二叉树实验报告
实验报告:二叉树

实验报告:二叉树第一篇:实验报告:二叉树实验报告二叉树一实验目的1、进一步掌握指针变量,动态变量的含义;2、掌握二叉树的结构特性以及各种存储结构的特点及适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、熟悉各种存储结构的特征以及如何应用树结构解决具体问题。
二实验原理树形结构是一种应用十分广泛和重要的非线性数据结构,是一种以分支关系定义的层次结构。
在这种结构中,每个数据元素至多只有一个前驱,但可以有多个后继;数据元素之间的关系是一对多的层次关系。
树形结构主要用于描述客观世界中具有层次结构的数据关系,它在客观世界中大量存在。
遍历二叉树的实质是将非线性结构转为线性结构。
三使用仪器,材料计算机 2 Wndows xp 3 VC6.0四实验步骤【问题描述】建立一个二叉树,请分别按前序,中序和后序遍历该二叉树。
【基本要求】从键盘接受输入(按前序顺序),以二叉链表作为存储结构,建立二叉树(以前序来建立),并采用递归算法对其进行前序,中序和后序遍历,将结果输出。
【实现提示】按前序次序输入二叉树中结点的值(一个整数),0表示空树,叶子结点的特征是其左右孩子指针为空。
五实验过程原始记录基本数据结构描述; 2 函数间的调用关系;用类C语言描述各个子函数的算法;附录:源程序。
六试验结果分析将实验结果分析、实验中遇到的问题和解决问题的方法以及关于本实验项目的心得体会,写在实验报告上。
第二篇:数据结构-二叉树的遍历实验报告实验报告课程名:数据结构(C语言版)实验名:二叉树的遍历姓名:班级:学号:时间:2014.11.03一实验目的与要求1.掌握二叉树的存储方法2.掌握二叉树的三种遍历方法3.实现二叉树的三种遍历方法中的一种二实验内容• 接受用户输入一株二叉树• 输出这株二叉树的前根, 中根, 后根遍历中任意一种的顺序三实验结果与分析//*********************************************************** //头文件#include #include //*********************************************************** //宏定义#define OK 1 #define ERROR 0 #define OVERFLOW 0//*********************************************************** typedef struct BiTNode { //二叉树二叉链表存储结构char data;struct BiTNode *lChild,*rChild;}BiTNode,*BiTree;//******************************** *************************** int CreateBiTree(BiTree &T){ //按先序次序输入二叉中树结点的值,空格表示空树//构造二叉链表表示的二叉树T char ch;fflush(stdin);scanf(“%c”,&ch);if(ch==' ')T=NULL;else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))return(OVERFLOW);T->data=ch;Creat eBiTree(T->lChild);CreateBiTree(T->rChild);} return(OK);} //********************************************************* void PreOrderTraverse(BiTree T){ //采用二叉链表存储结构,先序遍历二叉树的递归算法if(T){ printf(“%c”,T->data);PreOrderTraverse(T->lChild);PreOrd erTraverse(T->rChild);} } /***********************************************************/ void InOrderTraverse(BiTree T){ //采用二叉链表存储结构,中序遍历二叉树的递归算法if(T){ InOrderTraverse(T->lChild);printf(“%c”,T->data);InOrderT raverse(T->rChild);} }//*********************************************************** void PostOrderTraverse(BiTree T){ //采用二叉链表存储结构,后序遍历二叉树的递归算法if(T){ PostOrderTraverse(T->lChild);PostOrderTraverse(T->rChild) ;printf(“%c”,T->data);} }//*********************************************************** void main(){ //主函数分别实现建立并输出先、中、后序遍历二叉树printf(“please input your tree follow the PreOrder:n”);BiTNode *Tree;CreateBiTree(Tree);printf(“n先序遍历二叉树:”);PreOrderTraverse(Tree);printf(“n中序遍历二叉树:”);InOrderTraverse(Tree);printf(“n后序遍历二叉树:”);PostOrderTraverse(Tree);}图1:二叉树的遍历运行结果第三篇:数据结构二叉树操作验证实验报告班级:计算机11-2 学号:40 姓名:朱报龙成绩:_________实验七二叉树操作验证一、实验目的⑴ 掌握二叉树的逻辑结构;⑵ 掌握二叉树的二叉链表存储结构;⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。
二叉排序树的实验报告

二叉排序树的实验报告二叉排序树的实验报告引言:二叉排序树(Binary Search Tree,简称BST)是一种常用的数据结构,它将数据按照一定的规则组织起来,便于快速的查找、插入和删除操作。
本次实验旨在深入了解二叉排序树的原理和实现,并通过实验验证其性能和效果。
一、实验背景二叉排序树是一种二叉树,其中每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。
这种特性使得在二叉排序树中进行查找操作时,可以通过比较节点的值来确定查找的方向,从而提高查找效率。
二、实验目的1. 理解二叉排序树的基本原理和性质;2. 掌握二叉排序树的构建、插入和删除操作;3. 验证二叉排序树在查找、插入和删除等操作中的性能和效果。
三、实验过程1. 构建二叉排序树首先,我们需要构建一个空的二叉排序树。
在构建过程中,我们可以选择一个节点作为根节点,并将其他节点插入到树中。
插入节点时,根据节点的值与当前节点的值进行比较,如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。
重复这个过程,直到所有节点都被插入到树中。
2. 插入节点在已有的二叉排序树中插入新的节点时,我们需要遵循一定的规则。
首先,从根节点开始,将新节点的值与当前节点的值进行比较。
如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。
如果新节点的值与当前节点的值相等,则不进行插入操作。
3. 删除节点在二叉排序树中删除节点时,我们需要考虑不同的情况。
如果要删除的节点是叶子节点,即没有左右子树,我们可以直接删除该节点。
如果要删除的节点只有一个子树,我们可以将子树连接到要删除节点的父节点上。
如果要删除的节点有两个子树,我们可以选择将其右子树中的最小节点或左子树中的最大节点替代该节点,并删除相应的替代节点。
四、实验结果通过对二叉排序树的构建、插入和删除操作的实验,我们得到了以下结果:1. 二叉排序树可以高效地进行查找操作。
二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告篇一:二叉树的建立及遍历实验报告实验三:二叉树的建立及遍历【实验目的】(1)掌握利用先序序列建立二叉树的二叉链表的过程。
(2)掌握二叉树的先序、中序和后序遍历算法。
【实验内容】1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。
如:输入先序序列abc###de###,则建立如下图所示的二叉树。
并显示其先序序列为:abcde中序序列为:cbaed后序序列为:cbeda【实验步骤】1.打开VC++。
2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。
至此工程建立完毕。
3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。
给文件起好名字,选好路径,点OK。
至此一个源文件就被添加到了你刚创建的工程之中。
4.写好代码5.编译->链接->调试#include#include#define OK 1#define OVERFLOW -2typedef int Status;typedef char TElemType;typedef struct BiTNode{TElemType data;struct BiTNode *lchild, *rchild;}BiTNode,*BiTree;Status CreateBiTree(BiTree &T){TElemType ch;scanf("%c",&ch);if (ch=='#')T= NULL;else{if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))return OVERFLOW;T->data = ch; CreateBiTree(T->lchild); CreateBiTree(T->rchild); }return OK;} // CreateBiTreevoid PreOrder(BiTree T) {if(T){printf("%c",T->data); PreOrder(T->lchild); PreOrder(T->rchild);}}void InOrder(BiTree T) {if(T){InOrder(T->lchild);printf("%c",T->data);InOrder(T->rchild);}}void PostOrder(BiTree T){if(T){PostOrder(T->lchild); PostOrder(T->rchild);printf("%c",T->data);}}void main(){BiTree T;CreateBiTree(T);printf("\n先序遍历序列:"); PreOrder(T);printf("\n中序遍历序列:"); InOrder(T);printf("\n后序遍历序列:"); PostOrder(T);}【实验心得】这次实验主要是通过先序序列建立二叉树,和二叉树的先序、中序、后续遍历算法。
二叉树的遍历算法实验报告

二叉树的遍历算法实验报告二叉树的遍历算法实验报告引言:二叉树是计算机科学中常用的数据结构之一,它是由节点组成的层次结构,每个节点最多有两个子节点。
在实际应用中,对二叉树进行遍历是一项重要的操作,可以帮助我们理解树的结构和节点之间的关系。
本文将介绍二叉树的三种遍历算法:前序遍历、中序遍历和后序遍历,并通过实验验证其正确性和效率。
一、前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树。
具体的实现可以通过递归或者使用栈来实现。
我们以递归方式实现前序遍历算法,并进行实验验证。
实验步骤:1. 创建一个二叉树,并手动构造一些节点和它们之间的关系。
2. 实现前序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先访问当前节点,然后递归调用函数遍历左子树,最后递归调用函数遍历右子树。
4. 调用前序遍历函数,输出遍历结果。
实验结果:经过实验,我们得到了正确的前序遍历结果。
这证明了前序遍历算法的正确性。
二、中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现中序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现中序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后访问当前节点,最后递归调用函数遍历右子树。
4. 调用中序遍历函数,输出遍历结果。
实验结果:通过实验,我们得到了正确的中序遍历结果。
这证明了中序遍历算法的正确性。
三、后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现后序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现后序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后递归调用函数遍历右子树,最后访问当前节点。
4. 调用后序遍历函数,输出遍历结果。
二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。
二、实验内容
1、构造一个二叉树。
我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。
2、实现查找二叉树中的节点。
在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。
3、实现删除二叉树中的节点。
在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。
4、对二叉树进行遍历操作。
二叉树的遍历有多种方法,本实验使用的是先序遍历。
首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。
三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。
二叉树的遍历实验报告

二叉树的遍历实验报告实验报告:二叉树的遍历(先序遍历、中序遍历、后序遍历)一、引言二叉树是一种非常常见的数据结构,在计算机领域有着广泛的应用。
对二叉树进行遍历操作是其中最基本的操作之一、本实验旨在通过对二叉树的先序遍历、中序遍历和后序遍历的实践,加深对二叉树遍历算法的理解和掌握。
二、目的1.掌握二叉树先序遍历的算法原理和实现方法;2.掌握二叉树中序遍历的算法原理和实现方法;3.掌握二叉树后序遍历的算法原理和实现方法;4.使用递归和非递归两种方式实现以上三种遍历算法;5.进行正确性验证和性能评估。
三、方法1.算法原理:1.1先序遍历:先访问根节点,然后递归遍历左子树,再递归遍历右子树;1.2中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树;1.3后序遍历:先递归遍历左子树,再递归遍历右子树,最后访问根节点。
2.实现方法:2.1递归实现:采用函数递归调用的方式,实现对二叉树的遍历;2.2非递归实现:采用栈的数据结构,模拟递归的过程,实现对二叉树的遍历。
四、实验步骤1.数据结构设计:1.1定义二叉树的节点结构,包括节点值和两个指针(分别指向左子节点和右子节点);1.2定义一个栈结构,用于非递归实现时的辅助存储。
2.先序遍历:2.1递归实现:按照先序遍历的原理,通过递归调用遍历左子树和右子树,再输出根节点;2.2非递归实现:通过栈结构模拟递归的过程,先将根节点入栈,然后循环将栈顶节点弹出并输出,再将其右子节点入栈,最后将左子节点入栈,直到栈为空。
3.中序遍历:3.1递归实现:按照中序遍历的原理,通过递归调用先遍历左子树,再输出根节点,最后遍历右子树;3.2非递归实现:先将根节点入栈,然后循环将左子节点入栈,直到左子节点为空,然后弹出栈顶节点并输出,再将其右子节点入栈,重复以上过程直到栈为空。
4.后序遍历:4.1递归实现:按照后序遍历的原理,通过递归调用先遍历左子树,再遍历右子树,最后输出根节点;4.2非递归实现:通过栈结构模拟递归的过程,先将根节点入栈,然后重复以下步骤直到栈为空。
实验报告平衡二叉树

实习报告一、需求分析1、问题描述利用平衡二叉树实现一个动态查找表。
(1)实现动态查找表的三种基本功能:查找、插入和删除。
(2)初始时,平衡二叉树为空树,操作界面给出查找、插入和删除三种操作供选择。
每种操作均要提示输入关键字。
在查找时,如果查找的关键字不存在,则把其插入到平衡二叉树中。
每次插入或删除一个结点后,应更新平衡二叉树的显示。
(3)每次操作的关键字都要从文件中读取,并且关键字的集合限定为短整型数字{1,2,3······},关键字出现的顺序没有限制,允许出现重复的关键字,并对其进行相应的提示。
(4)平衡二叉树的显示采用图形界面画出图形。
2、系统功能打开数据文件,用文件中的关键字来演示平衡二叉树操作的过程。
3、程序中执行的命令包括:(1)(L)oad from data file //在平衡的二叉树中插入关键字;(2)(A)ppend new record //在平衡的二叉树中查找关键字;(3)(U)pate special record //显示调整过的平衡二叉树;(4)(D)elete special record //删除平衡二叉树中的关键字;(5)(Q)uit //结束。
4、测试数据:平衡二叉树为:图 1 插入关键字10之前的平衡二叉树插入关键字:10;调整后:图 2 插入关键字10之后的平衡二叉树删除关键字:14;调整后:图 3 删除关键字14后的平衡二叉树查找关键字:11;输出:The data is here!图 3 查找关键字11后的平衡二叉树二、概要设计本次实验目的是为了实现动态查找表的三种基本功能:查找、插入和删除。
动态查找表可有不同的表示方法,在此次实验中主要是以平衡二叉树的结构来表示实现的,所以需要两个抽象数据类型:动态查找表和二叉树。
1、动态查找表的抽象数据类型定义为:ADT DynamicSearchTable{数据对象D :D是具有相同特性的数据元素的集合。
二叉树 实验报告

二叉树实验报告二叉树实验报告引言:二叉树是一种常见的数据结构,它由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
在本次实验中,我们将探索二叉树的基本概念、特性以及应用。
一、二叉树的定义与性质1.1 二叉树的定义二叉树是一种递归定义的数据结构,它可以为空,或者由一个根节点和两个二叉树组成,分别称为左子树和右子树。
1.2 二叉树的性质(1)每个节点最多有两个子节点,分别称为左子节点和右子节点。
(2)左子树和右子树也是二叉树。
(3)二叉树的子树之间没有关联性,它们是相互独立的。
二、二叉树的遍历方式2.1 前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左子树和右子树。
2.2 中序遍历中序遍历是指先遍历左子树,然后访问根节点,最后遍历右子树。
2.3 后序遍历后序遍历是指先遍历左子树,然后遍历右子树,最后访问根节点。
2.4 层次遍历层次遍历是指按照从上到下、从左到右的顺序遍历二叉树的每个节点。
三、二叉树的应用3.1 二叉搜索树二叉搜索树是一种特殊的二叉树,它的每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。
这种特性使得二叉搜索树可以高效地进行查找、插入和删除操作。
3.2 哈夫曼树哈夫曼树是一种带权路径长度最短的二叉树,它常用于数据压缩中。
哈夫曼树的构建过程是通过贪心算法,将权值较小的节点放在离根节点较远的位置,从而实现最优编码。
3.3 表达式树表达式树是一种用于表示数学表达式的二叉树,它的叶节点是操作数,而非叶节点是操作符。
通过对表达式树的遍历,可以实现对表达式的求值。
结论:通过本次实验,我们对二叉树的定义、性质、遍历方式以及应用有了更深入的了解。
二叉树作为一种重要的数据结构,在计算机科学和算法设计中发挥着重要的作用。
在今后的学习和工作中,我们应该进一步探索二叉树的高级应用,并灵活运用于实际问题的解决中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
cout<<BT->data;
BinTraverse(BT->lchild);
BinTraverse(BT->rchild);
}
}
int BinTreeDepth(BitTree BT)//求二叉树的深度
{
int depthval;
if(BT)
{
int depthLeft=BinTreeDepth(BT->lchild);
实验六、树和二叉树的操作
一、实验目的
1.进一步掌握树的结构及非线性特点,递归特点和动态性。
2.进一步巩固对指针的使用和二叉树的三种遍历方法、建立方法。
二、实验内容
二叉树的实现和运算
三、实验要求
1.用C++/C完成算法设计和程序设计并上机调试通过。
2.撰写实验报告,提供实验结果和数据。
3.分析算法,并简要给出算法设计小结和心得。
int depthRight=BinTreeDepth(BT->rchild);
depthval=1+
(depthLeft>depthRight?depthLeft:depthRight);
}
else depthval=0;
return depthval;
}
int BinTreeCount(BitTree BT)//求二叉树中所有结点数
3、程序由算法和数据结构组成,一个好的程序不仅算法重要,数据结构的设计也很重要。
4、由于编程的积累,我发现调试程序的速度明显加快了,这是个很好的进步,不过,我编程的速度仍然有待提高。
5、摸索着用C++/C做完实验,增强了自己的自学能力,这应该是最有用的吧,语言会过时,学习的能力却不会过时。
每次实验都会有多多少少的收获,这些收获将成为以后学习中一笔不可或缺的财富。
{
BT=(BitTree)malloc(sizeof(BitNode));
BT->data=NULL;
cout<<"二叉树初始化成功!"<<endl;
}
int BinTreeCreat(BitTree &BT)//按先序次序建立一个二叉树
{
char ch;
cin>>ch;
if(ch=='#') BT=NULL;
cin>>i;
if(i==1)
BinTreeInit(BT);
else if(i==2)
{
cout<<"输入你要建立的二叉树:"<<endl;
BinTreeCreat(BT);
}
else if(i==3)
BinTreeEmpty(BT);
else if(i==4)
BinTraverse(BT);
else if(i==5)
cout<<"二叉树的深度:"<<BinTreeDepth(BT)<<endl;
else if(i==6)
cout<<"二叉树的节点数"<<BinTreeCount(BT)<<endl;
else
return ;
}
}
五、写出输入数据及运行结果
六、心得体会
树是常用的数据结构。通过实验加深了我对树的遍历的认识,巩固了课本中所学的关于树的基本算法。按要求完成了实验内容。
通过实验,有如下几点收获和体会:
1、通过实验还提高了一点改错能力,对于一些常见问题加深了印象。
2、编程需要有耐心,尤其实在单步调试的时候,更是马虎不得,有时候关键就是那么一步,错过了就得从头来过了。编程也需要勇气,要勇于发现自己的错误,也要勇于推翻自己之前的思路,要坚信“没有最好,只有更好”。编程,最好是一鼓作气,得天天“摸摸”它,时时想着它,要是过一阵再去碰它那就得先去读懂自己的程序了,一切的一切几乎都得从头开始。编程需要细心,有时一个不注意小错误就能引出大问题。编程也需要规范,不仅为了他人能看得懂程序,也为了方便自己以后程序的更改与进一步的完善。
}
void BinTreeEmpty(BitTree &BT)//检查二叉树是否为空
{
if(BT->data==NULL)
cout<<"是空二叉树!"<<endl;
else
cout<<"不是空二叉树!"<<endl;
}
void BinTraverse(BitTree &BT)//先序序列遍历二叉树
{
BitTree BT;
cout<<"1、初始化二叉树:"<<"\n2、按先序序列建立二叉树"<<"\n3、判断二叉树是否为空:";
cout<<"\n4、先序序列遍历二叉树"<<"\n5、求二叉树的深度"<<"\n6、求二叉树节点的个数"<<endl;
for(;;)
{
cout<<"输出你所需的操作:";
else
{
if(!(BT=(BitTree)malloc(sizeof(BitNode))))
exit(0);
BT->data=ch;
BinTreeCreat(BT->lchild);
BinTreeCreat(BT->rchild);
}
return 0;
//cout<<"按先序序列建立一个二叉树已经完成!"<<endl;
{
int node;
if(BT)
{
int lchild=BinTreeCount(BT->lchild);
int rchild=BinTreeCount(BT->rchild);
node=lchild+rchild+1;
}
e
node=0;
return node;
}
void main()
{
int i;
四、程序实现
#include<iostream.h>
#include<stdlib.h>
typedef char DataType;
typedef struct BitNode
{
DataType data;
struct BitNode *lchild,*rchild;
}*BitTree;
void BinTreeInit(BitTree &BT)//初始化二叉树,即把树根指针置空