实验3 线性表的链式存储

合集下载

线性表的链式存储,实验报告

线性表的链式存储,实验报告

线性表的链式存储,实验报告线性表的链式存储结构实验报告实验报告课程名称:数据结构与算法分析实验名称:链表的实现与应用实验日期:2015.01.30 班级:数媒1401 姓名:范业嘉学号1030514108一、实验目的掌握线性表的链式存储结构设计与基本操作的实现。

二、实验内容与要求⑴定义线性表的链式存储表示;⑵基于所设计的存储结构实现线性表的基本操作;⑶编写一个主程序对所实现的线性表进行测试;⑷线性表的应用:①设线性表L1和L2分别代表集合A和B,试设计算法求A和B的并集C,并用线性表L3代表集合C;②(选做)设线性表L1和L2中的数据元素为整数,且均已按值非递减有序排列,试设计算法对L1和L2进行合并,用线性表L3保存合并结果,要求L3中的数据元素也按值非递减有序排列。

⑸设计一个一元多项式计算器,要求能够:①输入并建立多项式;②输出多项式;③执行两个多项式相加;④执行两个多项式相减;⑤(选做)执行两个多项式相乘。

三、数据结构设计1.按所用指针的类型、个数、方法等的不同,又可分为:线性链表(单链表)静态链表循环链表双向链表双向循环链表2.用一组任意的存储单元存储线性表中数据元素,用指针来表示数据元素间的逻辑关系。

四、算法设计1.定义一个链表void creatlist(Linklist &L,int n){int i;Linklist p,s;L=(Linklist)malloc(sizeof(Lnode));p=L;L-next=NULL;for(i=0;in;i++){s=(Linklist)malloc(sizeof(Lnode));scanf(%d,&s-data);s-next=NULL;p-next=s;p=s;}}2.(1)两个链表的合并void Mergelist(Linklist &La,Linklist &Lb,Linklist &Lc) {Linklist pa,pb,pc;pa=La-next;pb=Lb-next;Lc=pc=La;while(pa&&pb){if(pa-data=pb-data){pc-next=pa;pc=pa;pa=pa-next;}else {pc-next=pb;pc=pb;pb=pb-next;}}pc-next=pa?pa:pb;free(Lb);}(2)两个链表的并集Linklist unionlist(Linklist &La,Linklist &Lb){Linklist p1,p2,head,q,s;int flag;head=q=(Linklist)malloc(sizeof(Lnode)); p1=La-next;while(p1){flag=0;p2=Lb-next;while(p2){if(p1-data==p2-data){flag=1;break;}p2=p2-next;}if(flag==0){s=(Linklist)malloc(sizeof(Lnode));s-data=p1-data;q-next=s;q=s;}p1=p1-next;}q-next=Lb-next;return head;}3.(1)一元多项式的加法List addpoly(List pa,List pb) //一元多项式的加法{ int n;List pc,s,p;pa=pa-next;pb=pb-next;pc=(List)malloc(sizeof(struct Linklist));pc-next=NULL;p=pc;while(pa!=NULL&&pb!=NULL){if(pa-expnpb-expn){s=(List)malloc(sizeof(struct Linklist)); s-expn=pa-expn; s-coef=pa-coef;s-next=NULL;p-next=s;p=s;pa=pa-next;}else if(pa-expnpb-expn){s=(List)malloc(sizeof(struct Linklist)); s-expn=pb-expn; s-coef=pb-coef;s-next=NULL;p-next=s;p=s;pb=pb-next;}else{n=pa-coef+pb-coef;if(n!=0){s=(List)malloc(sizeof(struct Linklist)); s-expn=pa-expn; s-coef=n;s-next=NULL;p-next=s;p=s;}pb=pb-next;pa=pa-next;}}while(pa!=NULL){s=(List)malloc(sizeof(struct Linklist)); s-expn=pa-expn;s-coef=pa-coef;s-next=NULL;p-next=s;p=s;pa=pa-next;}while(pb!=NULL){s=(List)malloc(sizeof(struct Linklist)); s-expn=pb-expn;s-coef=pb-coef;s-next=NULL;p=s;pb=pb-next;}return pc;}(2)一元多项式的减法List subpoly(List pa,List pb)//一元多项式的减法{ int n;List pc,s,p;pa=pa-next;pb=pb-next;pc=(List)malloc(sizeof(struct Linklist));pc-next=NULL;p=pc;while(pa!=NULL&&pb!=NULL){if(pa-expnpb-expn){s=(List)malloc(sizeof(struct Linklist));s-expn=pa-expn;s-coef=pa-coef;s-next=NULL;p=s;pa=pa-next;}else if(pa-expnpb-expn){s=(List)malloc(sizeof(struct L(转载于: 写论文网:线性表的链式存储,实验报告)inklist));s-expn=pb-expn;s-coef=-pb-coef;s-next=NULL;p-next=s;p=s;pb=pb-next;}else{n=pa-coef-pb-coef;if(n!=0){s=(List)malloc(sizeof(struct Linklist));s-expn=pa-expn;s-coef=n;s-next=NULL;p=s;}pb=pb-next;pa=pa-next;}}while(pa!=NULL){s=(List)malloc(sizeof(struct Linklist)); s-expn=pa-expn; s-coef=pa-coef;s-next=NULL;p-next=s;p=s;pa=pa-next;}篇二:《线性表的链式存储》实验报告《线性表的链式存储》实验报告1.需解决的的问题利用线性表的链式存储结构,设计一组输入数据。

实验三 单链表的基本操作

实验三 单链表的基本操作

实验三单链表的基本操作一、实验目的1、掌握线性表的链式存贮结构及基本操作,深入了解链表的基本特性,以便在实际问题背景下灵活运用它们。

2、巩固该存贮结构的构造方法,深入理解和灵活掌握链表的插入、删除等操作。

二、实验要求1、定义一链表类型,并定义带有头结点的单链表。

2、将教材中链表的建立、初始化、插入、删除等函数实现。

3、链表能够存储10名学生的基本信息(包括姓名、学号和成绩)。

4、由主函数按照用户要求对各个链表操作访问。

5、每操作之前要有明确的说明,操作后要输出操作结果。

6、分析顺序表链表的插入、删除、查找的时间和空间复杂度。

三、实验内容1、在自己的U盘的“姓名+学号”文件夹中创建“实验3”文件夹,本次实验的所有程序和数据都要求存储到本文件夹中。

2、完成链表操作的如下函数:单链表的建立、插入、删除#include<stdio.h>#include<stdlib.h>static int N=5;typedef struct _sy{ char name[12];int no;struct _sy *next;}stud;stud *Create(int m) //创建链表{ int i;stud *h,*p,*q;h=(stud*)malloc(sizeof(stud));if(h!=NULL){ p=h;for(i=0;i<m;i++){ q=(stud*)malloc(sizeof(stud));if(q!=NULL){ printf("依次输入第%d个人的姓名和学号:\n",i+1);scanf("%s%d",q->name,&q->no);q->next=NULL;p->next=q;p=q;}}}printf("\n");return(h);}stud *Delete(stud *sy,int post) //删除一个学生的数据{ int i;stud *cur,*pre;cur=sy;if(0==post){ return(sy);}else{ if(1==post){ cur=cur->next;sy->next=cur->next;free(cur);}else{ for(i=2;i<post+1;i++){ cur=cur->next;pre=cur;}cur=cur->next;pre->next=cur->next;free(cur);}return(sy); }}stud *Insert(stud *sy,int post) //插入一个新的学生的数据 { int i;stud *cur,*pre,*node;if(sy!=NULL){ cur=sy;node=(stud*)malloc(sizeof(stud));if(node!=NULL){ printf("请输入新人的姓名和学号:\n");scanf("%s%d",node->name,&node->no);if(1==post){ node->next=sy->next;sy->next=node;}else{ for(i=2;i<post+2;i++){ pre=cur;cur=cur->next;}node->next=pre->next;pre->next=node;}}}printf("\n");return(sy);}void Print(stud *sy) //输出学生信息{ int post=1;stud *cur;cur=sy->next;printf("当前的学生信息如下所示:\n");while(cur!=NULL){ printf("第%d个人的姓名是:%s,学号为:%d\n",post,cur->name,cur->no); cur=cur->next;post++;}N=--post;}int main(){ int mm,post,i;stud *head;head=Create(N);Print(head);for(i=0;i<1;i++){ printf("请输入要删除的学号的位置:\n");scanf("%d",&mm);Delete(head,mm);Print(head);printf("请输入要插入学号的位置:\n");scanf("%d",&post);Insert(head,post);Print(head);}return 0;}。

第3章线性表的链式存储

第3章线性表的链式存储
L
(a) 空循环链表
L
a1
a2
...
an
(b) 非空循环链表
3.1.3 双向链表
在单链表结点中只有一个指向其后继结点的next 指针域,而找其前驱则只能从该链表的头指针开始,顺 着各结点的next指针域进行查找,也就是说找后继的时 间复杂度是O(1),找前驱的时间复杂度是O(n)。如果也 希望找前驱像后继那样快,则只能付出空间的代价:每 个结点再加一个指向前驱的指针域prior,结点的结构修 改为下图,这样链表中有两个方向不同的链,用这种结 点组成的链表称为双向链表。
1.带头结点的单链表 2.不带头结点的单链表
3.3.3 单链表插入操作的实现
单链表的插入操作是指在表的第i个位置结点处插入 一个值为data的新结点。插入操作需要从单链表的第一个结 点开始遍历,直到找到第i个位置的结点。插入操作分为在 结点之前插入的前插操作和在结点之后插入的后插操作。
1.前插操作 2.后插操作
2.整数型单链表算法
3.不带头结点的单链表算法
3.2.2 尾插法单链表的创建实现
用头插法实现单链表的创建,比较简单,但读入的 数据元素的顺序与生成的链表中元素的顺序是相反的。若希 望两者次序一致,则用尾插法创建单链表。为了快速找到新 结点插入到链表的尾部位置,所以需加入一个尾指针r用来 始终指向链表中的尾结点。初始状态:头指针L和尾指针r均 为空,把各数据元素按顺序依次读入,申请结点,将新结点 插入到r所指结点的后面,然后r指向新结点,直到读入结束 标志为止。
3.2.2 尾插法单链表的创建实现
L
插入P前的尾指针 插入P后的尾指针
r
3
4
P1
x^
2
3.3 单链表运算的实现

数据结构线性表实验报告

数据结构线性表实验报告

数据结构线性表实验报告数据结构线性表实验报告1.简介本实验报告旨在介绍数据结构中线性表的实现和应用。

线性表是一种重要的数据结构,它的特点是数据元素之间存在一对一的前后关系,且具有唯一的起点和终点。

本实验通过实现线性表的基本操作,加深对线性表的理解,并通过实例应用展示线性表在实际问题中的应用。

2.实验环境本次实验采用的是编程语言C,并搭配使用一些常用的开发工具和库。

具体环境如下:________●操作系统:________Windows 10●编程语言:________C●开发工具:________Visual Studio Code●辅助库:________Stdio.h、stdlib.h、conio.h3.实验内容3.1 线性表的定义和基本操作3.1.1 线性表的定义线性表是由n(n ≥ 0)个数据元素组成的有限序列,数据元素之间存在一对一的前后关系。

3.1.2 线性表的基本操作●初始化线性表:________创建一个空的线性表。

●插入元素:________在指定位置插入一个新的元素。

●删除元素:________删除指定位置的元素。

●查找元素:________根据值或位置查找指定元素。

●修改元素:________根据位置修改指定元素的值。

●清空线性表:________将线性表中的所有元素清空。

3.2 线性表的顺序存储结构3.2.1 顺序存储结构的定义顺序存储结构是指使用一段连续的存储空间,依次存储线性表中的元素。

3.2.2 顺序存储结构的实现●初始化顺序表:________创建一个空的顺序表,并指定最大容量。

续元素依次后移。

●删除元素:________删除指定位置的元素,并将后续元素依次前移。

●查找元素:________根据值或位置查找指定元素,并返回其位置或值。

●修改元素:________根据位置修改指定元素的值。

●清空顺序表:________将顺序表中的所有元素清空。

●扩容:________当顺序表容量不足时,自动进行扩容。

实验三+线性表的链式存储.doc

实验三+线性表的链式存储.doc

实验三线性表的链式存储【实验目的】1.掌握基本线性链式存储的类型定义及C语言实现;2.掌握基本线性表在链式存储结构中的各种基本操作。

【实验要求】1.学会定义一个链式存储结构体LNode;2.学会链式存储结构的初始化、清空、求线性表的长度、遍历、改值、插入(头插、尾插、固定位置插入)、删除(删头、删尾、固定位置删除);3.学会用main函数调用定义的各个函数;【实验环境】VC++运行的环境【实验步骤及代码】一、创建VC工程环境二、编写、调试程序//一、包含库文件和类型定义#include <stdio.h>#include <stdlib.h>typedef char ElemType;//二、定义结构typedef struct LNode{ElemType data;struct LNode *next;}LNode,*LinkList;//三、基本操作函数的定义//(1)创建一个带头结点的链表LinkList CreateList_L(int n){//逆序输入如n个元素的值,建立一个带表头结点的单链表LinkList L=(LinkList)malloc(sizeof(LNode));L->next=NULL;char ch;for(int i=n;i>0;--i){scanf("%c",&ch);p->data=ch;p->next=L->next;L->next=p;}return L;}//(2)链表的遍历函数void travel_L(LinkList s){LinkList p=s->next;while(p){printf("%c",p->data);p=p->next;}printf("\n");}//(3)返回链表L的第i个元素的值ElemType GetElem_L(LinkList L,int i){ LNode *p=L->next;int j=1;while (p&&j<i) {p=p->next;++j;}if (!p||j>i) {printf("i越界!");exit(1);}elsereturn p->data;}//(4)链表的i个位置插入一个值为e的节点void ListInsert_L(LinkList L,int i,ElemType e){ LinkList p=L;int j=0;while (p&&j<i-1) {p=p->next;++j;}if (!p||j>i-1) exit(1);else{s->data=e;s->next=p->next;p->next=s;}return;}//(5)链表中删除第i个元素void ListDelete_L(LinkList L,int i){LNode *p=L;int j=0;while (p->next&&j<i-1) {p=p->next;++j;}if(!(p->next)||j>i-1) exit(1);LNode *q=p->next;p->next=q->next;free(q);return;}//(6)删除链表的第一个节点void ListDeleteFist_L(LinkList L){ListDelete_L(L,1);}//(7)求一个链表的长度int ListLength_L(LinkList L){LNode *p=L;int j=0;while (p->next) {p=p->next;++j;}return j;}//(8)在一个链表的尾部查入一个值为e的节点void ListInsertLast_L(LinkList L,ElemType e){ ListInsert_L(L,ListLength_L(L)+1,e);}//(9)删除链表的尾节点void ListDeleteLast_L(LinkList L){ListDelete_L(L,ListLength_L(L));}//(10)把链表的第i个值改为evoid Listchange(LinkList L,int i,ElemType e){LNode *p=L;int j=0;while (p->next&&j<i) {p=p->next;++j;}if(!(p->next)||j>i) exit(1);p->data=e;return;}//(11)链表中找值为e的节点的位置int ListFind(LinkList L,ElemType e){LNode *p=L;int j=0;while (p->next&&(p->data!=e)) {p=p->next;++j;}if(!(p->next)||j>ListLength_L(L)) exit(1);elsereturn j;}//(12)清空一个链表void ListClear_L(LinkList L){while (L->next) {ListDeleteLast_L(L);}}//四、主调函数void main(){LinkList L=CreateList_L(6);travel_L(L);printf("链表的第2个元素是:");printf("%c\n",GetElem_L(L,2));printf("链表的第2个位置插入值为w后的链表:");ListInsert_L(L,2,'w');travel_L(L);printf("删除链表的第2个位置上的节点后的链表:");ListDelete_L(L,2);travel_L(L);printf("删除链表的头节点后的链表:");ListDeleteFist_L(L);travel_L(L);printf("\n");printf("当前链表的长度为:");printf("%d",ListLength_L(L));printf("\n");printf("链表的尾部插入z后:");ListInsertLast_L(L,'z');travel_L(L);printf("\n");printf("删除链表的尾节点后:");ListDeleteLast_L(L);travel_L(L);printf("\n");printf("把第二个节点的值改为Y后:");Listchange(L,2,'Y');travel_L(L);printf("\n");printf("找链表中值为Y的位置:");printf("%d",ListFind(L,'Y'));printf("\n");printf("清空链表:");ListClear_L(L);travel_L(L);printf("\n");}【实验结果】输入abcdef六个元素时的运行结果:。

实验三 链式存储

实验三 链式存储

实验三链式存储一、实验目的和要求掌握线性表链式存储结构的描述,学会针对链式存储线性表的基本操作。

二、实验内容和原理C语言结构化程序设计思想,结构体及指针的应用。

三、主要仪器设备装有Visual C++/Turbo C++等C程序编译软件的计算机。

四、实验中程序的源码1. 设计一个算法,利用单链表原来的结点空间将一个单链表就地逆转。

程序代码如下:#include “linklist.h”V oid verge(linklist head ){ Linklist p,q;P->next=null;Head->next=null;While(p){q=p;P=p->next;q->next=head->next;Head->next=q;}}Int main(){Linklist head;Head=creatlinklist();Print(head);Verge()head;Print(head);}1.建立两个指针struct* p,q,p=head,q=p->next,即最开始p指向链表的第1项,q指向第2项2.if q->next !=NULL,p=p->next,q=q->next 3.endif q->next ==NULL,即q指向最后一项,p 指向倒数第二项新建一个指针,保存原表尾的地址struct*t=q4.q->next=p,q=p //倒数第一项指向倒数第二项,将q指向倒数第二项5.p=head //p重新重表头开始遍历6.if p->next !=q,p=p->next //如果p 指向的不是q指向的前一项,则p继续向后遍历7.endif p->next ==q //q指向p的前一项8. q->next =p,q=p //重复第4步9.p=head //重复第5步。

N. until q=p=head 至此,原链表已经完全逆转,然后让头指针指向原链表的表尾,即指向新链表的表头head=t,这样就搞定了这里写出程序源代码2. 设计一个算法,将一个结点值为自然数的单链表拆分成两个单链表,原表中保留值为偶数的结点,而值为奇数的结点按它们在原表中的相对次序组成一个新的单链表。

数据结构--实验报告 线性表的基本操作

数据结构--实验报告 线性表的基本操作

数据结构--实验报告线性表的基本操作数据结构实验报告[引言]在本次实验中,我们将学习线性表的基本操作,包括插入、删除、查找等。

通过实践操作,加深对线性表的理解和掌握。

[实验目的]1.学习线性表的基本概念和操作。

2.熟悉线性表的插入、删除和查找等基本操作。

3.掌握线性表的实现方式及其相应的算法。

[实验内容]1.线性表的定义与表示1.1 线性表的定义1.2 线性表的顺序存储结构1.3 线性表的链式存储结构2.线性表的基本操作2.1初始化线性表2.2判断线性表是否为空2.3 插入操作2.3.1 在指定位置插入元素2.3.2 在表尾插入元素2.4 删除操作2.4.1 删除指定位置的元素2.4.2 删除指定值的元素2.5 查找操作2.5.1 按位置查找元素2.5.2 按值查找元素2.6 修改操作2.6.1修改指定位置的元素 2.6.2 修改指定值的元素2.7 清空线性表2.8 销毁线性表[实验步骤]1.初始化线性表1.1 创建一个空的线性表对象1.2 初始化线性表的容量和长度2.插入操作2.1在指定位置插入元素2.1.1 检查插入位置的合法性2.1.2 将插入位置后的元素依次后移2.1.3在指定位置插入新元素2.2 在表尾插入元素2.2.1 将表尾指针后移2.2.2 在表尾插入新元素3.删除操作3.1 删除指定位置的元素3.1.1 检查删除位置的合法性3.1.2 将删除位置后的元素依次前移3.1.3 修改线性表的长度3.2 删除指定值的元素3.2.1 查找指定值的元素位置3.2.2调用删除指定位置的元素操作4.查找操作4.1 按位置查找元素4.1.1 检查查找位置的合法性4.1.2 返回指定位置的元素4.2 按值查找元素4.2.1 从头到尾依次查找元素4.2.2 返回第一个匹配到的元素5.修改操作5.1修改指定位置的元素5.1.1 检查修改位置的合法性5.1.2修改指定位置的元素值5.2修改指定值的元素5.2.1 查找指定值的元素位置5.2.2调用修改指定位置的元素操作6.清空线性表6.1 设置线性表长度为07.销毁线性表7.1 释放线性表的内存空间[实验结果]使用线性表进行各种基本操作的测试,并记录操作的结果和运行时间。

线性表的链式存储结构

线性表的链式存储结构
1
线性表的链式存储结构
线性表的链式存储结构是指用一组任意的存储单 元(可以连续,也可以不连续)存储线性表中的数据 元素。为了反映数据元素之间的逻辑关系,对于每个 数据元素不仅要表示它的具体内容,还要附加一个表 示它的直接后继元素存储位置的信息。假设有一个线 性表(a,b,c,d),可用下图2所示的形式存储:
27
p
s
图 2-9
28
完整的算法:
int DuListInsert(DuLinkList *L,int i,EntryType e)
if (L.head->next==NULL) return TRUE; else return FALSE; }
12
6. 通过e返回链表L中第i个数据元素的内容 void GetElem(LinkList L,int i,EntryType *e) {
LNode *p; int j; //j为计数器,记载所经过的结点数目 if (i<1||i>ListLength(L)) exit ERROR; //检测i值的合理性 for (p=L.head,j=0; j!=i;p=p->next,j++); //找到第i个结点 *e=p->data; //将第i个结点的内容赋给e指针所指向的存储单元中 }
10
4. 求链表L的长度
int ListLength(LinkList L)
{
LNode *p;
int len;
for(p=L.head, len=0;p->next==NULL; p=p->next,len++);
return(len);
循环条件表达式 重复执行的语句
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告三线性表的链式存储
班级:姓名:学号:专业:
一、实验目的:
(1)掌握单链表的基本操作的实现方法。

(2)掌握循环单链表的基本操作实现。

(3)掌握两有序链表的归并操作算法。

二、实验内容:(请采用模板类及模板函数实现)
1、线性表链式存储结构及基本操作算法实现
[实现提示] (同时可参见教材p64-p73页的ADT描述及算法实现及ppt)函数、类名称等可自定义,部分变量请加上学号后3位。

也可自行对类中所定义的操作进行扩展。

所加载的库函数或常量定义:
(1)单链表存储结构类的定义:
(2)初始化带头结点空单链表构造函数实现
输入:无
前置条件:无
动作:初始化一个带头结点的空链表
输出:无
后置条件:头指针指向头结点。

(3)利用数组初始化带头结点的单链表构造函数实现
输入:已存储数据的数组及数组中元素的个数
前置条件:无
动作:利用头插或尾插法创建带头结点的单链表
输出:无
后置条件:头指针指向头结点,且数组中的元素为链表中各结点的数据成员。

(4)在带头结点单链表的第i个位置前插入元素e算法
输入:插入位置i,待插入元素e
前置条件:i的值要合法
动作:在带头结点的单链表中第i个位置之前插入元素e
输出:无
后置条件:单链表中增加了一个结点
(5)在带头结点单链表中删除第i个元素算法
输入:删除第i个结点,待存放删除结点值变量e
前置条件:单链表不空,i的值要合法
动作:在带头结点的单链表中删除第i个结点,并返回该结点的值(由e传出)。

输出:无
后置条件:单链表中减少了一个结点
(6)遍历单链表元素算法
输入:无
前置条件:单链表不空
动作:遍历输出单链表中的各元素。

输出:无
后置条件:无
(7)求单链表表长算法。

输入:无
前置条件:无
动作:求单链表中元素个数。

输出:返回元素个数
后置条件:无
(8)判单链表表空算法
输入:无
前置条件:无
动作:判表是否为空。

输出:为空时返回1,不为空时返回0
后置条件:无
(9)获得单链表中第i个结点的值算法
输入:无
前置条件:i不空,i合法
动作:找到第i个结点。

输出:返回第i个结点的元素值。

后置条件:无
(10)删除链表中所有结点算法(这里不是析构函数,但功能相同)输入:无
前置条件:单链表存在
动作:清除单链表中所有的结点。

输出:无
后置条件:头指针指向空
(11)上机实现以上基本操作,写出main()程序:
参考p72
粘贴测试数据及运行结果:
2、参考单链表操作定义与实现,自行完成单循环链表的类的定义与相操作操作算法。

(1)利用数组初始化带头结点的单循环链表构造函数实现
输入:已存储数据的数组及数组中元素的个数
前置条件:无
动作:利用头插或尾插法创建带头结点的单循环链表
输出:无
后置条件:头指针指向头结点,且数组中的元素为链表中各结点的数据成员,尾指针指向头结点。

(2)在带头结点单循环链表的第i个位置前插入元素e算法
输入:插入位置i,待插入元素e
前置条件:i的值要合法
动作:在带头结点的单循环链表中第i个位置之前插入元素e
输出:无
后置条件:单循环链表中增加了一个结点
(3)在带头结点单循环链表中删除第i个元素算法
输入:删除第i个结点,待存放删除结点值变量e
前置条件:单循环链表不空,i的值要合法
动作:在带头结点的单循环链表中删除第i个结点,并返回该结点的值(由e传出)。

输出:无
后置条件:单循环链表中减少了一个结点
(4)遍历单循环链表元素算法
输入:无
前置条件:单循环链表不空
动作:遍历输出单循环链表中的各元素。

输出:无
后置条件:无
(5)上机实现以上基本操作,写出main()程序:
粘贴测试数据及运行结果:
3、采用链式存储方式,并利用单链表类及类中所定义的算法加以实现线性表La,Lb为非递减的有序线性表,将其归并为新线性表Lc,该线性表仍有序(未考虑相同时删除一重复值)的算法。

模板函数:
main()
{
}
粘贴测试数据及运行结果:
选做题:
1、按一元多项式ADT的定义,实现相关操作算法:
ADT PNode is
Data
系数(coef)
指数(exp)
指针域(next):指向下一个结点
Operation
暂无
end ADT PNode
ADT Polynomial is
Data
PNode类型的头指针。

Operation
Polynomail
初始化值:无
动作:申请头结点,由头指针指向该头结点,并输入m项的系数和指数,建立一元多项式。

DestroyPolyn
输入:无
前置条件:多项式已存在
动作:消毁多项式。

输出:无
后置条件:头指针指向空
PolyDisplay
输入:无
前置条件:多项式已存在,不为空
动作:输出多项式各项系数与指数
输出:无
后置条件:无
AddPoly
输入:另一个待加的多项式
前置条件:一元多项式pa和pb已存在。

动作及后置条件:完成多项式相加运算,(采用pa=pa+pb形式,并销毁一元多项式pb)输出:无
end ADT Polynomial
2、实现一元多项式的减法,操作描述如下:
SubPoly
输入:待减的多项式pb
前置条件:一元多项式pa和pb已存在。

动作及后置条件:完成多项式减法运算,即:pa=pa-pb,并销毁一元多项式pb。

输出:无
3、参考P74-P79页双向链表的存储结构定义及算法,编程实现双向链表的插入算法和删除算法。

三、心得体会:(含上机中所遇问题的解决办法,所使用到的编程技巧、创新点及编程
的心得)。

相关文档
最新文档