面直角坐标系中,点在轴正半轴上,点的坐标为.将绕点逆时针旋转.得到(点、的对应点分别为点、),与交于点.当时,,则此时点的坐标为.15.如图,菱形的边长为,对角线、相交于点,为边的中点,连接交于点.若,则的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:;(2)化简:.17.解方程:.18.为推动全民阅读、建设书香社会、增强青少年的爱国情感.某校举办“阅读红色经典,讲好思政故事”主题演讲活动.本次活动共有30名学生进入决赛.七名评委从演讲内容、语言表达、形象风度、综合印象四项对参赛选手评分、去掉一个最高分和一个最低分后取平均分得到每项成绩.再将演讲内容.语言表达、形象风度、综合印象四项成绩按4:3:2:1的比例计算出每人的最终成绩.小蕊,小迪的四项成绩和最终成绩如下表,30名学生最终成绩绘制成的频数直方图(每组包含最小值,不包含最大值)如下图.小蕊、小迪的四项成绩和最终成绩统计表四项成绩/分选手最终成绩/分演讲内容语言表达形象风度综合印象小蕊9796909495小迪888385请根据上述信息,解答下列问题:(1)七名评委给小迪的演讲内容打分分别为87、85、91、94、91、88、93.去掉一个最高分和一个最低分,剩余数据的中位数是________分,众数是________分,平均数是________分.(2)请你计算小迪的最终成绩.(3)学校决定根据最终成绩从高到低设立一等奖、二等奖、三等奖、优秀奖,占比分别为,2、、4.请你判断小蕊和小迪分别获几等奖,并说明理由.19.沁州黄小米是山西省沁县特产,原名糙谷,清朝康熙帝御赐“沁州黄”,以皇家贡米而久负盛名,享有“天下米王”和“国米”的尊号.某商场购进,两种包装的沁州黄小米作为活动奖品发放给顾客.活动开始前、该商场购进种沁州黄小米袋和种沁州黄小米袋,共花费元;活动中因奖品不够.该商场又购进种沁州黄小米袋和种沁州黄小米袋.共花费元.(1)求、两种沁州黄小米的单价.(2)为筹备下次活动,该商场计划再次购进、两种沁州黄小米共袋,若预算不超过元.则该商场最多能购进种沁州黄小米多少袋?20.应县木塔位于山西省朔州市应县佛宫寺院内,建于公元年,是世界上现存最高大、最古老的纯木结构楼阁式建筑.与比萨斜塔、埃菲尔铁塔并称“世界三大奇塔”.某校综合与实践小组的同学借助无人机测量应县木塔的高度.如图、先将无人机垂直上升至距地面的点C处.测得木塔顶端点的俯角为,再将无人机沿水平向木塔方向飞行到达点处,测得木塔底端点的俯角为.已知知点、、、在同一竖直平面内,求应县木塔的高度.(结果精确到;参考数据:,,,)21.阅读下列材料并完成相应的任务.三角形的旁心三角形一个内角的平分域和其他两个内角的外角平分线的交点,称为该三角形的旁心,每个三角形有三个旁心.已知:如图1,在中,的外角与的平分线,相交于点I.作射线.求证:平分.证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.……任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分.(2)图1中各角之间存在特殊的数量关系:①;②;③.请你选择一个结论进行证明.(3)如图3,在中,,点D是的一个旁心,过点D作,交的延长线于点E,且,则的长为________.22.综合与实践问题情境:如图1,在中,,,,、分别为,边的中点,连接.然后将绕点顺时针旋转,旋转角为,连接、,所在的直线与所在的直线交于点.观察发现:(1)在图1中,________.数学思考:(2)如图2,在旋转的过程中.①的值是否会发生变化?请说明理由.②当时,试判断四边形的形状,并说明理由.深入探究:(3)在旋转的过程中,当、、三点共线时,请你直接写出的长.23.综合与探究如图,抛物线与轴交于,,与轴交于点.作直线,是抛物线上的一个动点.(1)求抛物线的函数表达式并直接写出直线的函数表达式.(2)当点P在直线下方时,连接,,.当时,求点P的坐标.(3)在抛物线的对称轴上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.参考答案与解析1.A2.D3.B4.C5.C6.A7.C8.B9.B10.A11.12.13.14.15.##16.(1);(2)解:(1)原式(2)原式17.或解:,配方,得,即,,即或,解得或.18.(1)91,91,90(2)(3)小蕊获一等奖,小迪获三等奖(1)解:从小到大排列为:85、87、、91、91、93、94,去掉一个最高分和一个最低分,剩余数据为87、、91、91、93中位数为,众数是分,平均数是(分)故答案为:91,91,90.(2)(3)小蕊获一等奖,小迪获三等奖.理由:获一等奖的学生有(名),由频数直方图可知,最终成绩不低于95 分且小于100分的学生有2名,小蕊最终成绩95分在这一组,因此小蕊获一等奖;获一、二等奖的学生共有(名),获三等奖的学生有(名),由频数直方图可知,最终成绩不低于90分的学生获一等奖或二等奖,最终成绩不低于85分且小于90分的学生有9名,均获三等奖.又因为小迪最终成绩为分,所以小迪获三等奖.19.(1)种沁州黄小米的单价为元,种沁州黄小米的单价为元(2)该商场最多能购进B种沁州黄小米5袋(1)解:设种沁州黄小米的单价为元,种沁州黄小米的单价为元.根据题意,得解得答:种沁州黄小米的单价为元,种沁州黄小米的单价为元.(2)解:设该商场购进种沁州黄小米袋,则购进种沁州黄小米袋.根据题意,得.解得.为正整数,的最大值为答:该商场最多能购进B种沁州黄小米5袋.20.应县木塔的高度为解:如图,延长交直线于,则根据题意,得:在中,,.在中,.().答:应县木塔的高度为.21.(1)见解析(2)见解析(3)(1)证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.;在内部,平分(2)解:选择结论①、证明如下:平分、平分,,选择结论②、证明如下:平分,平分选择结论③、证明如下:平分、平分、(3)如图所示,连接,过点作,垂足分别为,∴,又,则∵∴四边形是矩形,∵在中,,点D是的一个旁心,∴是的角平分线,,,∵,∴是等腰直角三角形,∴,∴矩形是正方形,∴,在中,∴,∴,同理可得,则,设,,∴,在中,,∴,解得:,∴,在中,.22.(1);(2)(2)①的值不会变化,理由见解析;②四边形是矩形,证明见解析(3)AE 的长为或解:(1)∵在中,,,,、分别为,边的中点,∴,∴;故答案为:.(2)①的值不会变化,理由如解图1,设与交于点,图1中,分别为,的中点,由旋转的性质知,的值不会发生变化,②四边形是矩形,理由:由旋转的性质,知,,.由①,得.又、,,四边形是矩形,(3)的长为或分以下两种情况讨论:当在的右侧时,如解图:由①得,设,则图中,,分别为,边的中点,,.,..由②,得在中,,解得:或舍弃解得:当在边的左侧时,如解图,同理综上所述,的长为或23.(1);直线的函数表达式为,(2)(3)存在,点的坐标为(),(),(1)解:把,分别代入得解得抛物线的函数表达式为当时,,则设直线的解析式为,将点代入,得,解得:,直线的函数表达式为,(2)如图过点作轴于点,交于,过点作于点,则四边形为矩形设则,解得(舍弃),(3)存在,点的坐标为()或()或()由题知,抛物线抛物线的对称轴,把代入,的)设)分以下三种情况讨论:当为对角线时,, ,解得)当为对角线时,,,解得)当为对角线时,,,解得综上所述,点的坐标为(),(),.。

和田地区2020版中考数学二模试卷A卷

和田地区2020版中考数学二模试卷A卷

和田地区2020版中考数学二模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七上·宁波期中) 下列各对数是互为相反数的是()A . 与B . 与C . 与D . 与2. (2分)下列运算正确的是()A . a3﹣a2=aB . a2•a3=a6C . a•a2=a3D . (3a)3=9a33. (2分)下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A . 1个B . 2个C . 3个D . 4个4. (2分)若不等式组有解,则a的取值范围是()A . a≤3B . a<3C . a<2D . a≤25. (2分) (2016九上·灵石期中) 在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A . 12B . 15C . 18D . 216. (2分)由若干个相同的小正方体,摆成几何体的主视图和左视图均为,则最少使用小正方体的个数为()A . 9B . 7C . 5D . 37. (2分)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A . 8B . 10C . 12D . 148. (2分)如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是()A . (1)(2)(3)B . (1)(3)C . (1)(2)D . (2)(3)二、二.填空题 (共8题;共8分)9. (1分)(2017·江都模拟) 据统计,参加今年扬州市初中毕业、升学统一考试的学生约34900人,这个数据用科学记数法表示为________.10. (1分)(2019·泉州模拟) 若一组数据1,3,x,5,8的众数为8,则这组数据的中位数为________ .11. (1分)若函数有意义,则自变量x的取值范围是________。

2024年河北省唐山市古冶区九年级中考二模数学试题(解析版)

2024年河北省唐山市古冶区九年级中考二模数学试题(解析版)

2023—2024学年度九年级学业水平评估数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,考生务必将答案写在答题卡上.写在本试卷上无效.一、选择题(本大题共16个小题:1~6小题,每题3分;7~16小题,每题2分,共38分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算:( )A. B. C. D. 【答案】A【解析】【分析】本题考查了有理数的减法,根据有理数的减法进行计算即可求解.【详解】解:故选:A .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是( )A.B. C. D.【答案】C【解析】【分析】根据主视图是从前向后观察到的图形,进行判断即可.【详解】解:由题意,得:“卯”的主视图为:故选C .【点睛】本题考查三视图,熟练掌握三视图的画法,是解题的关键.35-=2-28-8352-=-3. 下列运算正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了同底数幂的乘除法,积的乘方,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A. ,故该选项不正确,不符合题意;B. ,故该选项正确,符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项不正确,不符合题意;故选:B .4. 下列函数中,函数值y 随x 的增大而减小的是( )A. B. C. D. 【答案】B【解析】【分析】根据一次函数和反比例函数的性质,逐项分析即可得到答案.【详解】解:A 、 ,,y 随x 的增大而增大,不符合题意;B 、 ,,y 随x 的增大而减小,符合题意;C 、 ,,在每个象限内,y 随x 的增大而减小,不符合题意;D 、,,在每个象限内,y 随x 的增大而增大,不符合题意;故选:B .【点睛】本题主要考查了一次函数、反比例函数的性质,熟练掌握函数的性质,是解题的关键.5. 一把直尺和一个含角的直角三角板按如图方式放置,若,则( )A. B. C. D. 632a a a ÷=235a a a ⋅=()23622a a =()222a b a b +=+633a a a ÷=235a a a ⋅=()26324a a =()2222a b a ab b +=++6y x=6y x =-6y x =6y x=-6y x =60k =>6y x =-60k =-<6y x=60k =>6y x =-60k =-<30︒120∠=︒2∠=30︒40︒50︒60︒【答案】B【解析】【分析】根据平行线的性质,得出,进而.【详解】由图知,∴故选:B【点睛】本题考查平行线的性质,特殊角直角三角形,由图形的位置关系推出角之间的数量关系是解题的关键.6. 一次函数y=6x+1的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【详解】试题分析:先判断出一次函数y=6x+1中k 的符号,再根据一次函数的性质进行解答即可.解:∵一次函数y=6x+1中k=6>0,b=1>0,∴此函数经过一、二、三象限,故选D .7. 下列有关分式的运算,结果正确的是( )A. B. C. D. 【答案】C【解析】【分析】此题考查了分式的运算,根据分式的运算法则进行计算即可得到答案.【详解】解:A.,故选项错误,不符合题意;B .,故选项错误,不符合题意;C .,故选项正确,符合题意;3120∠=∠=︒260340Ð=°-Ð=°3120∠=∠=︒2603602040Ð=°-Ð=°-°=°212a a=112a b a b +=+24334a a a a a a -+⋅=+-22111a a a a a+++÷=222a a a =11ab a b ab++=()244333434a a a a a a a a a a a --++⋅=⋅=+-+-D .,故选项错误,不符合题意.故选:C .8. 掷一枚质地均匀的硬币10次,下列说法正确的是( )A. 每2次必有1次正面向上B. 不可能有10次正面向上C. 必有5次正面向上D. 可能有5次正面向上【答案】D【解析】【分析】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【详解】解:A、掷一枚质地均匀的硬币10次,每2次不一定有1次正面向上,原说法错误,不符合题意;B 、掷一枚质地均匀的硬币10次,有可能有10次正面向上,原说法错误,不符合题意;C 、掷一枚质地均匀的硬币10次,不一定有5次正面向上,原说法错误,不符合题意;D 、掷一枚质地均匀的硬币10次,可能有5次正面向上,原说法正确,符合题意;故选:D .9. 估计:的值应在( )A. 2和3之间 B. 4和5之间 C. 5和6之间 D. 6和7之间【答案】D【解析】【分析】本题考查了二次根式的性质,无理数的估算,先将3放入根号内,估算,即可求解.【详解】解:∵,∴,故选:D .10. 如图,在中,,,D ,E 分别在,上,将沿折叠,使点A 落在点处,若为的中点,则折痕的长为( )()22121111a a a a a a a a a a ++++÷=⋅=++67<<=364549<<67<<ABC 90C ∠=︒6BC =AB AC ABC DE A 'A 'CE DEA. B. 1 C. 2 D. 3【答案】C【解析】【分析】本题考查折叠的性质,相似三角形的判定和性质,掌握“A ”字形三角形相似的判定和性质为解题关键.由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.【详解】解:沿折叠,使点A 落在点处,,,又∵,∴,∴,,又为的中点,,∴,,即,.故选:C .11. 如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是( )12AE AE '=90DEA DEA ∠'=∠=︒90C ∠=︒DE BC ∥ACB AED ∽△△A 'CE 13AE A E A C AC ''===13DE BC =ABC DE A '90DEA DEA '∴∠=∠=︒AE A E '=90C ∠=︒DE BC ∥,ADE B AED C ∠=∠∠=∠ACB AED ∴ ∽A 'CE AE AE '=13AE A E A C AC ''===∴13ED AE BC AC ==163ED =2ED ∴=A. B. 1 C. D. 2【答案】B【解析】【分析】先作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值.然后证明四边形ABNM ′为平行四边形,即可求出MP +NP =M ′N =AB =1.【详解】解:如图作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值,最小值为M ′N 的长.∵菱形ABCD 关于AC 对称,M 是AB 边上的中点,∴M ′是AD 的中点,又∵N 是BC 边上的中点,∴AM ′∥BN ,AM ′=BN ,∴四边形ABNM ′是平行四边形,∴M ′N =AB =1,∴MP +NP =M ′N =1,即MP +NP 的最小值为1,故选B .12. 圆锥的底面半径是5cm ,侧面展开图的圆心角是180°,圆锥的高是( )cm B. 10cm C. 6cm D. 5cm 【答案】A【解析】【分析】设圆锥的母线长为R ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•5=,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【详解】设圆锥的母线长为R ,根据题意得2π•5,解得R =10.12180180R π180180R π=即圆锥的母线长为10cm ,.故选A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13. 如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到.若反比例函数的图象恰好经过的中点D ,则k 的值是( )A. 9B. 12C. 15D. 18【答案】C【解析】【分析】作轴于证明≌,推出,,求出点坐标,再利用中点坐标公式求出点D 坐标即可解决问题.【详解】解:作轴于.∵,∴,,∴,∵,∴,=A B C '''∆k y x=A B ''A H y ⊥.H AOB ()'BHA AAS OA BH ='OB A H ='A A H y '⊥H 90AOB A HB ABA ∠=∠'=∠'=︒90ABO A BH ∠+∠'=︒90ABO BAO ∠+∠=︒BAO A BH ∠=∠'BA BA ='()AOB BHA AAS ' ≌∴,,∵点的坐标是,点的坐标是,∴,,∴,,∴,∴,∵,∴,∵反比例函数的图象经过点,∴.故选C .【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.14. 如图,矩形中,,以点B 为圆心,适当长为半径画弧,分别交,于点E ,F ,再分别以点E ,F为圆心,大于长为半径画弧交于点P ,作射线,过点C 作的垂线分别交于点M ,N ,则的长为( )A.B. C. D. 4【答案】A【解析】【分析】由作图可知平分,设与交于点O ,与交于点R ,作于点Q ,根据角平分线性质可知,进而证明,推出,设,则,解求出.利用三角形面积法求出的OA BH =OB A H ='A ()2,0-B ()0,62OA =6OB =2BH OA ==6A H OB '==4OH =()6,4A 'BD A D ='()3,5D k y x =D 15k =-ABCD 34AB BC ==,BC BD 12EF BP BP ,BD AD CN BP CBD ∠BP CN CD RQ BD ⊥RQ RC =Rt BCR Rt BQR ≌4BC BQ ==RQ RC x ==3DR CD CR x =-=-Rt DQR 43QR CR ==,再证,根据相似三角形对应边成比例即可求出.【详解】解:如图,设与交于点O ,与交于点R ,作于点Q ,矩形中,,,.由作图过程可知,平分,四边形是矩形,,又,,在和中,,,,,设,则,在中,由勾股定理得,即,解得,.OC OCR DCN ∽CN BP CN CD RQ BD ⊥ ABCD 34AB BC ==,∴3CD AB ==∴5BD ==BP CBD ∠ ABCD ∴CD BC ⊥ RQ BD ⊥∴RQ RC =Rt BCR Rt BQR RQ RC BR BR =⎧⎨=⎩∴Rt BCR Rt BQR ≌()HL ∴4BC BQ ==∴541QD BD BQ =-=-=RQ RC x ==3DR CD CR x =-=-Rt DQR 222DR DQ RQ =+()22231-=+x x 43x =∴43CR =,,,,,解得.故选A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出平分,通过勾股定理解直角三角形求出.15. 如图,点I 为△ABC 的内心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的周长为( )A. 4.5B. 4C. 3D. 2【答案】B【解析】【详解】【分析】连接AI 、BI ,因为三角形的内心是角平分线的交点,所以AI 是∠CAB 的平分线,由平行的性质和等角对等边可得:AD=DI ,同理BE=EI ,所以图中阴影部分的周长就是边AB 的长.详解】连接AI 、BI ,∵点I 为△ABC 的内心,∴AI 平分∠CAB ,∴∠CAI=∠BAI ,由平移得:AC ∥DI ,【∴BR ==1122BCR S CR BC BR OC =⋅=⋅ ∴CR BC OC BR ⋅=== 90COR CDN ∠=∠=︒OCR DCN ∠=∠∴OCR DCN ∽∴OC CR DC CN =43CN=CN =BP CBD ∠CR∴∠CAI=∠AID ,∴∠BAI=∠AID ,∴AD=DI ,同理可得:BE=EI ,∴△DIE 的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B .【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.16. 小刚在解关于的方程时,只抄对了,,解出其中一个根是,他核对时发现所抄的比原方程的的值小,则原方程的根的情况( )A. 不存在实数根B. 有两个不相等的实数根C. 有一个根是D. 有两个相等的实数根【答案】A【解析】【分析】直接把已知数据代入进而得出 的值,再解方程求出答案.【详解】解:∵小刚在解关于的方程时,只抄对了,解出其中一个根是,∴,解得:,故原方程中,∴原方程为,则,则原方程的根的情况是不存在实数根,故选:A.x ()200ax bx c a ++=≠1a =4b ==1x -c c 2=1x -c x ()200ax bx c a ++≠=1a =4b ==1x -()()21410c -+⨯-+=3c =5c =2450x x ++=241641540b ac --⨯⨯=-<=【点睛】此题考查了根的判别式和一元二次方程的解,正确得出的值是解题关键.二、填空题(本大题有3个小题,每空2分,共10分)17. 在平面直角坐标系中有五个点,分别是,,,,,从中任选一个点恰好在第一象限的概率是______.【答案】【解析】【分析】根据第一象限的点的特征,可得共有2个点在第一象限,进而根据概率公式即可求解.【详解】解:在平面直角坐标系中有五个点,分别是,,,,,其中,,在第一象限,共2个点,∴从中任选一个点恰好在第一象限的概率是,故答案为:.【点睛】本题考查了概率公式求概率,第一象限点的坐标特征,熟练掌握以上知识是解题的关键.18. 四边形具有不稳定性,如图,将面积为5的矩形“推”成面积为4的平行四边形,则_______;若,则平行四边形的面积为_______.【答案】①. ②. 【解析】【分析】本题考查解直角三角形,矩形,平行四边形,关键是由矩形、平行四边形的面积推出.由矩形、平行四边形的面积得到,即可求出的值,由得到,即可求出平行四边形的面积.【详解】解:如图,作于,c ()1,2A ()3,4B -()2,3C --()4,3D ()2,3E -25()1,2A ()3,4B -()2,3C --()4,3D ()2,3E -()1,2A ()4,3D 2525sin α=30α=︒455245AH AB =45AH AB =sin α30α=︒12AH AB =AH BC ⊥H∵,,∴,∴,∴,当时,,平行四边形的面积.故答案为:,.19. 如图,在边长为3的正方形的外侧,作等腰三角形,.(1)的面积为________;(2)若F 为的中点,连接并延长,与相交于点G ,则的长为________.【答案】①. 3 ②. 【解析】【分析】(1)过点E 作,根据正方形和等腰三角形的性质,得到的长,再利用勾股定理,求出的长,即可得到的面积;(2)延长交于点K ,利用正方形和平行线的性质,证明,得到的长,进而得到的长,再证明,得到,进而求出的长,最后利用勾股定理,即可求出的长.【详解】解:(1)过点E 作,5BC AB ⋅=4BC AH ⋅=45BC AH BC AB ⋅=⋅45AH AB =sin 54AH AB α=== 30α=︒12AH AB =∴1522BC AH BC AB =⋅=⋅=4552ABCD ADE 52EA ED ==ADE V BE AF CD AG EH AD ⊥AH EH ADE V EH AG ()ASA ABF KEF ≌EK KH AHK ADG △∽△KH AH GD AD =GD AG EH AD ⊥正方形的边长为3,,是等腰三角形,,,,在中,,,故答案为:3;(2)延长交于点K ,正方形的边长为3,,,,,,,,F 为的中点,,在和中,,,,由(1)可知,,,,ABCD 3AD ∴=ADE 52EA ED ==EH AD ⊥1322AH DH AD ∴===Rt AHE 2EH ===1132322ADE S AD EH ∴=⋅=⨯⨯= EH AG ABCD 90BAD ADC ∴∠=∠=︒3AB =AB AD ∴⊥CD AD ⊥EK AD ⊥ AB EK CD ∴∥∥ABF KEF ∴∠=∠ BE BF EF ∴=ABF △ KEF ABF KEF BF EFAFB KFE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABF KEF ∴ ≌3EK AB ∴==12AH AD =2EH =1KH ∴=,,,,在中,,【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.三、解答题(本大题共7个小题;共72分.解答应写出文字说明、证明过程或演算步骤)20. 有个填写数字的游戏:在“”中的每个内,填入数字(可重复使用),然后计算结果.(1)计算:;(2,请推算□内的数字;(3)若三个内从左往右依次填入入三个数,请你直接写出计算结果(计算结果要求用科学记数法表示).【答案】(1);(2);(3).【解析】【分析】本题考查了有理数的混合运算,二次根式的混合运算,幂的运算;(1)根据有理数的混合运算进行计算即可求解.(2)根据题意可得□内的数字为,进而根据二次根式的乘法进行计算即可求解;(3)根据题意列出算式,进而根据幂的运算进行计算,最后表示成科学记数法的形式,即可求解.【小问1详解】KH CD ∥ AHK ADG ∴△∽△KH AH GD AD∴=2GD \=Rt ADG V AG ===⨯- W 1462⨯-8-= W 326410,510,1.410⨯⨯⨯4-15610⨯8-解:原式【小问2详解】□内的数字为∴□内的数字为1;【小问3详解】解:21.如果一个四位自然数的各数位上的数字互不相等且均不为0,满足,那么称这个四位数为“递减数”.例如:四位数4129,∵,∴4129是“递减数”.(1)判断四位数5324是不是“递减数”;(2)若一个“递减数”为,求这个“递减数”;(3)若一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,直接写出满足条件的递减数的最大值.【答案】(1)不是“递减数”;(2)4312;(3)8165.【解析】【分析】本题主要考查了新定义:(1)根据“递减数”的定义求解即可;(2)根据“递减数”的定义可得,解方程即可得到答案;(3)先由“递减数”的定义得到,再求出,进而推出能被9整除,据此求出能满足能被9整除的正整数a 、b 即可得到答案.26=-4=-88=98=-1=326410510 1.410⨯⨯⨯-⨯66210 1.410=⨯-⨯5610=⨯abcd ab bc cd -=411229-=312a abc bcd 1033112a +-=101010a b b c c d +--=+110010110100110001abc bcd a b c b b a b a b c +=++++++--=112a b +112a b +【小问1详解】解:∵,∴5324不是“递减数”;【小问2详解】解:∵一个“递减数”为,∴,∴,∴这个“递减数”为4312;【小问3详解】解:∵一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,∴,∵,∴,∵能被整除,∴能被9整除,∵各数位上数字互不相等且均不为0,∴或或或或或或或,∴当时,有最大的“递减数”,∴,即:,∴最大取,此时,∴这个最大的“递减数”为8165.故答案为:8165.22. 某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x 分为如下四组(:分钟)进行统计,绘制了如下不完整的统计图.的53322124-=≠312a 1033112a +-=4a =abc bcd 101010a b b c c d +--=+1001010010abc bcd a b c b c d +=+++++110010110100110001abc bcd a b c b b a b a b c +=++++++--=()11010199112a b a b a b +=+++9112a b +18a b =⎧⎨=⎩27a b =⎧⎨=⎩36a b =⎧⎨=⎩45a b =⎧⎨=⎩54a b =⎧⎨=⎩63a b =⎧⎨=⎩72a b =⎧⎨=⎩81a b =⎧⎨=⎩8,1a b ==1089110c c d ⨯-⨯-=+1171c d +=c 65d =707080809090A x B x C x Dx <≤<≤<≥.,.,.,,单位根据以上信息,解答下列问题:(1)本次抽取的学生人数为______人,扇形统计图中m 的值为______,请你补全条形统计图;(2)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在 80分钟(含80分钟)以上的学生有______人;(3)若D 组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.【答案】(1)50;30;统计图见解析(2)300人 (3)【解析】【分析】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,树状图法或列表法求解概率:(1)用D 组的人数除以其人数占比即可求出参与调查的人数,进而求出m 的值和C 组的人数,最后补全统计图即可;(2)用600乘以样本中C 、D 两组的人数占比之和即可得到答案;(3)先列表得到所有等可能性的结果数,再找到抽取的两名同学中恰好是一名女生和一名男生的结果数,最后依据概率计算公式求解即可.【小问1详解】解:人,∴本次抽取的学生人数为50人,∴,∴,C 组人数为人,补全统计图如下:的35510%50÷=15%100%30%50m =⨯=30m =501015520---=【小问2详解】解:人,∴估计该校九年级学生中参加家务劳动的时间在 80分钟(含80分钟)以上的学生有300人;【小问3详解】解:设用A 、B 、C 表示3名女生,用D 、E 表示2名男生,列表如下:由表格可知,一共有20种等可能性的结果数,其中抽取的两名同学中恰好是一名女生和一名男生的结果数有12种,∴抽取的两名同学中恰好是一名女生和一名男生的概率为.23. 甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和与甲组挖掘时间x (天)之间的关系如图所示.20560030050+⨯=A B C D E A (),B A (),C A (),D A (),E A B (),A B (),C B (),D B (),E B C (),A C (),B C (),D C (),E C D (),A D (),B D (),C D (),E D E (),A E (),B E (),C E (),D E 123205=()m y(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组已停工的天数.【答案】(1)30(2)(3)10天【解析】【分析】(1)由图可知,前30天甲乙两组合作,30天以后甲组单独做,据此计算即可;(2)设乙组停工后y 关于x 的函数解析式为,用待定系数法求解,再结合图象即可得到自变量x 的取值范围;(3)先计算甲乙两组每天各挖掘多少千米,再计算乙组挖掘的总长度,设乙组已停工的天数为a ,根据甲组挖掘的总长度与乙组挖掘的总长度相等列方程计算即可.【小问1详解】解:由图可知,前30天甲乙两组合作,30天以后甲组单独做,∴甲组挖掘了60天,乙组挖掘了30天,(天)∴甲组比乙组多挖掘了30天,故答案为:30;【小问2详解】解:设乙组停工后y 关于x 的函数解析式为,将和两个点代入,可得,解得,()312060y x x =+30<≤y kx b =+603030-=y kx b =+()30,210()60,3002103030060k b k b =+⎧⎨=+⎩3120k b =⎧⎨=⎩∴【小问3详解】解:甲组每天挖(米)甲乙合作每天挖(米)∴乙组每天挖(米),乙组挖掘的总长度为(米)设乙组己停工的天数为a ,则,解得,答:乙组已停工的天数为10天.【点睛】本题考查了一次函数的应用,待定系数法求函数的解析式,理解题意观察图象得到有用信息是解题的关键.24. 如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分,,垂足为E (1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为2,,求线段EF 的长.【答案】(1)直线DE 与⊙O 相切;(2).【解析】【分析】(1)欲证明DE 是⊙O 的切线,只要证明即可;(2)过O 作于G ,得到,根据直角三角形的性质得到,得到,推出四边形AODF 是菱形,得到,,于是得到结论.【详解】(1)直线DE 与⊙O 相切,连结OD .∵AD 平分,()312060y x x =+30<≤30021036030-=-210730=734-=304120⨯=()330120a +=10a =BAC ∠DE AC ⊥60BAC ︒∠=1EF =90ODE ︒∠=OG AF ⊥2AF AG =112AG OA ==2AF =DF OA ∥2DF OA ==BAC ∠∴,∵,∴,∴,∴,∵,即,∴,即,∴DE 是⊙O 的切线;(2)过O 作于G ,∵,∴,,∴,∴,∴,∴四边形AODF 是菱形,∵,,∴,∴.【点睛】本题考查切线的判定和性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.25. 如图1,抛物线与x 轴交于点,,与y 轴交于点C ,顶点为D,直OAD CAD ∠=∠OA OD =OAD ODA ∠=∠ODA CAD ∠=∠OD AC DE AC ⊥90AED ︒=∠90ODE ︒∠=DE OD ^OG AF ⊥2AF AG =60BAC ︒∠=2OA =112AG OA ==2AF =AF OD =DF OA ∥2DF OA ==60EFD BAC ︒∠=∠=112EF DF ==26y ax bx =++()2,0A -()6,0B线AD 交y 轴于点E .(1)求抛物线的解析式.(2)如图2,将沿直线AD 平移得到.①当点M 落在抛物线上时,求点M 的坐标.②在移动过程中,存在点M 使为直角三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1);(2)①或;②或或或【解析】【分析】(1)抛物线的表达式为:,即:,即可求解;(2)①将点M 的坐标代入抛物线表达式,即可求解);②分为直角、为直角、为直角三种情况,分别求解即可.【详解】解:(1)抛物线的表达式为:,即:,解得:,故抛物线的表达式为:,令,解得:或,故点,函数的对称轴为:,故点;(2)将点A 、D 的坐标代入一次函数表达式:得:,解得:,故直线AD 的表达式为:,设点,AOE △NMP NMP MBD 21262y x x =-++((--()2,4--1428,33⎛⎫ ⎪⎝⎭()()222641()2412y a x x a x x ax ax a =+-=--=--126a -=BMD ∠MBD ∠MDB ∠()()222641()2412y a x x a x x ax ax a =+-=--=--126a -=12a =-21262y x x =-++0y =4x =2-()2,0A -2x =()2,8D y mx n =+8202m n m n =+⎧⎨=-+⎩24m n =⎧⎨=⎩24y x =+(),24N n n +,则点,①将点M 的坐标代入抛物线表达式得:,解得:,故点M 的坐标为或;②点,点B 、D 的坐标分别为、,则,,,当为直角时,由勾股定理得:,解得:,当为直角时,同理可得:,当为直角时,同理可得:,故点M 的坐标为:或或或.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、勾股定理的运用等,其中(2)②,要注意分类求解,避免遗漏.26. 综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D 为上一点,,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形设点P 的运动时间为,正方形的而积为S ,探究S 与t 的关系2MN OA == ()2,24M n n ++()()212422162n n n +=-++++2n =-±((--()2,24M n n ++()6,0()2,8()222628BD =-+()()222424MB n n =-++()22224MD n n =+-BMD ∠()()()()22222262842424n n n n -+=-++++-n =MBD ∠n =-4MDB ∠83n =()2,4--1428,33⎛⎫ ⎪⎝⎭Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF s t DPEF(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当时,_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形面积.【答案】(1)①3;②(2),(3)①4;②【解析】【分析】(1)①先求出,再利用勾股定理求出,最后根据正方形面积公式求解即可;②仿照(1)①先求出,进而求出,则;(2)先由函数图象可得当点P 运动到B 点时,,由此求出当时,,可设S 关于t 的函数解析式为,利用待定系数法求出,进而求出当时,求得t 的值即可得答案;(3)①根据题意可得可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数的1t =S =AB 123,,t t t 123t t t <<DPEF 12t t +=314t t =DPEF 22S t =+()281828S t t t =-+≤≤6AB =3491CP =DP =CP t =222DP t =+222S DP t ==+26S DP ==2t =6S =()242S a t =-+2818S t t =-+281818S t t =-+=()242S t =-+22S t =+()()()1221P m n Q m n m m >,,,22S t =+()14m n +,()24m n +,上的两点,由此可得,则,根据题意可以看作,则;②由(3)①可得,再由,得到,继而得答案.【小问1详解】解:∵动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,∴当时,点P 在上,且,∵,,∴∴,故答案为:3;②∵动点P 以每秒1个单位的速度从C 点出发,在匀速运动,∴,∵,,∴,∴;【小问2详解】解:由图2可知当点P 运动到B 点时,,∴,解得,∴当时,,由图2可知,对应的二次函数的顶点坐标为,∴可设S 关于t 的函数解析式为,把代入中得:,解得,∴S 关于t 的函数解析式为,()242S t =-+121212044m m m m m m +=<<+<+,2144m m ++=21321244m m t t m t ==+=+,,124t t +=134t t =+314t t =143t =C B A →→1t =BC 1CP =90C ∠=︒CD =DP ==23S DP ==BC CP t =90C ∠=︒CD =22222DP CP CD t =+=+222S DP t ==+26S DP ==226t +=2t =2t =6S =()42,()242S a t =-+()26,()242S a t =-+()26242a =-+1a =()()224281828S t t t t =-+=-+≤≤在中,当时,解得或,∴;【小问3详解】解:①∵点P 在上运动时, ,点P 在上运动时,∴可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,∴,∴,∵存在3个时刻()对应的正方形的面积均相等.∴可以看作,∴,故答案为:4;②由(3)①可得,∵,∴,∴,∴.2818S t t =-+281818S t t =-+=8t =0=t 826AB =-=BC 22S t =+AB ()242S t =-+()242S t =-+22S t =+()()()1221P m n Q m n m m >,,,22S t =+()14m n +,()24m n +,()242S t =-+121212044m m m m m m +=<<+<+,2144m m ++=123,,t t t 123t t t <<DPEF 21321244m m t t m t ==+=+,,124t t +=134t t =+314t t =1144t t =+143t =224342239S t ⎛⎫=+=+= ⎪⎝⎭【点睛】本题主要考查了二次函数与图形运动问题,待定系数法求函数解析式,勾股定理等等,正确理解题意利用数形结合的思想求解是解题的关键.。

2023年重庆市中考数学试卷A卷(带答案及解析)

2023年重庆市中考数学试卷A卷(带答案及解析)

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框黑。

1.8的相反数是()A.-8B.8C.18D.-182.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B. C.D.3.反比例函数y =-4x的图象一定经过的点是()A.1,4B.-1,-4C.-2,2D.2,24.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,AB ∥CD ,AD ⊥AC ,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°6.估计28+10 的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,⋯⋯,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC是⊙O的切线,B为切点,连接OA,OC。

若∠A=30°,AB=23,BC=3,则OC的长度是()A.3B.23C.13D.69.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°。

若∠BAE=α,则∠FEC一定等于()A.2αB.90°-2αC.45°-αD.90°-α10.在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”。

2024年上海市长宁区中考数学二模试卷及答案解析

2024年上海市长宁区中考数学二模试卷及答案解析

2024年上海市长宁区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.(4分)下列是最简二次根式的是()A.B.C.D..2.(4分)关于一元二次方程x2+x﹣3=0根的情况,正确的是()A.有两个相等的实数根B.有两个不相等的实数根C.有且只有一个实数根D.没有实数根3.(4分)下列函数中,函数值y随自变量x的值增大而增大的是()A.y=2x2B.C.y=﹣2x D.y=2x+14.(4分)为了解某公司的收入水平,随机挑选五人的月工资进行抽样调查,月工资(单位:元)分别是3000,4000,5000,6000,50000,那么能够较好的反映他们收入平均水平的是()A.中位数B.标准差C.平均数D.众数.5.(4分)如图,已知点A、B、C、D都在⊙O上,OB⊥AC,BC=CD,下列说法错误的是()A.B.∠AOD=3∠BOC C.AC=2CD D.OC⊥BD6.(4分)下列命题是假命题的是()A.对边之和相等的平行四边形是菱形B.一组邻边上的高相等的平行四边形是菱形C.一条对角线平分一组对角,另一条对角线平分一个内角的四边形是菱形D.被一条对角线分割成两个等腰三角形的平行四边形是菱形二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:2﹣2=.8.(4分)截至2023年底,全国高铁营业里程约为45000公里,这个数45000用科学记数法表示为.9.(4分)函数的定义域为.10.(4分)方程的解是.11.(4分)已知方程,如果设,那么原方程转化为关于y的整式方程为.12.(4分)如果二次函数y=x2+m的图象向右平移3个单位后经过原点,那么m的值为.13.(4分)在1,2,3中任取两个不重复的数字组成一个两位数,那么这个两位数是素数的概率是.14.(4分)为了解某校六年级300名学生来校的方式,随机调查了该校六年级50名学生同一天来校的方式,并绘制了如图所示的饼状图,那么估计该校六年级300名学生中这一天步行来学校的共有_____名.15.(4分)如图,在△ABC中,点D在边AB上,且BD=2AD,点E是AC的中点,联结DE,设向量,,如果用、表示,那么=.16.(4分)如图,正方形ABCD中,点E在对角线BD上,点F在边CD上(点F不与点C重合),且∠EAF=45°,那么的值为.17.(4分)在Rt△ABC中,∠ACB=90°,AC>BC,将△ABC绕着点C旋转,点A、点B的对应点分别是点D、点E,如果点A在DE的延长线上,且CE∥AB,那么∠CAE的余弦值为.18.(4分)我们把以三角形的重心为圆心的圆叫做该三角形的重心圆.如图,在△ABC中,AB=AC=10,BC=16,如果△ABC的重心圆与该三角形各边的公共点一共有4个,那么它的半径r的取值范围是.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(10分)计算:.20.(10分)解方程组:.21.(10分)如图,⊙O经过平行四边形ABCD的顶点B,C,D,点O在边AD上,AO=3,OD=5.(1)求平行四边形ABCD的面积;(2)求∠D的正弦值.22.(10分)春节期间甲乙两家商店各自推出优惠活动商店优惠方式甲所购商品按原价打八折乙所购商品按原价每满300元减80元设顾客在甲乙两家商店购买商品的原价都为x元,请根据条件回答下列问题:(1)如果顾客在甲商店购买商品选择优惠活动后实际付款y元,求y关于x的函数解析式(不必写出函数定义域);(2)购买原价在500元以下的商品时,如果分别选择甲商店的优惠活动和乙商店的优惠活动后,实际付款金额相等,求x的值;(3)顾客购买原价在900元以下的商品时,如果选择乙商店的优惠活动比选择甲商店的优惠活动更合算,求x的取值范围.23.(12分)已知:在梯形ABCD中,AD∥BC,BD⊥AD,点E在边AD上(点E不与点A、D重合),点F在边CD上,且∠ABD=∠EBF=∠C.(1)求证:;(2)联结EF,与BD交于点G,如果BG=EG,求证:四边形BEDF为等腰梯形.24.(12分)在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与x轴分别交于点A、B(点A在点B左侧),与y轴交于点C(0,6),其对称轴为直线x=2.(1)求该抛物线的表达式;(2)点F是上述抛物线上位于第一象限的一个动点,直线AF分别与y轴、线段BC交于点D、E.①当CF=DF时,求CD的长;②联结AC,如果△ACF的面积是△CDE面积的3倍,求点F的坐标.25.(14分)已知在△ABC中,CA=CB,AB=6,cos∠CAB=,点O为边AB上一点,以点O为圆心,OA为半径作⊙O,交边AC于点D(点D不与点A、C重合).(1)当AD=4时,判断点B与⊙O的位置关系,并说明理由;(2)过点C作CE⊥OD,交OD延长线于点E.以点E为圆心,EC为半径作⊙E,延长CE,交⊙E 于点C′.①如图1,如果⊙O与⊙E的公共弦恰好经过线段EO的中点,求CD的长;②联结AC′、OC,如果AC′与△BOC的一条边平行,求⊙E的半径长.2024年上海市长宁区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.【分析】根据最简二次根式的定义进行解题即可.【解答】解:A、=,故不符合题意;B、==,故不符合题意;C、是最简二次根式,符合题意;D、==5,故不符合题意;故选:C.【点评】本题考查最简二次根式,熟练掌握相关的知识点是解题的关键.2.【分析】先计算出根的判别式的值,然后根据根的判别式的意义对各选项进行判断.【解答】解:∵Δ=12﹣4×(﹣3)=13>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.3.【分析】根据反比例函数的性质、一次函数的性质及正比例函数的性质、二次函数的性质对各选项进行逐一分析即可.【解答】解:A、函数y=2x2中,当x<0时y随x的增大而减小,不符合题意;B、函数y=﹣中,在每一象限内y随x的增大而增大,不符合题意;C、函数y=﹣2x中,y随x的增大而减小,不符合题意;D、函数y=2x+1中,y随x的增大而增大,符合题意.故选:D.【点评】本题考查的是反比例函数的性质、一次函数的性质及正比例函数的性质、二次函数的性质,熟知以上知识是解题的关键.4.【分析】利用平均数,中位数、众数和给出的数据分别进行分析,即可得出答案.【解答】解:根据给出的数据可得,中位数根据能够较好的反映他们收入平均水平.故选:A.【点评】此题考查了平均数、众数、中位数和标准差,众数是指一组数据中出现次数最多的数据;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.5.【分析】分别根据垂径定理,圆心角、弧、弦的关系,三角形三边的关系和线段的垂直平分线的判定判断即可.【解答】解:A、∵OB⊥AC,∴=,故不符合题意;B、∵=,∴∠AOB=∠COB,∵BC=CD,∴∠BOC=∠DOC,∴∠AOD=3∠BOC,故不符合题意;C、∵∠AOB=∠BOC=∠DOC,∴∠AOC=∠BOD,∴AC=BD,∵BD<BC+CD=2CD,∴AC<2CD,故符合题意;D、∵OB=OC,BC=DC,∴OC⊥BD,故不符合题意;故选:C.【点评】本题考查圆周角定理、垂径定理、圆心角、弧、弦的关系、三角形三边的关系和线段的垂直平分线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.6.【分析】根据菱形的判定定理判断即可.【解答】解:A、∵平行四边形的对边相等,∴对边之和相等舒,邻边线段,∴平行四边形是菱形,故本选项命题是真命题;B、根据菱形的面积公式可知:一组邻边上的高相等的平行四边形是菱形,故本选项命题是真命题;C、一条对角线平分一组对角,另一条对角线平分一个内角的四边形是菱形,是真命题,不符合题意;D、有一条对角线与一组邻边构成等腰三角形的平行四边形不一定是菱形,故被一条对角线分割成两个等腰三角形的平行四边形是菱形是假命题,符合题意;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】根据负整数指数幂法则进行解题即可.【解答】解:2﹣2=.故答案为:.【点评】本题考查负整数指数幂,掌握运算法则是解题的关键.8.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:45000=4.5×104.故答案为:4.5×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【分析】根据分式的分母不为零列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】本题考查的是函数自变量的取值范围的确定,熟记分式的分母不为零是解题的关键.10.【分析】方程两边平方得出x﹣1=9,求出方程的解,再进行检验即可.【解答】解:,方程两边平方,得x﹣1=9,解得:x=10,经检验:x=10是原方程的解.故答案为:x=10.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.11.【分析】设,则原方程转化为y﹣=2,再方程两边都乘3y即可.【解答】解:,设,则原方程转化为:y﹣=2,方程两边都乘3y,得3y2﹣1=6y,即3y2﹣6y﹣1=0.故答案为:3y2﹣6y﹣1=0.【点评】本题考查了用换元法解分式方程,能正确换元是解此题的关键.12.【分析】求出函数图象向右平移3个单位后的函数解析式,再由函数图象过原点即可得出m的值.【解答】解:二次函数y=x2+m的图象向右平移3个单位后的解析式为y=(x﹣3)2+m,∵二次函数y=x2+m的图象向右平移3个单位后经过原点,∴(0﹣3)2+m=0,解得m=﹣9.故答案为:﹣9.【点评】本题考查的是二次函数的图象与几何变换,熟知“左加右减”的法则是解题的关键.13.【分析】列表可得出所有等可能的结果数以及这个两位数是素数的结果数,再利用概率公式可得出答案.【解答】解:列表如下:123112132212333132共有6种等可能的结果,其中这个两位数是素数的结果有:13,23,31,共3种,∴这个两位数是素数的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】总人数乘以样本中步行人数所占比例即可.【解答】解:估计该校六年级300名学生中这一天步行来学校的共有300×(1﹣12%﹣32%﹣26%)=90(名),故答案为:90.【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.15.【分析】首先由向量的知识,得到与的值,即可得到的值.【解答】解:在△ABC中,,,则=﹣=﹣.∵BD=2AD,点E是AC的中点,∴==,==﹣,∴=+=+﹣=﹣.故答案为:﹣.【点评】此题考查向量的知识.解题的关键是注意数形结合思想的应用.16.【分析】通过证明△BAE∽△CAF,可得.【解答】解:∵四边形ABCD是正方形,∴AC=AB,∠ABD=∠ACD=45°,∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴,故答案为:.【点评】本题考查了正方形的性质,相似三角形的判定和性质,证明三角形相似是解题的关键.17.【分析】由△ABC绕着点C旋转,点A、点B的对应点分别是点D、点E,点A在DE的延长线上,且CE∥AB,得∠ACE=∠BAC=D=x°,得3x+90=180,得∠CAE=x=30°,得∠CAE的余弦值为.【解答】解:由△ABC绕着点C旋转,点A、点B的对应点分别是点D、点E,点A在DE的延长线上,且CE∥AB,得∠ACE=∠BAC=∠D=x°,由△ADC中,∠ACB=90°,得3x+90=180,得∠CAE=x=30°,得∠CAE的余弦值为.故答案为:.【点评】本题主要考查了旋转的性质,解题关键是正确应用旋转的性质.18.【分析】当⊙O与AB、AC相切时(切点是M、N),⊙O与△ABC的三边有4个公共点,连接OM,由△AOM∽△ABH,得到OM:BH=AO:AB,即可求出OM=3.2,当⊙O′与AB、AC分别有一个公共点,与BC有两个公共点时(⊙O′不过B、C两点),△ABC的重心圆与该三角形各边的公共点一共有4个,于是得到当4<r<2时,△ABC的重心圆与该三角形各边的公共点一共有4个,即可得到答案.【解答】解:如图,过A作AH⊥BC于H,∵AB=AC=10,∴HB=HC=BC=×16=8,∴AH==6,设O是△ABC的重心,∴AO=AH=4,当⊙O与AB、AC相切时(切点是M、N),⊙O与△ABC的三边有4个公共点,连接OM,∴OM⊥AB,∴∠AMO=∠AHB=90°,∵∠OAM=∠BAH,∴△AOM∽△ABH,∴OM:BH=AO:AB,∴OM=8=4:10,∴OM=3.2,∴重心圆的半径r=3.2时,△ABC的重心圆与该三角形各边的公共点一共有4个,如图,过作AK⊥BC于K,∵∵AB=AC=10,∴KB=KC=BC=×16=8,∴AK==6,设O′是△ABC的重心,∴AO′=AH=4,∴KO′=6﹣4=2,∴BO′==2,当⊙O′与AB、AC有一个公共点,与BC有两个公共点时(⊙O′不过B、C两点),△ABC的重心圆与该三角形各边的公共点一共有4个,∴当4<r<2时,△ABC的重心圆与该三角形各边的公共点一共有4个,∴重心圆的半径r=3.2或4<r<2时,△ABC的重心圆与该三角形各边的公共点一共有4个,故答案为:r=3.2或4<r<2.【点评】本题考查直线与圆的位置关系,三角形的重心,等腰三角形的性质,相似三角形的判定和性质,关键是要分两种情况讨论.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.【分析】先化简各式,然后再进行计算即可解答.【解答】解:原式=2+(﹣+3)﹣2+=2﹣=4.【点评】本题考查了实数的运算,零指数幂,准确熟练地化简各式是解题的关键.20.【分析】把②变形为(x﹣2y)(x﹣3y)=0,可得x﹣2y=0或x﹣3y=0,故原方程组相当于和,分别解两个二元一次方程组可得原方程组的解.【解答】解:由②得:(x﹣2y)(x﹣3y)=0,∴x﹣2y=0或x﹣3y=0,∴原方程组相当于和,分别解两个二元一次方程组可得原方程组的解为和.【点评】本题考查解二元二次方程组,解题的关键是用因式分解法“降次“,把二元二次方程组变形为两个二元一次方程组.21.【分析】(1)过O点作OE⊥BC,如图,先根据平行四边形的性质得到BC=AD=8,AD∥BC,再利用垂径定理得到BE=CE=4,接着利用勾股定理计算出OE=3,然后利用平行四边形的面积公式求解;(2)先证明四边形OECF为矩形得到CF=OE=3,OF=CE=4,所以DF=1,再利用勾股定理计算出CD,然后根据正弦的定义求解.【解答】解:(1)过O点作OE⊥BC,如图,∵四边形ABCD为平行四边形,∴BC=AD=3+5=8,AD∥BC,∵OE⊥BC,∴BE=CE=4,在Rt△OEC中,OE===3,∴平行四边形ABCD的面积=8×3=24;(2)∵OF∥CE,OE⊥CE,CF⊥OF,∴四边形OECF为矩形,∴CF=OE=3,OF=CE=4,∴DF=OD﹣OF=5﹣4=1,在Rt△CDF中,CD===,∴sin D===.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了平行四边形的性质、圆周角定理和解直角三角形.22.【分析】(1)根据甲商店实际付款是原价的0.8倍列出函数解析式;(2)根据题意可知300≤x<500,然后按活动价列出等式,解方程即可;(3)分当300≤x<600和600≤x<900两种情况列出不等式,解不等式即可.【解答】解:(1)根据题意得:y=0.8x,∴y关于x的函数解析式为y=0.8x;(2)若x<300,则甲商店按原价打八折,乙商店按原价,此时实际付款金额不可能相等,∴300≤x<500,∴0.8x=x﹣80,解得x=400;(3)当300≤x<600时,x﹣80<0.8x,解得x<400,∴300≤x<400;当600≤x<900时,x﹣160<0.8x,解得x<800,∴600≤x<800,综上所述,x的取值范围为300≤x<400或600≤x<800.【点评】本题考查一次函数和一元一次不等式的应用,关键是列出函数解析式和不等式.23.【分析】(1)由AD∥BC,BD⊥AD,得∠ADB=∠DBC=90°,而∠ABD=∠EBF=∠C,可推导出∠ABE=∠DBF,∠A=∠BDF,进而证明△ABE∽△DBF,则=;(2)将=,变形为=,因为∠ABD=∠EBF,所以△ABD∽△EBF,得∠ADB=∠EFB,再证明△BGF∽△EGD,得===1,则BF=ED,FG=DG,所以∠GDF=∠GFD,由∠BGE =2∠GEB=2∠GFD,证明∠GEB=∠GFD,则BE∥DF,所以四边形BEDF为等腰梯形.【解答】(1)证明:∵AD∥BC,BD⊥AD,∴∠ADB=∠DBC=90°,∵∠ABD=∠EBF=∠C,∴∠ABD﹣∠DBE=∠EBF﹣∠DBE,∴∠ABE=∠DBF,∵∠A+∠ABD=90°,∠BDF+∠C=90°,∴∠A=∠BDF,∴△ABE∽△DBF,∴=.(2)证明:联结EF,与BD交于点G,∵=,∴=,∵∠ABD=∠EBF,∴△ABD∽△EBF,∴∠ADB=∠EFB,∵∠BGF=∠EGD,∠GFB=∠GDE,BG=EG,∴△BGF∽△EGD,∠GBE=∠GEB,∴===1,∴BF=ED,FG=DG,∴∠GDF=∠GFD,∵∠BGE=∠GBE+∠GEB=2∠GEB,∠BGE=∠GDF+∠GFD=2∠GFD,∴2∠GEB=2∠GFD,∴∠GEB=∠GFD,∴BE∥DF,∴四边形BEDF为等腰梯形.【点评】此题重点考查平行线的判定与性质、相似三角形的判定与性质、三角形的一个外角等于与它不相邻的两个内角的和等知识,证明△ABE∽△DBF及△ABD∽△EBF是解题的关键.24.【分析】(1)由待定系数法即可求解;(2)①当CF=DF时,则点F在CD的中垂线上,则(6﹣m+6)=﹣m2+2m+6,即可求解;②证明△EMD∽△FNA,得到DE:AF=DM:AN=1:3,则=(m+2),即可求解.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=﹣x2+2x+6;(2)由抛物线的表达式得,点A(﹣2,0)、C(0,6),设点F(m,﹣m2+2m+6),由点A(﹣2,0)、F的坐标得,直线AF的表达式为:y=﹣(m﹣6)(x+2),则点D(0,6﹣m),①当CF=DF时,则点F在CD的中垂线上,则(6﹣m+6)=﹣m2+2m+6,解得:m=0(舍去)或5,则CD=6﹣(6﹣m)=m=5;②由点B、C的坐标得,直线BC的表达式为:y=﹣x+6,联立上式和AF的表达式得:﹣x+6=﹣(m﹣6)(x+2),解得:x==DM,由点F的坐标得,AN=m+2,∵△ACF的面积是△CDE面积的3倍,则DE:AF=1:3过点D作DM∥x轴,作EM⊥DM,过点F作FN⊥x轴,则△EMD∽△FNA,则DE:AF=DM:AN=1:3,则=(m+2),解得:m=﹣4(舍去)或4,即点F(4,6).【点评】本题考查的是二次函数综合运用,涉及到一次函数的基本性质、待定系数法求函数表达式、三角形相似、中垂线的性质等,有一定的综合性,难度适中.25.【分析】(1)借助垂径定理,利用cos A表示出AO和BO,通过比较AO和BO的大小确定点与圆的位置关系;(2)①需要紧扣∠CDE=∠A,结合连心线和公共弦的性质可以发现圆E和圆O是等圆,借助相似三角形的性质或锐角三角函数,用含k的代数式表示出CD、AD,从而求解;②当AC′∥CB时,过点C′作C′N⊥AD,证明出∠C′AD=∠C′DA,在Rt△C′NC中,cos∠C'CN==,得到,解得,则;当AC′∥OC,延长OE交AC′延长线于点F,由AC′∥OC,得到,解得或5(舍去),则CE=4k=.【解答】解:(1)点B在⊙O内;理由如下:过点O作OH⊥AC,垂足为点H,∵OH过圆心,OH⊥AD,∴,∵OH⊥AC,∴∠AHO=90°,在Rt△AOH中,,∴,∵AB=6,∴,∵OB<AO,∴点B在⊙O内;(2)过点C作CM⊥AB,垂足为M,如图2,∵AC=BC,CM⊥AB,∴,在Rt△ACM中,,∴AC=5,∵OA=OD,∴∠CAB=∠ODA,又∵∠ODA=∠CDE,∴∠CAB=∠CDE,∵,在Rt△CDE中,∠CED=90°,,设DE=3k,CD=5k,则,∴AD=5﹣k,①两圆的交点记为P、Q,连接PE,PO,如图3,⊙O与⊙E相交,PQ是公共弦,∴OE垂直平分PQ,即OE⊥PQ,∵PQ经过OE的中点,∴PQ垂直平分OE,∴PE=PO,即CE=AO,,在Rt△AHO中,∠AHO=90°,∴,∵,∴,解得,∴;②由于点A在直线AB上,∴AC′不可能与OB平行,则当AC′∥CB时,过点C′作C′N⊥AD,如图4,∵AC=CB,∴∠CAB+∠B+∠ACB=180°,∴∠ACB=180°﹣2∠CAB,∵AC′∥CB,∴∠C′AD=∠ACB=180°﹣2∠CAB,∵DE⊥CC′,CE=C′E,∴DC′=DC,∴∠CDE=∠C′DE,∵∠C′DA+∠C′DE+∠CDE=180°,∴∠C′DA=180°﹣2∠CDE,∵∠CAB=∠CDE,∴∠CAD=∠CDA,∵C′N⊥AD,∴,∴,在Rt△C′NC中,,∴,∴,∴;当AC∥OC,延长OE交AC延长线于点F,如图5,∵AC′∥OC,∴,∴OE=EF,∴,DE=3k,∴,∴,∴,∵AC′∥OC,∴,∴,解得或5(舍去),∴,综上:或.【点评】本题考查了圆和三角形相结合的问题,锐角三角函数,点与圆的位置关系,相交两圆的性质,相似三角形的判定与性质,添加适当的辅助线,构造直角三角形,并灵活运用勾股定理是解答本题的关键。

2022年陕西省西安市中考数学二模试卷及答案解析

2022年陕西省西安市中考数学二模试卷及答案解析

2022年陕西省西安市中考数学二模试卷一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. −22的倒数是( )A. 22B. −22C. 122D. −1222. 如图,是放置在北京冬奥会场馆内水平地面上的领奖台,其几何体左视图是( )A. B.C. D.3. 下列运算正确的是( )A. √3+√2=√5B. √(−2)2=±2C. a2⋅a3=a5D. (−3a2b2)2=6a4b44. 如图,AD是△ABC的中线,若AB=AC=5,BC=6,则AD的值是( )A. 4B. 3C. 2D. 2√25. 一把直尺与一块直角三角板按如图方式摆放,若∠1=43°,则∠2=( )A. 40°B. 43°C. 45°D. 47°6. 一次函数y=kx+b(k<0)的图象过点(−1,0),则不等式kx+b>0的解集是( )A. x<−2B. x<−1C. x>−2D. x<17. 如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,∠EDF=60°,BF=√6,BE=1,则AD的长为( )A. √6B. √6+1C. 2√3D. 2√3−18. 已知函数y=ax2−(a+1)x+1,则下列说法正确的个数是( )①若该函数图象与x轴只有一个交点,则a=0②方程ax2−(a+1)x+1=0有一个整数根是1③存在实数a,使得ax2−(a+1)x+1≥0对任意实数x都成立A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共15.0分)9. 比较大小:2√3______√13.(填“>”、“=”、“<”).10. 一个正多边形的一个外角等于45°,则这个正多边形的边数是______.11. 如表在我国宋朝数学家杨辉1261年的著作《详细九章算法》中提到过,因而人们把这个表叫做杨辉三角.请你根据杨辉三角的规律补全表中第五行空缺的数字是______.12. 如图,在平面直角坐标系中,Rt△OBC的顶点B在x轴的正(x>0)的图象与边OC交于点E,已知E半轴上,反比例函数y=2x为边OC的中点,则△OBC的面积为______.13. 在△ABC中,∠ABC=90°,AB=2√3,BC=3,D为平面上的一个动点,∠ADB=60°,则线段CD长度的最大值为.三、解答题(本大题共13小题,共81.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二模试卷A卷
一、选择题 (共8题;共16分)
1. (2分)能说明“对于任何实数a,”是假命题的一个反例可以是()
A .
B .
C .
D .
2. (2分)计算:(-2)2 015· 等于()
A . -2
B . 2
C . -
D .
3. (2分)下列交通标志“慢性通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中,不是中心对称图形但是轴对称图形的是()
A .
B .
C .
D .
4. (2分)若关于x的不等式组无解,则a的取值范围为()
A . a<4
B . a≥4
C . a≤4
D . a>4
5. (2分)一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小华在袋中放入10个除颜色外其它完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是,则袋中红球约为()个.
A . 4
B . 25
C . 14
D . 35
6. (2分)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()
A . 4
B . 5
C . 6
D . 7
7. (2分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()
A .
B . 2
C .
D . 3
8. (2分)定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:y= x﹣3交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为()
A . (﹣,﹣)
B . (﹣,﹣)
C . (﹣,﹣)或( + ,﹣)
D . (﹣,﹣)或( + ,)
二、二.填空题 (共8题;共8分)
9. (1分)大家翘首以盼的南京地铁号线将于年春节前开通,它从龙江站到仙林湖站线路长度千米.则数据用科学记数法表示为________.
10. (1分)设m是方程x2﹣3x+1=0的一个实数根,则 =________.
11. (1分)函数中,自变量x的取值范围是________.
12. (1分)如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向下平移,平移后的抛物线和原抛物线与经过点(﹣4,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则s与m的函数关系式为________ (不写自变量取值范围).
13. (1分)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为________ .
14. (1分)如图,已知△ABC中,∠BAC=90°,AB=AC=6.D为BC边一点,且BD∶DC =1∶2,以D为一个顶点作正方形DEFG,且DE=BC,连接AE,将正方形DEFG绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AG的长为________
15. (1分)如图,在△ABC中,AB=AC=6,中线CE=5.延长AB到点D,使BD=AB,则CD的长________.
16. (1分)如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移个单位,则平移后直线的解析式为________。

三、解答题 (共10题;共94分)
17. (5分)计算:(﹣)2+﹣2sin45°﹣|1﹣|.
18. (7分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点坐标为________;
(2)将△AOB向左平移3个单位长度得到△A1O1B1 ,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为________.
19. (15分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:
项目月功能费基本话费长途话费短信费
金额/元550
(1)请将表格补充完整;
(2)请将条形统计图补充完整;
(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?
20. (10分)小强的钱包内有10元钱、20元钱和50元钱的纸币各1张.
(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;
(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率.
21. (10分)如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交边BC于点D,过点D作DE⊥AC交AC于点E,延长ED交AB的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若AB=8,AE=6,求BF的长.
22. (5分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间
工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
23. (5分)如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)
24. (15分)为积极支持鄂州市创建国家卫生城市工作,某商家计划从厂家采购A,B 两种清洁产品共20件,产品的采购单价(元/件)是采购数量(件)的相关信息如下表所示.采购数量(件)246…
A产品单价(元)146014201380…
B产品单价(元)128012601240…
(1)设B产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且B产品采购单价不高于1250元,求该商家共有几种进货方案?
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大?并求最大利润.
25. (7分)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.
(1)连结BE,CD,求证:BE=CD;
(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.
①当旋转角为________度时,边AD′落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.________
26. (15分)如图,抛物线与直线交于A,B两点,交x轴于D,C两点,已知, .
(1)求抛物线的函数表达式并写出抛物线的对称轴;
(2)在直线AB下方的抛物线上是否存在一点E,使得的面积最大?如果存在,求出E点坐标;如果不存在,请说明理由.
(3)为抛物线上一动点,连接PA,过点P作交y轴于点Q,问:是否存在点P,使得以A、P、Q为顶点的三角形与相似?若存在,请直接写出所有符合条件的P点的坐标;若不存在,请说明理由.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、二.填空题 (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共10题;共94分)
17-1、
18-1、
18-2、
18-3、
19-1、
19-2、
19-3、
20-1、
20-2、
21-1、
21-2、22-1、
23-1、
24-1、24-2、
24-3、25-1、
25-2、26-1、
26-2、
26-3、。

相关文档
最新文档