九年级数学《圆》单元测试题

合集下载

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.已知点P 在半径为8的O 外,则( )A .8OP >B .8OP =C .8OP <D .8OP ≥ 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个 3.O 的半径为10cm ,弦//AB CD .若12cm,16cm AB CD ==,则AB 和CD 的距离为( ) A .2cm B .14cm C .2cm 或14cm D .2cm 或10cm 4.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒5.如图,,OA OB 是O 的两条半径,点C 在O 上,若80AOB ∠=︒,则C ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 6.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =,1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π 7.如图,点,,,,A B C DE 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒8.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°9.如图,△ABC 内接于⊙O ,∠A =50°.E 是边BC 的中点,连接OE 并延长,交⊙O 于点D ,连接BD ,则∠D 的大小为( )A .55°B .65°C .60°D .75°10.已知圆锥的母线长8cm ,底面圆的直径6cm ,则这个圆锥的侧面积是( )A .96πcm 2B .48πcm 2C .33πcm 2D .24πcm 211.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°12.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .21+B .122+C .221+D .1222- 二、填空题13.如图,在Rt ABC △甲,90ABC ︒∠=,2AB =,23BC =,以点B 为圆心,AB 的长为半径作圆,交AC 于点E ,交BC 于点F ,阴影部分的面积为__________(结果保留π).14.如图,在Rt AOB 中,23,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的一条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为____.15.如图,将半径为10cm 的圆形纸片沿一条弦AB 折叠,折叠后弧AB 的中点C 与圆心O 重叠,则弦AB 的长度为________cm .16.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.17.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.18.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.三、解答题19.如图,AD ,BD 是O 的弦,AD BD ⊥,且28BD AD ==,点C 是BD 的延长线上的一CD=,求证:AC是O的切线.点,220.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt△ABC中,∠C=90°.求作:一个⊙O,使⊙O与AB、BC所在直线都相切,且圆心O在边AC上.21.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒22.如图,AB 是O 的直径,过点A 作O 的切线AC ,点P 是射线AC 上的动点,连接OP ,过点B 作BD //OP ,交O 于点D ,连接PD .(1)求证:PD 是O 的切线;(2)当APO ∠的度数为______时,四边形POBD 是平行四边形.23.如图,Rt ABC △中,90C ∠=︒,点O 在AC 上,以OA 为半径的半圆O 分别交AB ,AC 于点D ,E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF DF =;(2)若4AO CE ==,1CF =,求BF 的长.24.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,AB ⊥CD ,连接AC ,OD .(1)求证:∠BOD =2∠A ;(2)连接DB ,过点C 作CE ⊥DB ,交DB 的延长线于点E ,延长DO ,交AC 于点F .若F 为AC 的中点,求证:直线CE 为⊙O 的切线.25.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.26.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为AB .桥的跨度(弧所对的弦长)26m AB =,设AB 所在圆的圆心为O ,半径OC AB ⊥,垂足为D .拱高(弧的中点到弦的距离)5m CD =.连接OB .(1)直接判断AD 与BD 的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m )参考答案1.A2.A3.C4.C5.B6.D7.D8.C9.B10.D11.A12.B13.π33+ 14.2215.10316.6017.118.3619.证明:连接AB ,∵AD BD ⊥,且28BD AD ==∴AB 为直径,AB 2=82+42=80,∵CD =2,AD =4∴AC 2=22+42=20∵CD =2,BD =8,∴BC 2=102=100∴222AC AB CB +=,∴90BAC ∠=︒∴AC 是O 的切线.20.解:作∠ABC 的平分线交AC 于O 点,以O 点为圆心,OC 为半径作圆,则O 为所求作的圆.21.证明:∵四边形ABCD 内接于O , ∴180ADC ABC ∠+∠=︒,又∵120ADC ∠=︒,∴180********ABC ADC ∠=︒-∠=︒-︒=︒, ∵AB AC =,∴AB AC =,∴ABC 是等边三角形.22.解:证明:连接OD ,∵P A 切⊙O 于A ,∴P A ⊥AB ,即∠P AO =90°,∵OP ∥BD ,∴∠DBO =∠AOP ,∠BDO =∠DOP , ∵OD =OB ,∴∠BDO =∠DBO ,∴∠DOP =∠AOP ,在△AOP 和△DOP 中,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△DOP (SAS ),∴∠PDO =∠P AO ,∵∠P AO =90°,∴∠PDO =90°,即OD ⊥PD ,∵OD 过O ,∴PD 是⊙O 的切线;(2)由(1)知:△AOP ≌△DOP ,∴P A =PD ,∵四边形POBD 是平行四边形,∴PD =OB ,∵OB =OA ,∴P A =OA ,∴∠APO =∠AOP ,∵∠P AO =90°,∴∠APO =∠AOP =45°.23.(1)证明:连接OD ,如图,∵半圆O 的切线DF ,∴90ODF ∠=︒.∴90ADO BDF ∠+∠=︒.∵90C ∠=︒,∴90OAD B ∠+∠=︒.∵OA OD =,∴OAD ADO ∠=∠.∴B BDF ∠=∠.∴BF DF =.(2)解:连接OF .∵4AO CE ==,AO OE =,∴8OC =.∵9090C ODF ∠=︒=∠=︒,1CF =,∴2222265OF OC CF OD DF =+=+=.又∵4OD =,∴7DF BF ==.24.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,AB ⊥CD ,∴BC BD =,∴∠CAB =∠BAD ,∵∠BOD =2∠BAD ,∴∠BOD =2∠CAB ;(2)证明:如图,连接OC ,AD ,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵BC BD=,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵BC BC=,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90︒,∴∠CDE+∠DCE=90︒,∴∠OCD+∠DCE=90︒,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.25.(1)证明:设AB交CD于点H,连接OC,由题可知,∴=,90OC OD∠=∠=︒,OHC OHD()Rt Rt HL COH DOH ≅∴,COH DOH ∴∠=∠,BC BD ∴=,COB BOD ∴∠=∠,2COB A ∠=∠,2BOD A ∴∠=∠;(2)证明:连接AD ,OA OD =,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠, ∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠, 180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒, 30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒, 223060COB CAO ∴∠=∠=⨯︒=︒, AB 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,OC DE ∴∥,CE BE ⊥,∴直线CE 为O 的切线. 26.解:∵半径OC AB ⊥, ∴AD BD =.故答案为:AD BD =.(2)设主桥拱半径为R ,由题意可知26AB =,5CD =, ∴11261322BD AB ==⨯=,5OD OC CD R =-=-, 在Rt OBD △中,由勾股定理,得222OB BD OD =+, 即22213(5)R R =+-, 解得19.4R =,∴19R ≈,因此,这座石拱桥主桥拱半径约为19m。

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。

九年级数学《圆》单元测试卷及答案含有详细解析

九年级数学《圆》单元测试卷及答案含有详细解析

九年级数学《圆》单元测试卷一、选择题1、如果⊙O 的半径为6 cm ,OP =7cm ,那么点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 D .不能确定2、如图,在⊙O 中,AB =AC ,∠AOB=40°,则∠ADC 的度数是( )。

A .40° B .30° C .20° D .15°(第2题图) (第3题图) (第4题图) (第5题图) 3、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD=8,OP=3,则⊙O 的半径为() A .10 B .8 C .5 D .34、如图所示,四边形ABCD 内接于⊙O ,F 是弧CD 上一点,且弧DF=弧BC ,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A. 45°B. 50°C. 55°D. 60°5、如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点C.若∠BAO =40°,则∠CBA 的度数为( )A. 15°B. 20°C. 25°D. 30°6、如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=8,BD=6,以AB 为直径作一个半圆,则图中阴影部分的面积为( )(第6题图) (第7题图)A .25π-6B .π-6C .π-6 D .π-67、如图,在△ABC 中,AB=CB ,以AB 为直径的⊙O 交AC 于点D .过点C 作CF ∥AB ,在CF 上取一点E ,使DE=CD ,连接AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( )A .①②B .①②③C .①④D .①②④二、填空题8、如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D ,C ,E .若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是 。

人教版九年级上册数学《圆》单元测试(附答案)

人教版九年级上册数学《圆》单元测试(附答案)
【答案】80°
【解析】
解:连接OC.∵C是弧AB的中点,∠AOB=100°,∴∠BOC= ∠AOB55°+25°=80°.故答案为80°.
16.已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是cm,面积是cm2.
20.已知,AB是⊙O 直径,BC是⊙O的弦,⊙O的割线PDE垂直于AB于点F,交BC于点G,∠A=∠BCP.
(1)求证:PC是⊙O的切线;
(2)若点C在劣弧AD上运动,其条件不变,问应再具备什么条件可使结论BG2=BF·BO成立,(要求画出示意图并说明理由).
21.如图,已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于点D,E是AB上一点,直线CE与⊙O交于点F,连结AF,与直线CD交于点G.
考点:弧长的计算.
6.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是()
A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5
【答案】A
【解析】
【详解】解: 的直径为10,半径为5,当 时, 最小,根据勾股定理可得 , 与 重合时, 最大,此时 ,所以线段的 的长的取值范围为 ,
A.弦CD一定是⊙O的直径
B.点O到AC、BC的距离相等
C.∠A与∠ABD互余
D.∠A与∠CBD互补
3. 如图,已知⊙O中∠AOB度数为100°,C是圆周上的一点,则∠ACB的度数为()
A. 130°B. 100°C. 80°D. 50°
4.如果⊙O1与⊙O2的圆心都在x轴上,⊙O1的圆心坐标为(7,0),半径为1,⊙O2的圆心坐标为(m,0),半径为2,则当2<m<4时,两圆的位置关系是().
A.相交B.相切C.相离D.内含

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。

九年级上册数学《圆》单元综合测试题(含答案)

九年级上册数学《圆》单元综合测试题(含答案)
故选D.
[点睛]本题考查了垂径定理、勾股定理的应用,关键在于正确地作出辅助线构建直角三角形,认真地进行计算.
5.如图,A B是⊙O的弦,点C在圆上,已知∠OB A=40°,则∠C=()
A. 40°B. 50°C. 60°D. 80°
[答案]B
[解析]
[分析]
首先根据等边对等角即可求得 的度数,然后根据三角形的内角和定理求得 的度数,再根据圆周角定理即可求解.
[答案]相离
[解析]
[分析]
A. B. C. D.
[答案]D
[解析]
[分析]
连接OA,由题意即可得出OC、OA的长度,运用勾股定理即可推出A D的长度,然后,通过垂径定理即可推出A B的长度.
[详解]连接OA.
∵⊙O的弦A B垂直平分半径OC,C D= ,∴OC= ,∴OA= .
∵OC⊥A B,∴A D= .
∵A B=2A D,∴A B= .
1.下列关于圆的说法,不正确的是( )
A.圆是轴对称图形B.圆是中心对称图形
C.优弧大于劣弧D.垂直于弦的直径平分这条弦所对的弧
[答案]C
[解析]
[分析]
根据圆的基本概念、圆的基本性质分析即可.
[详解]A.圆是轴对称图形,过圆心的直线都是它的对称轴,该说法正确;
B.圆是中心对称图形,它的中心对称点为圆心,该说法正确;
[详解] ,
,
,
.
故选: .
[点睛]本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.
6.如图,现有一个圆心角为90°,半径为8Cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()
A.2CmB.3CmC.4CmD.1Cm

人教版九年级上册数学《圆》单元测试带答案

人教版九年级上册数学《圆》单元测试带答案

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A. 1 个B. 2个C. 3个D. 4个2.如图,为圆的直径,弦,垂足为,,半径为25,则弦的长为( )A. 24B. 14C. 10D. 73.如图,AB,CD是⊙O的直径,弧AE=弧BD,若∠AOE=32°,则∠COE的度数是( )A. 32°B. 60°C. 68°D. 64°4.如图,圆的两条弦AB,CD相交于点E,且弧AD=弧CB,∠A=40°,则∠CEB的度数为( )A. 50°B. 80°C. 70°D. 90°5.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )A. 点MB. 点NC. 点PD. 点Q6.如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线,点为切点.若大圆半径为2,小圆半径为1,则的长为()A. B. C. D. 27.已知正六边形的边长是2,则该正六边形的边心距是( )A. 1B.C. 2D.8.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为( )A. πB. 2πC. 3πD. 4π9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A. 16B. 14C. 12D. 1010.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,如果∠CAB=40°,那么∠CAD的度数为( )A. 25°B. 50°C. 40°D. 80°二、填空题(共8小题)11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D=_____度.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为_____.三、解答题(共7小题)19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.23.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.24.如图,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=4,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.参考答案一、选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A. 1 个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据等弧、等圆、弦的定义即可一一判断.【详解】(1)长度相等的弧是等弧,错误;(2)在同圆或等圆中,相等的圆心角所对的弧相等,错误;(3)在同圆或等圆中,劣弧一定比优弧短,错误;(4)直径是圆中最长的弦,正确;故选:A.【点睛】考查圆周角定理以及圆心角、弧、弦的关系,解答此类问题注意前提条件是在同圆或等圆中.2.如图,为圆的直径,弦,垂足为,,半径为25,则弦的长为( )A. 24B. 14C. 10D. 7【答案】B【解析】【分析】连接OA,根据垂径定理得到AE=EB,根据勾股定理求出AE,得到答案.【详解】连接OA,∵CD为圆O的直径,弦AB⊥CD,∴AE=EB,由题意得,OE=OC-CE=24,在Rt△AOE中,AE==7,∴AB=2AE=14,故选B.【点睛】本题考查的是垂径定理和勾股定理的应用,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.3.如图,AB,CD是⊙O的直径,弧AE=弧BD,若∠AOE=32°,则∠COE的度数是( )A. 32°B. 60°C. 68°D. 64°【答案】D【解析】【分析】根据圆心角、弧、弦的关系,由弧AE=弧BD得到∠AOE=∠BOD=32°,然后利用对顶角相等得∠BOD=∠A OC=32°,易得∠COE=64°.【详解】∵弧AE=弧BD,∴∠AOE=∠BOD=32°.∵∠BOD=∠AOC,∴∠AOC=32°,∴∠COE=32°+32°=64°.故选D.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.4.如图,圆的两条弦AB,CD相交于点E,且弧AD=弧CB,∠A=40°,则∠CEB的度数为( )A. 50°B. 80°C. 70°D. 90°【答案】B【解析】【分析】根据圆周角定理得到∠A=∠C=40°,由三角形外角的性质即可得到结论.【详解】∵弧AD=弧CB,∴∠A=∠C.∵∠A=40°,∴∠CEB=∠A+∠C=80°.故选B.【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键.5.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】C【解析】试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.解:连接OM,ON,OQ,OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q再以点O为圆心的圆上,OP与ON的大小不能确定,∴点P不一定在圆上.故选C.考点:点与圆的位置关系;线段垂直平分线的性质.6.如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线,点为切点.若大圆半径为2,小圆半径为1,则的长为()A. B. C. D. 2【答案】A【解析】【分析】连接OA、OB、OP,OP即为小圆半径,易证△OAP≌△OBP,通过构建直角三角形,可解答.【详解】解:连接OA、OB、OP,OP即为小圆半径,∵OA=OB,∠OAB=∠OBA,∠OPA=∠OPB=90°,∴△OAP≌△OBP,∴在直角△OPA中,OA=2,OP=1,∴AP=,∴AB=2.故选:A.【点睛】本题主要考查了切线、勾股定理的应用,本题综合性较强;掌握其定理、性质,才能熟练解答.7.已知正六边形的边长是2,则该正六边形的边心距是( )A. 1B.C. 2D.【答案】B【解析】【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】如图,连接OA,作OM⊥AB.∵正六边形ABCDEF的边长为2,∴∠AOM=30°,AM AB2=1,∴正六边形的边心距是OM.故选B.【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算.8.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为( )A. πB. 2πC. 3πD. 4π【答案】B【解析】【分析】根据圆周角定理可得出∠AOB=90°,再根据弧长公式计算即可.【详解】如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°.∵OA=4,∴弧AB的长=2π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解题的关键是掌握弧长公式l.9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A. 16B. 14C. 12D. 10【答案】B【解析】【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC的周长.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF.∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14.故选B.【点睛】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.10.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,如果∠CAB=40°,那么∠CAD的度数为( )A. 25°B. 50°C. 40°D. 80°【答案】A【解析】【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.【详解】如图,连接BC,BD.∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=40°,∴∠ABC=50°.∵弧AD=弧CD,∴∠ABD=∠CBD∠ABC=25°,∴∠CAD=∠CBD=25°.故选A.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解答本题的关键是作出辅助线.二、填空题(共8小题)11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.【答案】∠AOB=∠COD【解析】【分析】直接利用圆心角、弧、弦的关系求解.【详解】∵弧AB=弧CD,∴∠AOB=∠COD.故答案为:∠AOB=∠COD.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D=_____度.【答案】30【解析】【分析】连接OC,如图,根据切线的性质得∠OCD=90°,再根据等腰三角形的性质和三角形外角性质得到∠COD=60°,然后利用互余计算∠D的度数.【详解】连接OC,如图,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°.∵OA=OC,∴∠ACO=∠CAB=30°,∴∠COD=∠ACO+∠CAB=60°,∴∠D=90°﹣∠COD=90°﹣60°=30°.故答案为:30.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.【答案】4【解析】【分析】连接OA,OB,证出△BOA是等边三角形,【详解】解:如图所示,连接OA、OB∵多边形ABCDEF是正六边形,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=OB=4故答案为4【点睛】本题考查正六边形和圆,等边三角形的判定与性质,解题关键是熟练掌握正六边形的性质.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)【答案】5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.【答案】5【解析】【分析】连接OA,根据垂径定理求出AD.在Rt△AOD中,根据勾股定理列式计算即可.【详解】连接OA.∵OD⊥AB,∴AD AB=3.在Rt△AOD中,OA2=OD2+AD2,即OC2=(9﹣OC)2+32,解得:OC=5.故答案为:5.【点睛】本题考查了勾股定理和垂径定理的应用,掌握垂直于弦的直径平分弦是解题的关键.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.【答案】70【解析】【分析】连接OA、OB,如图,根据切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】连接OA、OB,如图,∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣40°=140°,∴∠ACB∠AOB140°=70°.故答案为:70.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.【答案】(3,)【解析】【分析】将正六边形ABCDEF绕原点O逆时针旋转2019次时,点A所在的位置就是原D点所在的位置.【详解】2019×60°÷360°=336…3,即与正六边形ABCDEF绕原点O逆时针旋转3次时点A的坐标是一样的.当点A按逆时针旋转180°时,与原D点重合.连接OD,过点D作DH⊥x轴,垂足为H;由已知ED=6,∠DOE=60°(正六边形的性质),∴△OED是等边三角形,∴OD=DE=OE=6.∵DH⊥OE,∴∠ODH=30°,OH=HE=3,HD=.∵D在第四象限,∴D(3,﹣3),即旋转2019后点A的坐标是(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了正多边形和圆、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为_____.【答案】.【解析】【分析】解答时根据扇形面积公式带入数值进行计算即可得到答案【详解】扇形面积:S=在△ABC中,D为BC的中点BD=DCBD长为半径画一弧交AC于E点BD=DE∠A=60°,∠B=100°∠C=20°=∠DEC∠BDE=∠C+∠DEC=40°=aBC=2 r=1S=故答案为:【点睛】此题重点考察学生对扇形面积公式的理解,正确选择面积公式是解题的关键三、解答题(共7小题)19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF【答案】见解析【解析】【分析】连结AD,如图,根据垂径定理由CD⊥AB得到弧AC=弧AD,再根据圆周角定理得∠ADC=∠AED,然后根据圆内接四边形的性质得∠CEF=∠ADC,于是利用等量代换即可得到结论.【详解】证明:连结AD,如图,∵CD⊥AB,∴弧AC=弧AD,∴∠ADC=∠AED,∵∠CEF=∠ADC,∴∠AED=∠CEF.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和圆内接四边形的性质.20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点睛】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.【答案】(1)答案见解析;(2)135°.【解析】【分析】(1)根据正方形的性质得到AB=CD,根据圆心角、弧、弦的关系得到,得到,即可得到结论;(2)连接OA、OB、OM,根据正方形的性质求出∠AOB和∠AOM,计算即可.【详解】(1)∵四边形ABCD是正方形,∴AB=CD,∴.∵M为的中点,∴,∴,∴BM=CM;(2)连接OA、OB、OM.∵四边形ABCD是正方形,∴∠AOB=90°.∵M为弧AD的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.【点睛】本题考查了正多边形的性质、圆心角、弧、弦的关系定理,掌握正方形的性质、圆心角、弧、弦的关系定理是解题的关键.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.【答案】(1)45°;(2).【解析】【分析】(1)根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质即可得到结论;(2)根据阴影部分的面积=S△ABC-S扇形DBC即可得到结论.【详解】(1)∵AB为半圆⊙O的直径,∴∠ACB=90°.∵AC=BC,∴∠ABC=45°;(2)∵AC=BC,∴∠ABC=45°,∴△ABC是等腰直角三角形.∵AB=2,∴BC=AB=,∴阴影部分的面积=S△ABC-S扇形DBC=.【点睛】本题考查了不规则图形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.23.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.【答案】(1)证明见解析;(2)y=x2.【解析】【分析】(1)连接OC,根据圆心角、弧、弦的关系定理得到∠COA=∠COB,证明△COD≌△COE,根据全等三角形的性质证明;(2)连接AC,根据全等三角形的判定定理得到△AOC为等边三角形,根据正切的定义求出CD,根据三角形的面积公式计算即可.【详解】(1)证明:连接OC,∵,∴∠COA=∠COB,∵D、E分别是⊙O两条半径OA、OB的中点,∴OD=OE,在△COD和△COE中,,∴△COD≌△COE(SAS)∴CD=CE;(2)连接AC,∵∠AOB=120°,∴∠AOC=60°,又OA=OC,∴△AOC为等边三角形,∵点D是OA的中点,∴CD⊥OA,OD=OA=x,在Rt△COD中,CD=OD•tan∠COD=,∴四边形ODCE的面积为y=×OD×CD×2=x2.【点睛】本题考查的是圆心角、弧、弦的关系定理,全等三角形的判定和性质,等边三角形的性质,掌握圆心角、弧、弦的关系定理,全等三角形的判定定理和性质定理是同角的关键.24.如图,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=4,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.【答案】(1)4;(2)详见解析【解析】【分析】(1)首先连接OB,由弦AB⊥OC,劣弧AB的度数为120°,易证得△OBC是等边三角形,则可求得BC的长;(2)由OC=CP=4,△OBC是等边三角形,可求得BC=CP,即可得∠P=∠CBP,又由等边三角形的性质,∠OBC=60°,∠CBP =30°,则可证得OB⊥BP,继而证得PB是⊙O的切线.【详解】(1)连接OB,∵弦AB⊥OC,劣弧AB的度数为120°,∴弧BC与弧AC的度数为:60°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC=4;(2)证明:∵OC=CP,BC=OC,∴BC=CP,∴∠CBP=∠CPB,∵△OBC是等边三角形,∴∠OBC=∠OCB=60°,∴∠CBP=30°,∴∠OBP=∠CBP+∠OBC=90°,∴OB⊥BP,∵点B在⊙O上,∴PB是⊙O的切线.【点睛】此题考查了切线的判定、等边三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD,证明△CDE∽△DBE,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°.∵AB=AC,∴∠ABC=∠ACB.∵∠ADB=∠ACB,∴∠F=∠FDE,∴DE=EF=3.∵CE=2,∠BCD=90°,∴∠DCE=90°,∴CD.∵∠BDE=90°,CD⊥BE,∴∠DCE=∠BDE=90°.∵∠DEC=∠BED,∴△CDE∽△DBE,∴,∴BD,∴⊙O的半径.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE=EF是解答本题的关键.。

数学九年级上册《圆》单元综合检测题(含答案)

数学九年级上册《圆》单元综合检测题(含答案)
(5)在同圆中,同一条弧所对的圆周角相等,但同一条弦所对的圆周角不一定相等,正确;
故(2)(5)正确,
故选B.
【点睛】本题考查圆周角定理、线段的垂直平分线的性质、垂径定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长交⊙O于点D,∠D=30°,则∠BAD的度数是()
6.如图,以半径为2的正六边形ABCDEF的中心O为原点建立平面直角坐标系,顶点A,D在x轴上,则点C的坐标为()
A. B. C. D.
【答案】C
【解析】
试题解析:连接OC.
∵∠COD=60°,OC=OD,
∴△COD是等边三角形,
∴OC=OD=2.
设BC交y轴于G,则∠GOC=30°.
在Rt△GOC中,∵∠GOC=30°,OC=2,
(1)请直接写出旋转角的度数;
(2)若BC=2 ,试求线段BC在上述旋转过程中所扫过部分的面积.
23.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.
(1)求证:ED=EC;
(2)若CD=3,EC=2 ,求AB的长.
24.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F,BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB,
(1)求证:DC是⊙O 切线;
(2)若⊙O半径为4,∠OCE=30°,求△OCE的面积.
20.如图,在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P,AC=8,BC=6.
(1)当点O在AC上时,求证:2∠ACP=∠B;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
D C
O
B
A G
九年级数学《圆》单元测试题
一、精心选一选,相信自己的判断!(本大题共10小题,每小题4分,共40分)
1.如图,把自行车的两个车轮看成同一平面内的两个圆,则它们的位置关系是( )
A.外离
B.外切
C.相交
D.内切 2.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( ) A .50° B .80° C .90° D .100°
[
3.如图,AB 是⊙O 的直径,∠ABC=30°,则∠BAC =( )
A .90°
B .60°
C .45°
D .30°( )
4.已知⊙O 的直径为12cm ,圆心到直线L 的距离为6cm ,则直线L 与⊙O 的公共点的个数为( ) A .2 B .1 C .0 D .不确定
5.已知⊙O1与⊙O2的半径分别为3cm 和7cm ,两圆的圆心距O1O2 =10cm ,则两圆的位置关系是( ) A .外切 B .内切 C .相交 D .相离
6.已知在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的距离为3厘米,则⊙O 的半径是( )
A .3厘米
B .4厘米
C .5厘米
D .8厘米 #
7.下列命题错误的是( )
A .经过三个点一定可以作圆
B .三角形的外心到三角形各顶点的距离相等
C .同圆或等圆中,相等的圆心角所对的弧相等
D .经过切点且垂直于切线的直线必经过圆心
8.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 9.同圆的内接正方形和外切正方形的周长之比为( ) A . 2 ∶1
B .2∶1
C .1∶2
D .1∶ 2
10.在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到
圆锥,则该圆锥的侧面积是( ) A .25π B .65π
C .90π
D .130π
·
二、细心填一填,试自己的身手!(本大题共8小题,每小题5分,共40分)
11.各边相等的圆内接多边形_____正多边形;各角相等的圆内接多边形_____正多边形.(填“是”或“不是”)
12.△ABC 的内切圆半径为r ,△ABC 的周长为l ,则△ABC 的面积为_______________ . 13.已知在⊙O 中,半径r=13,弦AB ∥CD ,且AB=24,CD=10,则AB 与CD 的距离为__________.
14.如图,量角器外沿上有A 、B 两点,它们的读数分别是70°、40°,则∠1的度数为 .
15. 如图,O ⊙与AB 相切于点A ,BO 与⊙交于点,°,则OCA ∠= 度.
16.如图,在边长为3cm 的正方形中,⊙P 与⊙Q 相外切,且⊙P 分别与DA 、DC 边相切,⊙Q 分别与BA 、BC 边相切,则圆心距PQ 为______________.
17.如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为_________s 时,BP 与⊙O 相切.
18.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,
与AB 交于点E ,若AD =2,BC =6,则⌒DE 的长为( )
A . 23π
B . 43π
C . 83π
D .π3 三、用心做一做,显显自己的能力!(本大题共7小题,满分66分) 19.(本题满分10分)如图,圆柱形水管内原有积水的水平面宽CD=若水面上升2cm (EG=2cm ),则此时水面宽AB 为多少

B
A O P &
第16题图第1题图
A B O /
C 第2题图
第3题图
C A
D
Q P
° A O O C O O O ; 第15题
第14题图A M D
E
B C
20.(本题满分10分)如图,线段AB 经过圆心O ,交⊙O 于点A 、C ,点D 在⊙O 上,连接AD 、BD ,∠A=∠B=30°,BD 是⊙O 的切线吗请说明理由.
)
21.(本题满分10分)如图,PA ,PB 是⊙O 的切线,点A ,B 为切点,AC 是⊙O 的直径,∠ACB=70°.求∠P 的度数.

22.如图,AB 、CD 是⊙O 的两条弦,延长AB 、CD 交于点P ,连结AD 、BC 交于点
E .30P ∠=,50ABC ∠=,求A ∠的度数.(12分)
#
23.如图所示,AB 是⨀O 的一条弦,OD AB ⊥,垂足为C ,交⨀O 于点D ,点E 在⨀O 上. (1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长.(14分)
{
24.(本题满分14分)如图,在平面直角坐标系中,⊙M 与x 轴交于A 、B 两点,AC 是⊙M 的直径,过点C 的直线交x 轴于点D ,连接BC ,已知点M 的坐标为(0, 3 ),直线CD 的函数解析式为y=- 3 x +5 3 .
⑴求点D 的坐标和BC 的长;
⑵求点C 的坐标和⊙M 的半径; ⑶求证:CD 是⊙M 的切线.
A
B
P
D C
O E E B

A
O
A
M O
B
C

y
x
O P
C A
¥。

相关文档
最新文档