8函数的性质 奇偶性

合集下载

函数的奇偶性与反函数

函数的奇偶性与反函数

⎧1 − x 2 ≥ 0 (5)解:定义域为 ⎨ 2 ⎩x −1 ≥ 0
∴ x2 = 1
即 { x x = ±1}
∴ f ( x) = 0
∴ f ( x) 即是奇函数且偶函数
⎧1 − x 2 ≥ 0 (6)解:定义域 ⎨ ⎩x+2 −2≠0
∴ f ( x) =
{ x −1 ≤ x < 0或0 < x ≤ 1}
例 6、四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相 等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左 到右依次为 h1,h2,h3,h4,则它们的大小关系正确的是( )
A.h2>h1>h4
B.h1>h2>h3
C.h3>h2>h4
2 2 ∴ g ( x ) = − g ( − x) = − ⎡ ⎣(− x) + 2(− x) − 1⎤ ⎦ = −x + 2x + 1
x = 0 时, g (0) = − g (0)
⎧ x2 + 2x − 1 ⎪ ∴ g ( x) = ⎨ 0 ⎪− x 2 + 2 x + 1 ⎩
∴ g (0) = 0
例6
例 7、C【解析】对于 a = 0 时,有 f ( x ) = x 是一个偶函数
2
A
例题 8、D
- 第 6页 版权所有 北京天地精华教育科技有限公司 咨询电话:400-650-7766
【解析】∵ f ( x + 1) 与 f ( x − 1) 都是奇函数,
∴ f (− x + 1) = − f ( x + 1), f (− x − 1) = − f ( x − 1) ,

函数的奇偶性知识点

函数的奇偶性知识点

函数的奇偶性1.偶函数: 如果对于f(x)定义域内的任意一个x,都有f(-x)=f(x), 那么函数f(x)就叫偶函数.奇函数: 如果对于f(x)定义域内的任意一个x,都有f(-x)=-f(x) ,那么函数f(x)就叫奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称判断函数的奇偶性,包括两个必备条件:一是定义域关于原点对称,先考虑定义域是解决问题的前提,如果一个函数的定义域关于坐标原点不对称,那么这个函数就失去了是奇函数或是偶函数的条件;二是判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.利用定义判断函数奇偶性的格式步骤:(1)首先确定函数的定义域,并判断其定义域是否关于原点对称;(2)确定f(-x)与f(x)的关系;(3)作出相应结论.说明:根据奇偶性,函数可划分为四类:①偶函数②奇函数③既奇又偶函数④非奇非偶函数2.奇函数的性质:○1定义域关于原点对称;○2f(-x)=-f(x)或f(-x)+f(x)=0;○3图象关于原点对称;○4在关于原点对称的区间上具有相同的单调性;○5如果0在f(x)的定义域内,则一定有f(0)=0偶函数的性质:○1定义域关于原点对称;○2f(-x)=f(x)或f(-x)-f(x)=0;○3图象关于y轴对称;○4在关于原点对称的区间上具有相反的单调性;○5如果一个函数既是奇函数有是偶函数,那么有f(x)=03.判断函数的奇偶性为什么要判断定义域在x轴上所示的区间是否关于原点对称呢?答:由定义知,若x是定义域内的一个元素,-x也一定是定义域内的一个元素,所以函数y=f(x)具有奇偶性的一个必不可少的条件是:定义域在x轴上所示的区间关于原点对称.即:如果所给函数的定义域在x轴上所示的区间不是关于原点对称,这个函数一定不具有奇偶性.例如:函数f(x)=x3在R上是奇函数,但在[-2,1]上既不是奇函数也不是偶函数.4.函数奇偶性的判断:定义域关于原点对称是函数具有奇偶性的前提条件。

函数的奇偶性(精辟讲解)

函数的奇偶性(精辟讲解)

[难点正本 疑点清源] 1.函数奇偶性的判断
判断函数的奇偶性主要根据定义:一般地,如果对于 函数 f(x)的定义域内任意一个 x,都有 f(-x)=f(x)(或 f(-x)=-f(x)),那么函数 f(x)就叫做偶函数(或奇函 数).其中包含两个必备条件: ①定义域关于原点对称,这是函数具有奇偶性的必要 不充分条件,所以首先考虑定义域有利于准确简捷地 解决问题; ②判断 f(x)与 f(-x)是否具有等量关系.在判断奇偶 性的运算中,可以转化为判断奇偶性的等价关系式 (f(x)+f(-x)=0(奇函数)或 f(x)-f(-x)=0(偶函数)) 是否成立.
2.函数奇偶性的性质 (1)奇函数在关于原点对称的区间上若有单调性,则其单 调性完全相同;偶函数在关于原点对称的区间上若有单 调性,则其单调性恰恰相反. (2)若 f(x)为偶函数,则 f(-x)=f(x)=f(|x|). (3)若奇函数 f(x)定义域中含有 0,则必有 f(0)=0. f(0)=0 是 f(x)为奇函数的既不充分也不必要条件. (4)定义在关于原点对称区间上的任意一个函数,都可表 示成“一个奇函数与一个偶函数的和(或差)”. (5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”. (6)既奇又偶的函数有无穷多个(如 f(x)=0,定义域是关 于原点对称的任意一个数集).
∴f(x)为偶函数.
题型二 函数的奇偶性与单调性
例 2 (1)已知 f(x)是 R 上的奇函数,且当 x>0 时,f(x) =x2-x-1,求 f(x)的解析式; (2)设 a>0,f(x)=eax+eax是 R 上的偶函数,求实数 a 的值;
(3)已知奇函数 f(x)的定义域为[-2,2],且在区间 [-2,0]内递减,求满足 f(1-m)+f(1-m2)<0 的实 数 m 的取值范围. 思维启迪 (1)f(x)是一个分段函数,当 x<0 时,转化为

数学八年级上册函数知识点

数学八年级上册函数知识点

数学八年级上册函数知识点
数学八年级上册函数知识点包括以下几个方面:
1. 函数的概念:函数是数学中两个变量之间的一种关系,其中一个变量(自变量)发生变化时,另一个变量(因变量)也会随之发生变化。

函数的表示方法包括解析法、表格法和图像法。

2. 函数的性质:包括奇偶性、单调性和周期性。

奇偶性是指函数图像关于原点对称的性质;单调性是指函数在某一区间内递增或递减的性质;周期性是指函数图像重复出现的性质。

3. 一次函数和正比例函数:一次函数的一般形式为y=kx+b(k≠0),其中k 和b 是常数。

正比例函数是一次函数的特殊形式,形式为y=kx(k≠0)。

一次函数和正比例函数的图像都是直线。

4. 反比例函数:反比例函数的一般形式为y=k/x(k≠0),其中k 是常数。

反比例函数的图像是双曲线。

5. 函数的应用:函数在实际生活中有着广泛的应用,如路程、速度、时间的关系,以及增长率、降价率等问题。

解决实际问题的关键是建立数学模型,即找到变量之间的关系,然后用函数来表示这种关系。

以上是数学八年级上册函数知识点的主要内容,通过学习和掌握这些知识点,学生可以更好地理解函数的本质和运用方法,为进一步学习数学和其他学科打下基础。

函数的性质(高考总复习)

函数的性质(高考总复习)

---------------------------------------------------------------最新资料推荐------------------------------------------------------函数的性质(高考总复习)函数的性质一、函数的奇偶性 1.奇、偶函数的概念一般地,如果对于函数 f(x) 的定义域内任意一个 x,都有 f(-x) =f(x) ,那么函数 f(x)就叫做偶函数.一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(-x) =-f(x) ,那么函数f(x)就叫做奇函数. 2.奇、偶函数的性质⑴奇函数的图象关于原点对称;偶函数的图象关于 y 轴对称.⑵奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反⑶若奇函数 f(x)在 x=0 处有定义,则 f(0)=0. 3. 设f(x) , g(x) 的定义域分别是 D1, D2,那么在它们的公共定义域上:奇+奇=奇,偶+偶=偶,偶+非零常数=偶,奇+非零常数=非奇非偶,奇奇=偶,偶偶=偶,奇偶=奇,练习 1.若函数 f(x) =x2-| x+a| 为偶函数,则实数 a=_______.2.若函数 f(x) =(x+a) (bx+2a) (常数 a、 bR) 是偶函数,且它的值域为(-,4],则该函数的解析式f(x) =_____ ___. 3.对于定义域为 R 的奇函数 f(x) ,下列结论成立的是( ) A. f(x) -f(-x) 0 C. f(x) f(-x) 0 4.如下图,给出了奇函数 y=f(x) 的局部图象,则 f(-2) 的值为( ) B. f(x) -f(-x) 0 D. f(x) f(-x) 0 A.32 B.-32 C.12 D.-12 5.已知函数( )f x 是定义在 R 上的奇函数,若1 / 7当时,,则当时,( )f x 的表达式为()A....6.已知函数的图像关于坐标原点对称,则实数a=( ) A、 1 B、 -1 C、 0 D、.如果奇函数在区间[3, 7]上是增函数且最小值为 5,那么在区间上是 ( ) A.增函数且最小值为.增函数且最大值为.减函数且最小值为.减函数且最大值为.若偶函数)(xf在上是增函数,则下列关系式中成立的是() A..) 2 (f)23()..2 (.设奇函数)(xf的定义域为,若当时, )(xf的图象如右图, 则不等式的解是 10.如果定义在区间[2-a, 4]上的函数 y=f(x) 为偶函数,那么 a=___ _____. 11.已知函数 f(x)=ax2+bx+3a+b 为偶函数,其定义域为[a-1, 2a],则 a的值为________. 12.若 f(x) =(m-1) x2+6mx+2 是偶函数,则f(0) 、f(1) 、f(-2) 从小到大的顺序是____ __. 13.已知奇函数 ( )f x 的定义域为上单调递减,且满足条件求a的取值范围。

高考数学总复习考点知识讲解与提升练习8 函数的奇偶性、周期性

高考数学总复习考点知识讲解与提升练习8 函数的奇偶性、周期性

高考数学总复习考点知识讲解与提升练习专题8 函数的奇偶性、周期性考点知识1.了解函数奇偶性的含义,了解函数的周期性及其几何意义.2.会依据函数的性质进行简单的应用.知识梳理1.函数的奇偶性2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)为奇函数,则f(0)=0.(×)(2)不存在既是奇函数,又是偶函数的函数.(×)(3)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.(×)(4)若T是函数f(x)的一个周期,则kT(k∈N*)也是函数的一个周期.(√)教材改编题1.若偶函数f(x)在区间[-2,-1]上单调递减,则函数f(x)在区间[1,2]上() A.单调递增,且有最小值f(1)B.单调递增,且有最大值f(1)C.单调递减,且有最小值f(2)D.单调递减,且有最大值f(2)答案A解析偶函数f(x)在区间[-2,-1]上单调递减,则由偶函数的图象关于y轴对称,则有f(x)在[1,2]上单调递增,即有最小值为f(1),最大值为f(2).对照选项,A正确.2.已知函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,则f(-2)=________. 答案-6解析因为函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,所以f(-2)=-f(2)=-(2+4)=-6.3.已知函数f(x)是定义在R上的周期为4的奇函数,若f(1)=1,则f(2023)=________. 答案-1解析因为函数f(x)是定义在R上的周期为4的奇函数,所以f(2023)=f(506×4-1)=f(-1)=-f(1)=-1.题型一函数奇偶性的判断例1(多选)下列命题中正确的是()A.奇函数的图象一定过坐标原点B.函数y=x sin x是偶函数C.函数y=|x+1|-|x-1|是奇函数D.函数y=x2-xx-1是奇函数答案BC解析对于A,只有奇函数在x=0处有定义时,函数的图象过原点,所以A不正确;对于B,因为函数y=x sin x的定义域为R且f(-x)=(-x)sin(-x)=f(x),所以该函数为偶函数,所以B正确;对于C,函数y=|x+1|-|x-1|的定义域为R关于原点对称,且满足f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x),即f(-x)=-f(x),所以函数为奇函数,所以C正确;对于D,函数y=x2-xx-1满足x-1≠0,即x≠1,所以函数的定义域不关于原点对称,所以该函数为非奇非偶函数,所以D不正确.思维升华判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.跟踪训练1已知函数f(x)=sin x,g(x)=e x+e-x,则下列结论正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数答案C解析选项A,f(x)g(x)=(e x+e-x)sin x,f(-x)g(-x)=(e-x+e x)sin(-x)=-(e x+e-x)sin x=-f(x)g(x),是奇函数,判断错误;选项B ,|f (x )|g (x )=|sin x |(e x +e -x ),|f (-x )|g (-x )=|sin(-x )|(e -x +e x )=|sin x |(e x +e -x )=|f (x )|g (x ),是偶函数,判断错误;选项C ,f (x )|g (x )|=|e x +e -x |sin x ,f (-x )|g (-x )|=|e -x +e x |sin(-x )=-|e x +e -x |sin x =-f (x )|g (x )|,是奇函数,判断正确;选项D ,|f (x )g (x )|=|(e x +e -x )sin x |,|f (-x )g (-x )|=|(e -x +e x )sin(-x )| =|(e x +e -x )sin x |=|f (x )g (x )|,是偶函数,判断错误.题型二函数奇偶性的应用命题点1利用奇偶性求值(解析式)例2(1)(2023·福州模拟)已知函数f (x )=⎩⎨⎧ x 3+1,x >0,ax 3+b ,x <0为偶函数,则2a +b 等于()A .3B.32C .-12D .-32答案B解析由已知得,当x >0时,-x <0,f (-x )=-ax 3+b ,∵f (x )为偶函数,∴f (-x )=f (x ),即x 3+1=-ax 3+b ,∴a =-1,b =1,∴2a +b =2-1+1=32. (2)(2023·吕梁模拟)已知函数f (x )为定义在R 上的奇函数,且当x ≥0时,f (x )=2x +x -1,则当x <0时,f (x )等于()A .2-x -x -1B .2-x +x +1C .-2-x -x -1D .-2-x +x +1答案D解析当x <0时,-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-2-x +x +1.命题点2利用奇偶性解不等式例3函数f (x )是定义域为R 的奇函数,f (x )在(0,+∞)上单调递增,且f (2)=0.则不等式f (x )-2f (-x )x>0的解集为() A .(-2,2)B .(-∞,0)∪(0,2)C .(2,+∞)D .(-∞,-2)∪(2,+∞)答案D解析由于f (x )是定义域为R 的奇函数,所以f (0)=0,又f (x )在(0,+∞)上单调递增,且f (2)=0,所以f (x )的大致图象如图所示.由f (-x )=-f (x )可得,f (x )-2f (-x )x =f (x )+2f (x )x =3f (x )x>0, 由于x 在分母位置,所以x ≠0,当x <0时,只需f (x )<0,由图象可知x <-2;当x >0时,只需f (x )>0,由图象可知x >2;综上,不等式的解集为(-∞,-2)∪(2,+∞).思维升华(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练2(1)已知函数f (x )=sin x +x 3+1x+3,若f (a )=1,则f (-a )等于() A .1B .3C .4D .5答案D解析根据题意f (a )=sin a +a 3+1a+3=1, 即sin a +a 3+1a=-2, 所以f (-a )=sin(-a )+(-a )3+1(-a )+3 =-⎝⎛⎭⎪⎫sin a +a 3+1a +3=2+3=5. (2)已知函数f (x )=log 2(|x |+1),若f (log 2x )<f (2),则实数x 的取值范围是()A .(1,4) B.⎝⎛⎭⎪⎫0,14∪(4,+∞) C.⎝ ⎛⎭⎪⎫14,1∪(1,4) D.⎝ ⎛⎭⎪⎫14,4 答案D解析依题意,函数f (x )是偶函数,且在[0,+∞)上单调递增,∴f (x )在(-∞,0)上单调递减,则f (log 2x )<f (2)等价于|log 2x |<2,∴-2<log 2x <2,解得14<x <4. (3)(2021·新高考全国Ⅰ)已知函数f (x )=x 3(a ·2x -2-x )是偶函数,则a =________. 答案1解析方法一(定义法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以(-x )3(a ·2-x -2x )=x 3(a ·2x -2-x )对任意的x ∈R 恒成立,所以x 3(a -1)(2x +2-x )=0对任意的x ∈R 恒成立,所以a =1.方法二(取特殊值检验法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-1)=f (1),所以-⎝ ⎛⎭⎪⎫a 2-2=2a -12, 解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.方法三(转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数,所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.题型三函数的周期性例4(1)若定义在R 上的偶函数f (x )满足f (2-x )=-f (x ),且当1≤x ≤2时,f (x )=x-1,则f ⎝ ⎛⎭⎪⎫72的值等于()A.52B.32C.12D .-12答案D解析∵函数f (x )是偶函数,∴f (-x )=f (x ),又∵f (2-x )=-f (x ),∴f (2-x )=-f (-x ),∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),∴函数f (x )的周期为4,∴f ⎝ ⎛⎭⎪⎫72=f ⎝ ⎛⎭⎪⎫72-4=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=-f ⎝ ⎛⎭⎪⎫2-12=-f ⎝ ⎛⎭⎪⎫32=-12. (2)设f (x )是定义在R 上周期为4的偶函数,且当x ∈[0,2]时,f (x )=log 2(x +1),则函数f (x )在[2,4]上的解析式为____________________.答案f (x )=log 2(5-x ),x ∈[2,4]解析根据题意,设x ∈[2,4],则x -4∈[-2,0],则有4-x ∈[0,2],当x ∈[0,2]时,f (x )=log 2(x +1),则f (4-x )=log 2[(4-x )+1]=log 2(5-x ),又f (x )为周期为4的偶函数,所以f (x )=f (x -4)=f (4-x )=log 2(5-x ),x ∈[2,4],则有f (x )=log 2(5-x ),x ∈[2,4].思维升华(1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练3(多选)已知定义在R上的偶函数f(x),其周期为4,当x∈[0,2]时,f(x)=2x-2,则()A.f(2023)=0B.f(x)的值域为[-1,2]C.f(x)在[4,6]上单调递减D.f(x)在[-6,6]上有8个零点答案AB解析f(2023)=f(506×4-1)=f(-1)=f(1)=0,所以A正确;当x∈[0,2]时,f(x)=2x-2单调递增,所以当x∈[0,2]时,函数的值域为[-1,2],由于函数是偶函数,所以函数的值域为[-1,2],所以B正确;当x∈[0,2]时,f(x)=2x-2单调递增,又函数的周期是4,所以f(x)在[4,6]上单调递增,所以C错误;令f(x)=2x-2=0,所以x=1,所以f(1)=f(-1)=0,由于函数的周期为4,所以f(5)=f(-5)=0,f(3)=f(-3)=0,所以f(x)在[-6,6]上有6个零点,所以D错误.课时精练1.(多选)下列函数中,既是奇函数又在区间(0,1)上单调递增的是()A.y=2x3+4x B.y=x+sin(-x)C.y=log2|x|D.y=2x-2-x答案ABD解析对于A,定义域为R,且f(-x)=-2x3-4x=-f(x),故为奇函数,又y′=6x2+4>0,所以y=2x3+4x在(0,1)上单调递增,故A满足题意;对于B,定义域为R,f(-x)=-x+sin x=-f(x),故为奇函数,又y′=1-cos x≥0,且y′不恒为0,所以y=x+sin(-x)在(0,1)上单调递增,故B满足题意;对于C,定义域为{x|x≠0},f(-x)=log2|x|=f(x),故为偶函数,故C不满足题意;对于D,定义域为R,f(-x)=2-x-2x=-f(x),为奇函数,又y′=2x ln2+2-x ln2>0,所以y=2x-2-x在(0,1)上单调递增,故D满足题意.2.(2023·聊城模拟)已知函数f(x)的定义域为R,则“f(x)是偶函数”是“|f(x)|是偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析偶函数的图象关于y轴对称,奇函数的图象关于原点对称,根据这一特征,若f(x)是偶函数,则|f(x)|是偶函数,若f(x)是奇函数,|f(x)|也是偶函数,所以“f(x)是偶函数”是“|f(x)|是偶函数”的充分不必要条件.3.(2022·河南名校联盟模拟)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)等于()A .0B .2C .4D .-2 答案D解析∵f (x )是定义在R 上的奇函数, ∴f (0)=0,又f (x )在R 上的周期为2,∴f (2)=f (0)=0,f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=124-=-2,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2.4.(2022·亳州模拟)已知函数f (x )=x 2+log 2|x |,a =f (2-0.2),b =f (lg π),c =f (log 0.26),则a ,b ,c 的大小关系正确的是() A .a <b <c B .b <c <a C .b <a <c D .c <b <a 答案C解析2-0.2<20=1,lg π>0,log 0.26<0, 因为f (-x )=(-x )2+log 2|-x |=f (x ), 所以f (x )为偶函数,所以只需判断2-0.2,lg π,-log 0.26的大小即可, -log 0.26=log 0.216>1,2-1<2-0.2<20=1,0<lg π<lg 10=12,所以-log 0.26>1>2-0.2>lg π>0,当x >0时,y =x 2,y =log 2x 都单调递增,所以f (x )=x 2+log 2|x |在(0,+∞)上单调递增,所以c =f (log 0.26)=f (-log 0.26)>a =f (2-0.2)>b =f (lg π).5.(2021·全国乙卷)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是()A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1 答案B 解析f (x )=1-x 1+x =2-(x +1)1+x =21+x-1,为保证函数变换之后为奇函数,需将函数y =f (x )的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f (x -1)+1.6.(多选)f (x )是定义在R 上的偶函数,对∀x ∈R ,均有f (x +2)=-f (x ),当x ∈[0,1]时,f (x )=log 2(2-x ),则下列结论正确的是() A .函数f (x )的一个周期为4 B .f (2022)=1C .当x ∈[2,3]时,f (x )=-log 2(4-x )D .函数f (x )在[0,2021]内有1010个零点 答案AC解析∵f (x )是定义在R 上的偶函数,对∀x ∈R ,均有f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ), ∴函数的周期为4,故A 正确;f (2022)=f (4×505+2)=f (2)=-f (0)=-1,故B 错误; 当x ∈[2,3]时,x -2∈[0,1],则f (x )=-f (x -2)=-log 2[2-(x -2)] =-log 2(4-x ),故C 正确;易知f (1)=f (3)=f (5)=…=f (2019)=f (2021)=0, 于是函数f (x )在[0,2021]内有1011个零点,故D 错误. 7.写出一个定义域为R ,周期为π的偶函数f (x )=________. 答案cos2x (答案不唯一)解析y =cos2x 满足定义域为R ,最小正周期T =2π2=π,且为偶函数,符合要求. 8.若函数f (x )=e x -e -x ,则不等式f (ln x )+f (ln x -1)>0的解集是________. 答案(e ,+∞)解析因为f (x )=e x -e -x ,定义域为R ,且f (-x )=-(e x -e -x )=-f (x ),故其为奇函数, 又y =e x ,y =-e -x 均为增函数,故f (x )为R 上的增函数,则原不等式等价于f (ln x )>f (1-ln x ),也即ln x >1-ln x ,整理得ln x >12,解得x >e ,故不等式的解集为(e ,+∞).9.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数, 所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2023). (1)证明∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)解当x ∈[-2,0]时,-x ∈[0,2], 由已知得f (-x )=2(-x )-(-x )2=-2x -x 2. 又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.从而求得x∈[2,4]时,f(x)=x2-6x+8.(3)解f(0)=0, f(1)=1,f(2)=0,f(3)=-1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2020)+f(2021)+f(2022)+f(2023)=0.∴f(0)+f(1)+f(2)+…+f(2023)=0.11.(2023·廊坊模拟)已知定义域为R的函数f(x)满足:∀x,y∈R,f(x+y)+f(x-y)=f(x)f(y),且f(1)=1,则下列结论错误的是()A.f(0)=2B.f(x)为偶函数C.f(x)为奇函数D.f(2)=-1答案C解析因为∀x,y∈R,f(x+y)+f(x-y)=f(x)f(y),取x=1,y=0可得f(1)+f(1)=f(1)f(0),又f(1)=1,所以f(0)=2,A对;取x=0,y=x可得f(x)+f(-x)=f(0)f(x),因为f(0)=2,所以f(-x)=f(x),所以f(x)为偶函数,C错,B对;取x=1,y=1可得f(2)+f(0)=f(1)f(1),又f (1)=1,f (0)=2, 所以f (2)=-1,D 对.12.已知定义在R 上的函数y =f (x )满足:①对于任意的x ∈R ,都有f (x +1)=1f (x );②函数y =f (x )是偶函数;③当x ∈(0,1]时,f (x )=x +e x ,则f ⎝ ⎛⎭⎪⎫-32,f ⎝ ⎛⎭⎪⎫214,f ⎝ ⎛⎭⎪⎫223从小到大的排列是________. 答案f ⎝ ⎛⎭⎪⎫-32<f⎝ ⎛⎭⎪⎫223<f ⎝ ⎛⎭⎪⎫214 解析由题意知f (x +1)=1f (x ),则f (x +2)=1f (x +1)=f (x ),故函数y =f (x )的周期为2,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫223=f ⎝ ⎛⎭⎪⎫8-23=f ⎝ ⎛⎭⎪⎫-23=f ⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫214=f ⎝ ⎛⎭⎪⎫6-34=f ⎝ ⎛⎭⎪⎫34,∵当x ∈(0,1]时,f (x )=x +e x 单调递增, ∴f ⎝ ⎛⎭⎪⎫12<f⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫34, 故f ⎝ ⎛⎭⎪⎫-32<f ⎝ ⎛⎭⎪⎫223<f ⎝ ⎛⎭⎪⎫214.13.(2022·全国乙卷)若f (x )=ln ⎪⎪⎪⎪⎪⎪a +11-x +b 是奇函数,则a =______,b =______. 答案-12ln2解析f (x )=ln ⎪⎪⎪⎪⎪⎪a +11-x +b =ln ⎪⎪⎪⎪⎪⎪a +11-x +lne b=ln ⎪⎪⎪⎪⎪⎪(a +1)e b -a e bx 1-x . ∵f (x )为奇函数, ∴f (-x )+f (x )=ln ⎪⎪⎪⎪⎪⎪(a +1)2e 2b -a 2e 2b x 21-x 2=0, ∴||(a +1)2e 2b -a 2e 2b x 2=|1-x 2|.当(a +1)2e 2b -a 2e 2b x 2=1-x 2时,[(a +1)2e 2b -1]+(1-a 2e 2b )x 2=0对任意的x 恒成立,则⎩⎨⎧(a +1)2e 2b-1=0,1-a 2e 2b=0,解得⎩⎨⎧a =-12,b =ln2.当(a +1)2e 2b -a 2e 2b x 2=x 2-1时,[(a +1)2e 2b +1]-(a 2e 2b +1)x 2=0对任意的x 恒成立,则⎩⎨⎧(a +1)2e 2b+1=0,a 2e 2b+1=0,无解.综上,a =-12,b =ln2.14.已知函数f (x )=x 3+(x +1)2x 2+1在区间[-3,3]上的最大值为M ,最小值为N ,则M +N的值为________. 答案2解析f(x)=x3+x2+2x+1x2+1=x(x2+2)+x2+1x2+1=x(x2+2)x2+1+1,令g(x)=f(x)-1=x(x2+2) x2+1,则g(-x)=-x(x2+2)x2+1=-g(x),∴函数g(x)在[-3,3]上为奇函数,则g(x)max+g(x)min=0,即M-1+N-1=0,∴M+N=2.。

函数的奇偶性

函数的奇偶性

函数的奇偶性(一) 主要知识: 1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数; 2.奇偶函数的性质:()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数⇔()f x 的图象关于y 轴对称; ()f x 是奇函数⇔()f x 的图象关于原点对称;()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.3.()f x 为偶函数()()(||)f x f x f x ⇔=-=.4.若奇函数()f x 的定义域包含0,则(0)0f =.(二)主要方法:1.判断函数的奇偶性的方法:()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式;()2图象法;()3性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D =上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;②若某奇函数若存在反函数,则其反函数必是奇函数;2. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-. (三)典例分析:问题1.判断下列各函数的奇偶性:()1 1()(1)1x f x x x +=--; ()2 2lg(1)()|2|2x f x x -=--; ()3 2()lg(1)f x x x =+-; ()4 22(0)()(0)x x x f x x xx ⎧+<⎪=⎨-+>⎪⎩ 问题2.()1已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,3()(1)f x x x =+,则()f x 的解析式为()2(04上海)设奇函数()f x 的定义域为[]5,5-若当[]0,5x ∈时,()f x 的图象如右图,则不等式()0f x <的解是yxO 2∙ 5∙ ()y f x =∙()2已知函数21()ax f x bx c+=+()()2()()f x y f x y f x f y ++-=⋅(a 、b 、c Z ∈)为奇函数,又(1)2f =,(2)3f <,求a 、b 、c 的值 .问题5.()1已知()f x 是偶函数,x R ∈,当0x >时,()f x 为增函数,若120,0x x <>,且12||||x x <,则A .12()()f x f x ->-B .12()()f x f x -<-C .12()()f x f x ->-D . 12()()f x f x -<-()2设定义在[]2,2-上的偶函数()f x 在区间[]0,2上单调递减,若(1)()f m f m -<,求实数m 的取值范围(四)巩固练习:1.已知函数2()f x ax bx c =++,[]23,1x a ∈--是偶函数,则a b +=2.已知1()21x f x m =++为奇函数,则(1)f -的值为 3.已知5)(357++++=dx cx bx ax x f ,其中d c b a ,,,为常数,若7)7(-=-f , 则=)7(f _______ 4.若函数)(x f 是定义在R 上的奇函数,则函数)()()(x f x f x F +=的图象关于 .A x 轴对称 .B y 轴对称 .C 原点对称 .D 以上均不对5.函数)0)(()1221()(≠-+=x x f x F x 是偶函数,且)(x f 不恒等于零,则)(x f.A 是奇函数 .B 是偶函数.C 可能是奇函数也可能是偶函数 .D 不是奇函数也不是偶函数函数的周期性1.周期函数:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT(,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数: 函数()y f x =满足对定义域内任一实数x (其中a 为常数),(1)()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; (2)()()f x a f x +=-,则()f x 是以2T a =为周期的周期函数; (3)()()1f x a f x +=±,则()f x 是以2T a =为周期的周期函数; (4)()()f x a f x b +=-,则()f x 是以T a b =+为周期的周期函数;以上(1)-(4)比较常见,其余几种题目中出现频率不如前四种高,并且经常以数形结合的方式求解。

函数的基本性质(奇偶性、单调性、周期性、对称性)

函数的基本性质(奇偶性、单调性、周期性、对称性)

函数的性质(奇偶性、单调性、周期性、对称性)“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。

1. 奇偶性奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数; ②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇; ③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称(2)若定义域不关于原点对称 非奇非偶 例如:3x y =在)1,1[-上不是奇函数 常用性质:1.0)(=x f 是既奇又偶函数;2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满足)()()(x f x f x f =-=;4.奇函数图象关于原点对称,偶函数图象关于y 轴对称;5.0)(=x f 除外的所有函数的奇偶性满足:(1)奇函数±奇函数=奇函数 偶函数±偶函数=偶函数 奇函数±偶函数=非奇非偶(2) 奇函数×奇函数=偶函数 偶函数×偶函数=偶函数 奇函数×偶函数=奇函数6.任何函数)(x f 可以写成一个奇函数2)()()(x f x f x --=ϕ和一个偶函数2)()()(x f x f x -+=ψ的和。

2. 单调性 定义:函数定义域为A ,区间,若对任意且①总有则称在区间M 上单调递增②总有则称在区间M 上单调递减应用:(一)常用定义法来证明一个函数的单调性一般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论 (二)求函数的单调区间定义法、图象法、复合函数法、导数法(以后学) 注:常用结论(1) 奇函数在对称区间上的单调性相同 (2) 偶函数在对称区间上的单调性相反 (3) 复合函数单调性-------同增异减3. 周期性(1)一般地对于函数,若存在一个不为0的常数T ,使得一切值时总有,那么叫做周期函数,T 叫做周期,kT (T 的整数倍)也是它的周期(2)如果周期函数在所有周期中存在一个最小正数,就把这个最小正数叫最小正周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奇偶性
[提出问题]
函数(1)f(x)=x2-1,(2)f(x)=-1
x,(3)f(x)=2x的图象分别如图所示:
问题1:各个图象有怎样的对称性?
问题2:对于以上三个函数,分别计算f(-x),观察对定义域内的每一个x,f(-x)与f(x)有怎样的关系?
[导入新知]
[化解疑难]
理解函数的奇偶性应关注四点
(1)函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只有对其定义域内的每一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇(偶)函数.
(2)函数y=f(x)是奇函数或偶函数的一个必不可少的条件:定义域关于原点对称.换言之,若所给函数的定义域不关于原点对称,则这个函数一定不具有奇偶性.例如,函数y=x2在区间(-∞,+∞)上是偶函数,但在区间[-1,2]上却无奇偶性可言.
(3)若奇函数在原点处有定义,则必有f(0)=0.
(4)若f(-x)=-f(x),且f(-x)=f(x),则f(x)既是奇函数又是偶函数,既奇又偶的函数有且只有一类,即f(x)=0,x D,D是关于原点对称的实数集.
[例1]判断下列函数的奇偶性:。

相关文档
最新文档