高中数学人教A版必修二:3.3.1 两直线的交点坐标 课件

合集下载

高中数学人教A版必修二 课件:两条直线的交点坐标 两点间的距离公式

高中数学人教A版必修二 课件:两条直线的交点坐标 两点间的距离公式

[答案] (1)C (2)C
[ 解析] 1 点为(3,1). 12 (2)分别令 x=0,求得两直线与 y 轴的交点分别为:- m 和- 12 m m 6. 3 ,由题意得- m =- 3 ,解得 m=±
3x+4y-5=0 (1)联立方程组 3x+5y-6=0
1 x= ,解得 3 ,故交 y=1
求平面上两点间距离
已知 A(a,3)和 B(3,3a+3)的距离为 5,求 a 的值.
[ 思路分析]
[ 解析]
2
利用两点间距离公式列方程解得 a 的值.
∵|AB|= a-32+3-3a-32=5,
8 即 5a -3a-8=0,∴a=-1 或 a=5.
[ 规律总结]
两点间的距离公式与两点的先后顺序无关, 也就
是说公式既可以写成 |P1P2| = x2-x12+y2-y12 ,也可以写成 |P1P2|= x1-x22+y1-y22,利用此公式可以将有关的几何问题 转化为代数问题进行研究. 在直角坐标系中,我们求线段的长度时,常常使用两点间的 距离公式.
已知点 A(3,6),在 x 轴上的点 P 与点 A 的距离等于 10,则点 P 的坐标为________.
A1x+B1y+C1=0 l2 平行时,方程组 A2x+B2y+C2=0
解的个数是 (
)
A.0 C.2
B.1 D.无数个
[答案] A [解析] 当l1∥l2时,直线l1与l2无公共点,故方程组无解.
3.已知 M(2,1)、N(-1,5),则|MN|=_______.
[ 答案]
[ 解析]
1.两条直线 l1:2x-y-1=0 与 l2:x+3y-11=0 的交点坐标 为 ( ) A.(3,2) C.(-2,-3) B.(2,3) D.(-3,-2)

3.3.1《两条直线的交点坐标》课件(新人教A版必修2)

3.3.1《两条直线的交点坐标》课件(新人教A版必修2)

6
品质来自专业 ②利用二元一次方程组的解讨论平面上两条直线的位置关系 金太阳教育网
信赖源于诚信
已知方程组
A1x+B1y+C1=0
(1)
A2x+B2y+C2=0 当A1,A2,B1,B2全不为零时
(2)
(1)×B2-(2)×B1得(A1B2-A2B1)x=B1C2-B2C1
3x+2y-1=0
y
证明:联立方程 2x-3y-5=0
x=1
解得: y= - 1 代入:x+2y-1+λ(2x-3y-5)= 0 即 M(1,- 1)
x
o
(1, - 1) M
得 0+λ·0=0
∴M点在直线上
A1x+B1y+C1+λ( A2x+B2y+C2)=0是过直A1x+B1y+C1=0 和A2x+B2y+C2=0的交点的直线系方程。
7
上述方程组的解的各种情况分别对应的两条直线的 什么位置关系?
金太阳教育网
品质来自专业 信赖源于诚信
A1 B1 时,两条直线相交,交点坐标为 当——≠ —— A2 B2 B1C2-B2C1 C1A2-C2A1 ( , ) A1B2-A2B1 A1B2-A2B1 A1 B1 C1 当 —— = —— ≠ —— 时,两直线平行; A2 B2 C2 A1 B1 C1 当 —— = —— = —— 时,两条直线重合。 A2 B2 C2
11
金太阳教育网

品质来自专业 信赖源于诚信
④直线A1x+B1y+C1=0与直线A2x+B2y+C2=0重合,则必 有 (A)A1=A2,B1=B2,C1=C2 (B )

高中数学人教a版必修二课件:3.3.1 《直线的交点坐标与距离公式》

高中数学人教a版必修二课件:3.3.1 《直线的交点坐标与距离公式》

提问:
已知两条直线 l1 : A1x B1 y C1 0 l2 : A2 x B2 y C2 0
相 交, 如 何 求 这 两 条 直 线 交 点的 坐 标?
几何元素及关系
点A
直线 l
代数表示
A(a, b)
l : Ax By C 0
点 A在直线 l上 Aa Bb C 0
直线 l1与直线 l2的交点 A
为待定系数
此直线系方程少一条直线l2
例3: 求过两直线x-2y+4=0和x+y-2=0的交点,且满足下列条件 的直线l的方程。
(1)过点(2,1);(2)和直线3x-4y+5=0垂直; (3)和直线2x-y+6=0平行
解: (1) 设经过二直线交点的直线方程为:
x 2y 4 (x y 2) 0 (1 )x ( 2) y (4 2) 0
(3) 设经过二直线交点的直线方程为:
x 2y 4 (x y 2) 0
(1 )x ( 2) y (4 2) 0
k 1 1 2
2
2
1
所以直线的方程为:2x y 2 0
说明:这两题也可以直接确定已知直线的斜率,再由平 行或垂直关系直接确定所求直线的斜率。
两点间距离公式
l1 : 3 x 4 y 5 0 , l2 : 6 x 8 y 1 0 0 .
平行
重合
例2. 求l1:3x+4y-2=0与l2:2x+y+2=0的交点.
解:由32xx4yy2200

x y
2 2
∴交点 (- 2,2)
变1.直线 y= - x+b 和 x - y=0 的交点在第一象限, 求b的取值范围.

高中数学必修二两条直线的交点坐标公开课教案课件教案课件

高中数学必修二两条直线的交点坐标公开课教案课件教案课件

3.3.1 两条直线的交点坐标【教学目标】1.掌握两直线方程联立方程组解的情况与两直线不同位置的对立关系,并且会通过直线方程系数判定解的情况,2.当两条直线相交时,会求交点坐标.3.学生通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.【重点难点】教学重点:根据直线的方程判断两直线的位置关系和已知两相交直线求交点. 教学难点:对方程组系数的分类讨论与两直线位置关系对应情况的理解.【教学过程】导入新课问题1.作出直角坐标系中两条直线,移动其中一条直线,让学生观察这两条直线的位置关系.课堂设问:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?你能求出它们的交点坐标吗?说说你的看法.问题2.你认为该怎样由直线的方程求出它们的交点坐标?这节课我们就来研究这个问题.新知探究 提出问题①已知两直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0,如何判断这两条直线的关系? ②如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系? ③解下列方程组(由学生完成):(ⅰ)⎩⎨⎧=++=-+022,0243y x y x ; (ⅱ)⎪⎩⎪⎨⎧+==+-2131,0362x y y x ; (ⅲ)⎪⎩⎪⎨⎧+==-2131,062x y y x .如何根据两直线的方程系数之间的关系来判定两直线的位置关系?④当λ变化时,方程3x+4y-2+λ(2x+y+2)=0表示什么图形,图形有什么特点?求出图形的交点坐标.几何元素及关系代数表示 点A A(a ,b) 直线l l :Ax+By+C=0点A 在直线上 直线l 1与l 2的交点A关系.设两条直线的方程是l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0,如果这两条直线相交,由于交点同时在这两条直线上,交点的坐标一定是这两个方程的唯一公共解,那么以这个解为坐标的点必是直线l 1和l 2的交点,因此,两条直线是否有交点,就要看这两条直线方程所组成的方程组⎪⎩⎪⎨⎧=++=++0,0222111C y B x A C y B x A 是否有唯一解.(ⅰ)若二元一次方程组有唯一解,则l 1与l 2相交;(ⅱ)若二元一次方程组无解,则l 1与l 2平行;(ⅲ)若二元一次方程组有无数解,则l 1与l 2重合.即直线l 1、l 2联立得方程组⎪⎩⎪⎨⎧⇔⎪⎩⎪⎨⎧.,,212121平行重合相交无解无穷多解唯一解转化、l l 、l l 、l l(代数问题) (几何问题)③引导学生观察三组方程对应系数比的特点:(ⅰ)23≠14;(ⅱ)21316312=--=;(ⅲ)16312--=≠211.一般地,对于直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0(A 1B 1C 1≠0,A 2B 2C 2≠0),有方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⇔≠=⇔⇔==⇔⇔≠⇔⎪⎩⎪⎨⎧=++=++.,,002121212121212121212121222111平行无解重合无穷多解相交唯一解l l C CB B A A l lC C B B A A l l B B A A C y B x A C y B x A . 注意:(a)此关系不要求学生作详细的推导,因为过程比较繁杂,重在应用.(b )如果A 1,A 2,B 1,B 2,C 1,C 2中有等于零的情况,方程比较简单,两条直线的位置关系很容易确定.④(a)可以用信息技术,当λ取不同值时,通过各种图形,经过观察,让学生从直观上得出结论,同时发现这些直线的共同特点是经过同一点.(b)找出或猜想这个点的坐标,代入方程,得出结论.(c)结论:方程表示经过这两条直线l 1与l 2的交点的直线的集合. 应用示例例1 求下列两直线的交点坐标,l 1:3x+4y-2=0,l 2:2x+y+2=0.解:解方程组⎩⎨⎧=++=-+,022,023y x y x 得x=-2,y=2,所以l 1与l 2的交点坐标为M(-2,2).变式训练求经过原点且经过以下两条直线的交点的直线方程.l 1:x-2y+2=0,l 2:2x-y-2=0.解:解方程组x-2y+2=0,2x-y-2=0, 得x=2,y=2,所以l 1与l 2的交点是(2,2).设经过原点的直线方程为y=kx,把点(2,2)的坐标代入以上方程,得k=1,所以所求直线方程为y=x.点评:此题为求直线交点与求直线方程的综合运用,求解直线方程也可应用两点式. 例2 判断下列各对直线的位置关系.如果相交,求出交点坐标. (1)l 1:x-y=0,l 2:3x+3y-10=0. (2)l 1:3x-y+4=0,l 2:6x-2y-1=0. (3)l 1:3x+4y-5=0,l 2:6x+8y-10=0. 活动:教师让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁,然后再进行讲评.解:(1)解方程组⎩⎨⎧=-+=-,01033,0y x y x 得⎪⎪⎩⎪⎪⎨⎧==.35,35y x所以l 1与l 2相交,交点是(35,35). (2)解方程组⎩⎨⎧=--=+-)2(,0126)1(,043y x y x①×2-②得9=0,矛盾,方程组无解,所以两直线无公共点,l 1∥l 2. (3)解方程组⎩⎨⎧=-+=-+)2(,01086)1(,0543y x y x①×2得6x+8y-10=0.因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合.变式训练判定下列各对直线的位置关系,若相交,则求交点.(1)l 1:7x+2y-1=0,l 2:14x+4y-2=0.(2)l 1:(3-2)x+y=7,l 2:x+(3+2)y-6=0.(3)l 1:3x+5y-1=0,l 2:4x+3y=5.答案:(1)重合,(2)平行,(3)相交,交点坐标为(2,-1).例3 求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程. 思路解析:根据本题的条件,一种思路是先求出交点坐标,再设所求直线的点斜式方程求出所要求的直线方程;另一种思路是利用直线系(平行系或过定点系)直接设出方程,根据条件求未知量,得出所求直线的方程.解:(方法一)由方程组⎩⎨⎧=++=0,2y x 0,3-3y -2x 得⎪⎪⎩⎪⎪⎨⎧-=-=.57,53y x∵直线l 和直线3x+y-1=0平行, ∴直线l 的斜率k=-3. ∴根据点斜式有y-(57-)=-3[x-(53-)],即所求直线方程为15x+5y+16=0.(方法二)∵直线l 过两直线2x-3y-3=0和x+y+2=0的交点, ∴设直线l 的方程为2x-3y-3+λ(x+y+2)=0, 即(λ+2)x+(λ-3)y+2λ-3=0. ∵直线l 与直线3x+y-1=0平行, ∴1321332--≠-=+λλλ.解得λ=211. 从而所求直线方程为15x+5y+16=0.点评:考查熟练求解直线方程,注意应用直线系快速简洁解决问题。

新教材高中数学直线的交点坐标与距离公式:两条直线的交点坐标pptx课件新人教A版选择性必修第一册

新教材高中数学直线的交点坐标与距离公式:两条直线的交点坐标pptx课件新人教A版选择性必修第一册
l1∥l2
=0与直线l2:A2x+B2y+C2=0的位置关系是________.
l1∥l2
[方程组无解,则l1与l2无公共点,从而l1∥l2.]
3.直线l1 :4x-y+3=0与直线l2 :3x+12y-11=0的位置关系是
l1⊥l2
________.
l1⊥l2
[由4×3+(-1)×12=0得l1⊥l2.]
15x+5y+16=0
的直线方程为_________________.
2
因此l1与l2的斜率相等,但截距不相等,所以它们平行.
(2)l1:x-2y+1=0,l2:x+2y+5=0.
[解]
− 2 + 1 = 0,
解方程组ቊ
可得x=-3,y=-1,
+ 2 + 5 = 0,
因此,l1与l2相交,而且交点坐标为(-3,-1).
类型3 直线系过定点问题
【例3】 (1)直线mx-3y+2m+3=0,当m变动时,所有直线都经
l1
l2
设这两条直线的交点为P,则点P既在直线__上,也在直线__上.所
以点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的
1 + 1 + 1 = 0,
方程A2x+B2y+C2=0,即点P的坐标就是方程组 ቊ + + = 0
2
2
2
的解.
知识点2 两直线的位置关系和方程组解的个数的关系
第二章
直线和圆的方程
2.3 直线的交点坐标与距离公式
2.3.1 两条直线的交点坐标
1.会用解方程的方法求两条相交直线的交点坐标.(数学
学习 运算)
任务 2.会根据方程解的个数判定两条直线的位置关系.(数学

人教版数学A版必修二教学课件3.两条直线的交点坐标

人教版数学A版必修二教学课件3.两条直线的交点坐标
这些直线.
画图
无论 为何值时,方程
3 x 4 y 2 ( 2 x y 2 ) 0
所表示的直线都经过点( -2,2 )
即两条直线
l1 :3x4y20, l2 :2xy20. 的交点坐标.
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
例2 判断下列各对直线的位置关系.如果相交,求出交 点坐标.

8.能够由具体的阅读材料进行拓展和 迁移, 联系相 关的文 学名著 展开分 析,提 出自己 的认识 和看法 ,说出 自己阅 读文学 名著的 感受和 体验。

9巧妙结合故事情节,在尖锐的矛盾冲 突中, 充分深 刻显示 人物复 杂内心 世界, 突出了 对人物 性格的 刻画, 使其有 血有肉 ,栩栩 如生。
②表示同一条直线, l1 与 l2 重合.
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
巩固练习:(练习1、2)
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
课后练习
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
1、直线5x+4y=2m+1与2x+3y=m交于第四象 限,则m的取值范围是__________。

3 2
< m <2
2、已知A(0,0),B(3,0),C(1,2),则 ∆ABC的垂心坐标是___________,外心坐标 是________。
(1,1) ( 1 , 3 ) 22
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
(1) l1 : x y 0, (2) l1 : 3x y 4 0, (3) l1 : 3x 4 y 5 0,

2.3.1两条直线的交点坐标(教学课件)- 高中数学人教A版(2019)选择性必修第一册

2.3.1两条直线的交点坐标(教学课件)- 高中数学人教A版(2019)选择性必修第一册

两条直线相交
二元一次方程 组有唯一解
直线l,J2还 有 哪些位置关系
平行
重合
问题4.已知直线l₁:A₁x+B₁y+C₁=0,l:A₂x+B₂y+C₂=0
平行,能否判断对应的二元一次方程组的解的情况呢
从形的角度看
直线l₁//l₂
直线lj,J₂没有公共点
从代数的角度看
不 存在点P(xo,y₀)的坐标满足
解 直线l₁,l₂方程化为斜截式,
则k₁=1,k₂=-1,k₁≠k₂,
所以,直线l₁与l₂相交.
例2.判断下列各对直线的位置关系.
(2)l:3x-y+4=0,l ₂:6x-2y-1=0
解 直线l₁,l₂ 方程化为斜截式,
则k₁=k₂=3,b₁≠b₂, l₁/l₂.
所以,
例2.判断下列各对直线的位置关系. (3)l:3x+4y-5=0,l₂:6x+8y-10=0
Q(2,-6)在直线l 上
追问:为什么可以作这样的判断呢?
直线l上的点
对应 关系
直线l 的方程的解
直线l:Ax+By+C=0
点P
在直线l上
C=0
问题2.已知直线 l₁:A₁x+B₁y+C₁=0,l₂:A₂x+B₂y+C₂=0 相交,它们的交点坐标与直线l₁,l₂的方程有他么途系?
从形的角度看
直线l₁,l₂ 相交
的交点且过坐标原点的直线l的方程 .
解 解方程组
,得
所以,两条直线的交点为
所以,直线l的的斜率 故直线l的方程
即4x-3y=0
和l₂ :6x-4y+1=0

《直线的交点坐标与距离公式》人教A版高中数学实用课件1

《直线的交点坐标与距离公式》人教A版高中数学实用课件1
【解析】 (1)由方程组 3 2x x 4 yy2200 ,,解 得 x y 2 .2, 即l1与l2的交点为(-2,2). (2)因为直线l过点(-2,2)和坐标原点, 所以其斜率k= 2 =-1.
2
所以直线方程为y=-x,即x+y=0.
人 教 版 高 中 数学必 修二课 件:3. 3直线的 交点坐 标与距 离公式
一组
两条直线l1,l2的公共点
一个
直线l1,l2的位置关系
_相__交__
无数组 无数个 _重__合__
_无__解__ 零个 _平__行__
人 教 版 高 中 数学必 修二课 件:3. 3直线的 交点坐 标与距 离公式
人 教 版 高 中 数学必 修二课 件:3. 3直线的 交点坐 标与距 离公式
【对点训练】 1.已知直线l1:3x+4y-5=0与l2:3x+5y-6=0相交,则它 们的交点是 ( )
人 教 版 高 中 数学必 修二课 件:3. 3直线的 交点坐 标与距 离公式
2.A(a,2a),B(1,2)两点间的距离为 5 ,则 a=________.
【解析】由 a122a225, 得a=0或a=2.
答案:0或2
人 教 版 高 中 数学必 修二课 件:3. 3直线的 交点坐 标与距 离公式
3
9
(2)因为l1∥l2且l1过点(3,-1),
所以 3 m m 88 m n2 , 0,解 得 m n44,或 n m204.,
人 教 版 高 中 数学必 修二课 件:3. 3直线的 交点坐 标与距 离公式
人 教 版 高 中 数学必 修二课 件:3. 3直线的 交点坐 标与距 离公式
【解析】因为直线x+ky=0,2x+3y+8=0和x-y-1=0三条
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后思考: 当变化时,方程 3x 4 y 2 (2x y 2) 0 表示什么图形?图形有 何特点?
l2:6x+8y-10=0.
解:(1)解方程组 x y 0, 3x 3y 10 0,

x
5, 3
y
5. 3
55
所以 l1与 l2相交,交点是M(3 ,3 )
(2)解方程组
3x y 4 0, 6x 2y 1 0,
(1) (2)
①×2-②得9=0,矛盾,
方程组无解,所以两直线无公共点, l1 // l2
(3)解方程组 3x 4y 5 0,
(1)
6x 8y 10 0,
(2)
①×2得6x+8y-10=0.因此, ①和②可以化成同一个方程, 即①和②表示同一条直线, l1与 l2 重合.
问题3:方程组解的情况与两条直线的位 置有何对应关系?
结论1
A1x B1 y C1 0, A2 x B2 y C2 0

x=3 y= -1
∴这两条直线的交点坐标为(3,-1)
又∵直线x+2y-5=0的斜率是-1/3
∴所求直线的斜率是3
所求直线方程为y+1=3(x-3)即 3x-y-10=0
小结:
1.直线与直线的位置关系, 2.求两直线的交点坐标, 3.能将几何问题转化为代数问题来解决,并 能进行应用.
作业 必做: P109 1、5 选做2
(3) l1:3x+5y-1=0, l2:4x+3y-5=0.
答案:(1)重合,(2)平行,
(3)相交,交点坐标为(2,-1).
如何根据两直线的方程对应系数之间的 关系来判定两直线的位置关系?
结论2:
一般的对于直线l1 : A1x B1 y C1 0, l2 : A2 x B2 y C2 0( A1B1C1 0, A2 B2C2 0)
代数表示
点A 直线l 点A在直线上
A(a,b) l:Ax+By+C=0
Aa+Bb+C=0
直线l1与l2的交点A
A1 x B1 y C1 0 A2x B2y C2 0
例1 求下列两条直线的交点: y
l1:3x+4y-2=0; l2:2x+y+2=0.
解:解方程组
2
M
1
2 1 1 2
l2
(2)
l1
:2x-6y+4=0,
l2
:y
x 3
2 3
(3) l1 :( 2 -1)x y 3 l2 : x ( 2 1) y 2
变式训练3 求经过两条直线 x+2y-1=0 和 2x-y-7=0 的交点,且垂直于直线x+3y-5=0的直线方程.
解:解方程组
x+2y-1=0, 2x-y-7=0
3.3.1 两条直线的交点坐标
情景引入
问题1:在同一平面内的两条直线 有几种位置关系?
p
平行 无交点
重合
相交
无数个交点 只有一个交点
问题2 已知两条直线
l1 : A1 x B1 y C1 0,
l2 : A2 x B2 y C2 0 相交,
如何求两条直线的交点坐标?
看下表,并填空
几何元素及关系
x l1
3x+4y-2 =0 得 2x+y+2 = 0
x= -2 y=2
∴l1与l2的交点是M(- 2,2)
例2 判断下列各对直线的位置关系,如果相交, 求出交点的坐标:
(1)l1:x-y=0,
l2:3x+3y-10=0;
(2)l1:3x-y+4=0,
l2:6x-2y-1=0;
(3)l1:3x+4y-5=0,
唯一解
l1 、l2 相交,
பைடு நூலகம்
无穷多解
l1 、l2 重合,
无解
l1 、l2 平行.
(代数问题)
(几何问题)
变式训练1
判定下列各对直线的位置关系,若相交, 则求交点.
(1) l1 :7x+2y-1=0, l2 : 14x+4y-2=0.
(2) l1:2x+y-7=0, l2 :4x+2y-6=0.
有方程组
唯一解
A1 A2
B1 B2
l1 l2相交
A1x B1 y C1 0, A2 x B2 y C2 0
无穷多解
A1 A2
B1 B2
C1 C2
l1 l2重合
无解
A1 A2
B1 B2
C1 C2
l1 l2平行
变式训练2
判定下列各对直线的位置关系.
(1) l1 :2x-3y=7, l2 : 4x+2y=1.
相关文档
最新文档