线性表的链式存储结构和实现

合集下载

线性表 知识点总结

线性表 知识点总结

线性表知识点总结线性表的特点:1. 有序性:线性表中的元素是有序排列的,每个元素都有唯一的前驱和后继。

2. 可变性:线性表的长度是可变的,可以进行插入、删除操作来改变表的元素数量。

3. 线性关系:线性表中的元素之间存在明确的前驱和后继关系。

4. 存储结构:线性表的存储结构有顺序存储和链式存储两种方式。

线性表的操作:1. 查找操作:根据元素的位置或值来查找线性表中的元素。

2. 插入操作:将一个新元素插入到线性表中的指定位置。

3. 删除操作:将线性表中的某个元素删除。

4. 更新操作:将线性表中的某个元素更新为新的值。

线性表的顺序存储结构:顺序存储结构是将线性表的元素按照其逻辑顺序依次存储在一块连续的存储空间中。

线性表的顺序存储结构通常采用数组来实现。

数组中的每个元素都可以通过下标来访问,因此可以快速的进行查找操作。

但是插入和删除操作会导致元素位置的变动,需要进行大量数据搬移,效率较低。

线性表的链式存储结构:链式存储结构是将线性表的元素通过指针相连,形成一个链式结构。

每个元素包含数据和指向下一个元素的指针。

链式存储结构不需要连续的存储空间,可以动态分配内存,适合插入和删除频繁的场景。

但是链式结构的元素访问不如顺序结构高效,需要通过指针来逐个访问元素。

线性表的应用场景:1. 线性表适用于数据元素之间存在明确的前后关系,有序排列的场景。

2. 顺序存储结构适用于元素的插入和删除操作较少,对元素的随机访问较频繁的场景。

3. 链式存储结构适用于插入和删除操作较频繁的场景,对元素的随机访问较少。

线性表的操作的时间复杂度:1. 查找操作:顺序存储结构的时间复杂度为O(1),链式存储结构的时间复杂度为O(n)。

2. 插入和删除操作:顺序存储结构的时间复杂度为O(n),链式存储结构的时间复杂度为O(1)。

线性表的实现:1. 顺序存储结构的实现:使用数组来存储元素,通过下标来访问元素。

2. 链式存储结构的实现:使用链表来实现,每个元素包含数据和指向下一个元素的指针。

《数据结构与算法(C++语言版)》第2章 线性表

《数据结构与算法(C++语言版)》第2章 线性表
• 以下是一个使用类LinearList的C++程序,它假定之前的程 序均存储在LinearList.h之中,且异常类定义位于文件 exception.h之中。该示例完成以下操作:创建一个大小为5 的整数线性表L;输出该表的长度(为0);在第0个元素之 后插入2;在第一个元素之后插入6和8(至此,线性表为2, 6,8);寻找并输出第一个元素(为2);输出当前表的长 度(为3);删除并输出第一个元素。
数据结构与算法 (C++语言版)
第2章 线性表
线性表的类型定义
• 基本概念 • 线性表是由n(n≥0)个类型相同的数据元素组成的有限序 列,通常表示为L=(a1, …, ai–1, ai, ai+1, …, an)。其中,L为线 性表名称,ai为组成该线性表的数据元素,ai–1领先于ai,ai 领先于ai+1,称ai–1是ai的直接前驱元素,ai+1是ai的直接后继 元素。当i=1, 2, …, n–1时,ai有且仅有一个直接后继;当 i=2, 3, …, n时,ai有且仅有一个直接前驱。 • 线性表的长度就是线性表中元素的个数n(n≥0)。当n=0时, 称为空表。在非空表中的每个数据元素都有一个确定的位 置,如a1是第一个数据元素,an是最后一个数据元素,ai是 第i个数据元素。称i为数据元素ai在线性表中的位序。
线性表的类型定义
Prev_Elem(L, cur_e, &pre_e) //返回当前元素的前一个元素值 输入:线性表L。 输出:若cur_e是线性表L的数据元素,且不是第一个,则用 pre_e返回它的直接前驱元 素;否则操作失败,pre_e无定义。 Next_Elem(L, cur_e, &next_e) //返回当前元素的后一个元素值 输入:线性表L。 输出:若cur_e是线性表L的数据元素,且不是最后一个,则用 next_e返回它的直接后继元素;否则操作失败,next_e无定 义。

编译技术中常用的数据结构

编译技术中常用的数据结构

编译技术中常用的数据结构一、线性表线性表是编译技术中常用的数据结构之一,它是一种能够按照线性顺序存储数据元素的数据结构。

线性表可以通过顺序存储结构或链式存储结构来实现。

1. 顺序存储结构顺序存储结构是将线性表的元素按照顺序存储在一块连续的存储空间中。

在编译技术中,顺序存储结构常用于存储符号表、常量表等数据结构。

通过数组来实现顺序存储结构,可以快速访问线性表的任意位置元素。

2. 链式存储结构链式存储结构是通过节点之间的指针链接来实现线性表的存储。

在编译技术中,链式存储结构常用于存储中间代码、语法树等数据结构。

链式存储结构灵活性较高,可以动态地分配和释放存储空间。

二、栈栈是一种具有后进先出(LIFO)特性的线性表。

在编译技术中,栈常用于处理函数调用、表达式求值等场景。

栈的基本操作包括入栈和出栈。

入栈将元素压入栈顶,出栈将栈顶元素弹出。

编译技术中,栈还常用于处理函数的局部变量、函数的三、队列队列是一种具有先进先出(FIFO)特性的线性表。

在编译技术中,队列常用于处理优化算法、指令调度等场景。

队列的基本操作包括入队和出队。

入队将元素插入队尾,出队将队头元素移除。

编译技术中,队列还常用于处理指令流水线、任务调度等问题。

四、树树是一种非线性的数据结构,它由若干个节点组成,节点之间通过边连接。

在编译技术中,树常用于构建语法树、抽象语法树等数据结构。

树的基本概念包括根节点、叶子节点和内部节点。

树的遍历方式有前序遍历、中序遍历和后序遍历。

编译技术中,树的遍历常用于语法分析、语义分析等阶段。

五、图图是一种由节点和边组成的非线性数据结构。

在编译技术中,图常用于构建控制流图、数据依赖图等数据结构。

图的基本概念包括顶点、边和路径。

图可以分为有向图和无向图,还可以带有权重。

编译技术中,图的遍历常用于寻找程序中的循环、六、哈希表哈希表是一种通过哈希函数将关键字映射到存储位置的数据结构。

在编译技术中,哈希表常用于符号表、常量表等数据结构。

线性表

线性表

举例:
La=(34,89,765,12,90,-34,22) 数据元素类型为int。 Ls=(Hello,World, China, Welcome) 数据元素类型为 string。 Lb=(book1,book2,...,book100) 数据元素类型为下列所示的结 构类型: struct bookinfo { int No; //图书编号 char *name; //图书名称 char *auther; //作者名称 ...; };
素的方法被称为随机存取法,使用这种存取方法的存储结构被
称为随机存储结构。
在C语言中,实现线性表的顺序存储结构的类型定义
typedef int ElemType; //定义顺序表中元素的类型 #define INITSIZE 100 //顺序表存储空间初始分配量 #define LISTINCREMENT 10 //线性表存储空间的分配增量 typedef struct { ElemType *data; int length; //存储空间的基地址 //线性表的当前长度
说明:
1. 某数据结构上的基本运算,不是它的全部运算,而是一些 常用的基本的运算,而每一个基本运算在实现时也可能根据不 同的存储结构派生出一系列相关的运算来, 没有必要全部定义 出它的运算集。掌握了某一数据结构上的基本运算后,其它的 运算可以通过基本运算来实现,也可以直接去实现。 2. 在上面各操作中定义的线性表L仅仅是一个抽象在逻辑结 构层次的线性表,尚未涉及到它的存储结构,因此每个操作在 逻辑结构层次上尚不能用具体的某种程序语言写出具体的算法, 而算法的实现只有在存储结构确立之后。
4. 求顺序表的长度 int getlen(sqlist L) { return (L.length); } 5. 判断顺序表是否为空 int listempty(sqlist L) { if (L.length==0) return 1; else return 0; }

线性表

线性表

2.1 线性表的类型定义
例3:下图为10个个学生的成绩表,它也是一个 线性表,该线性表的数据元素类型为结构体类型。
2.1 线性表的类型定义
从以上例子可看出线性表的逻辑特征是: 在非空的线性表中,有且仅有一个被称作 “第一个”的数据元素a1,它没有直接前趋, 而仅有一个直接后继a2; 有且仅有一个被称作“最后一个”的数据元 素an,它没有直接后继,而仅有一个直接前 趋 a n-1; 其余的数据元素ai(2≦i≦n-1)都有且仅有一个 直接前趋a i-1和一个直接后继a i+1。 线性表是一种典型的线性结构。
2.2 线性表的顺序表示和实现
#define MAXNUM 100 Elemtype List1[MAXNUM] ; /*定义线性表L1*/ int length1;
Elemtype List2[MAXNUM] ; /*定义线性表L1*/ int length2;
Elemtype List3[MAXNUM] ; /*定义线性表L1*/ int length3;
2.2 线性表的顺序表示和实现
而只需要将数组和表长封装在一个结构体中,然 后定义三个结构体变量即可: struct L_list { Elemtype List[MAXNUM]; int length; }; struct L_list L1, L2, L3; /*定义三个线性表L1,L2,L3*/
2.1 线性表的类型定义
例1:26个英文字母组成的字母表 (A,B,C、…、Z) 例2:某公司2000年每月产值表(单位:万元) (400,420,500,…,600,650) 是一个长度为12的线性表。

上述两例中的每一个数据元素都是不可分割的, 在一些复杂的线性表中,每一个数据元素又可 以由若干个数据项组成。

第3章线性表的链式存储

第3章线性表的链式存储
L
(a) 空循环链表
L
a1
a2
...
an
(b) 非空循环链表
3.1.3 双向链表
在单链表结点中只有一个指向其后继结点的next 指针域,而找其前驱则只能从该链表的头指针开始,顺 着各结点的next指针域进行查找,也就是说找后继的时 间复杂度是O(1),找前驱的时间复杂度是O(n)。如果也 希望找前驱像后继那样快,则只能付出空间的代价:每 个结点再加一个指向前驱的指针域prior,结点的结构修 改为下图,这样链表中有两个方向不同的链,用这种结 点组成的链表称为双向链表。
1.带头结点的单链表 2.不带头结点的单链表
3.3.3 单链表插入操作的实现
单链表的插入操作是指在表的第i个位置结点处插入 一个值为data的新结点。插入操作需要从单链表的第一个结 点开始遍历,直到找到第i个位置的结点。插入操作分为在 结点之前插入的前插操作和在结点之后插入的后插操作。
1.前插操作 2.后插操作
2.整数型单链表算法
3.不带头结点的单链表算法
3.2.2 尾插法单链表的创建实现
用头插法实现单链表的创建,比较简单,但读入的 数据元素的顺序与生成的链表中元素的顺序是相反的。若希 望两者次序一致,则用尾插法创建单链表。为了快速找到新 结点插入到链表的尾部位置,所以需加入一个尾指针r用来 始终指向链表中的尾结点。初始状态:头指针L和尾指针r均 为空,把各数据元素按顺序依次读入,申请结点,将新结点 插入到r所指结点的后面,然后r指向新结点,直到读入结束 标志为止。
3.2.2 尾插法单链表的创建实现
L
插入P前的尾指针 插入P后的尾指针
r
3
4
P1
x^
2
3.3 单链表运算的实现

数据结构实验报告

数据结构实验报告

《数据结构》实验报告姓名:学号:班级:学院:实验一单链表实验(一)实验目的1.理解线性表的链式存储结构。

2.熟练掌握动态链表结构及有关算法的设计。

3.根据具体问题的需要,设计出合理的表示数据的链表结构,并设计相关算法。

(二)实验任务编写算法实现下列问题的求解1.求链表中第i个结点的指针(函数),若不存在,则返回NULL。

2.在第i个结点前插入值为x的结点。

3.删除链表中第i个元素结点。

4.在一个递增有序的链表L中插入一个值为x的元素,并保持其递增有序特性。

5.将单链表L中的奇数项和偶数项结点分解开,并分别连成一个带头结点的单链表,然后再将这两个新链表同时输出在屏幕上,并保留原链表的显示结果,以便对照求解结果。

6.求两个递增有序链表L1和L2中的公共元素,并以同样方式连接成链表L3。

(三)主要仪器设备PC机,Windows操作平台,Visual C++(四)实验分析顺序表操作:定义一个顺序表类,该类包括顺序表的存储空间、存储容量和长度,以及构造、插入、删除、遍历等操作的方法(五)源程序头文件文件名:linklist.h#include<iostream>using namespace std;struct node{int data;node *next;};class list{public:list();int length()const{return count; //求链表长度}~list();void create(); //链表构建,以0为结束标志void output(); //链表输出int get_element(const int i)const; //按序号取元素node *locate(const int x) const; //搜索对应元素int insert(const int i,const int x); //插入对应元素int delete_element(const int i); //删除对应元素node *get_head(){return head; //读取头指针}void insert2(const int x);friend void SplitList(list L1, list&L2, list &L3);friend void get_public(list L1, list L2, list &L3);private:int count;node *head;};list::list(){head=new node;head->next=NULL;count=0;}void list::create() //链表构建,以0为结束标志{int x;cout<<"请输入当前链表,以0为结束符。

线性表的链式存储结构实验报告

线性表的链式存储结构实验报告

实验一:线性表的链式存储结构【问题描述】某项比赛中,评委们给某参赛者的评分信息存储在一个带头结点的单向链表中,编写程序:(1)显示在评分中给出最高分和最低分的评委的有关信息(姓名、年龄、所给分数等)。

(2)在链表中删除一个最高分和一个最低分的结点。

(3)计算该参赛者去掉一个最高分和一个最低分后的平均成绩。

【基本要求】(1)建立一个评委打分的单向链表;(2)显示删除相关结点后的链表信息。

(3)显示要求的结果。

【实验步骤;】(1)运行PC中的Microsoft Visual C++ 6.0程序,(2)点击“文件”→“新建”→对话窗口中“文件”→“c++ Source File”→在“文件名”中输入“X1.cpp”→在“位置”中选择储存路径为“桌面”→“确定”,(3)输入程序代码,程序代码如下:head=create(PWRS);printf("所有评委打分信息如下:\n");print(head);//显示当前评委打分calc(head);//计算成绩printf("该选手去掉 1 最高分和 1 最低分后的有效评委成绩:\n");print(head);//显示去掉极限分后的评委打分}void input(NODE *s) #include <stdio.h>#include <stdlib.h>#include <malloc.h>#include <iostream.h>#include <conio.h>#define NULL 0#define PWRS 5 //定义评委人数struct pw //定义评委信息{ char name[6];float score;int age;};typedef struct pw PW;struct node //定义链表结点{struct pw data;struct node * next;};typedef struct node NODE;//自定义函数的声明NODE *create(int m); //创建单链表int calc(NODE *h); //计算、数据处理void print(NODE *h); //输出所有评委打分数据void input(NODE *s);//输入评委打分数据void output(NODE *s);//输出评委打分数据void main(){NODE *head;float ave=0;float sum=0;{printf("请输入评委的姓名: ");scanf("%S",&s->);printf("年龄: ");scanf("%d",&s->data.age);printf("打分: ");scanf("%f",&s->data.score);printf("\n");}void output(NODE *s){printf("评委姓名: %8s ,年龄: %d,打分: %2.2f\n",s->,s->data.age,s->data.score);}NODE *create(int m){NODE *head,*p,*q;int i;p=(NODE*)malloc(sizeof(NODE));head=p;q=p;p->next=NULL;for(i=1;i<=m;i++){p=(NODE*)malloc(sizeof(NODE));input(p);p->next=NULL;q->next=p;q=p;}return (head);}void print(NODE *h){ for(int i=1;((i<=PWRS)&&(h->next!=NULL));i++){h=h->next;output(h); }printf("\n");}int calc(NODE *h){NODE *q,*p,*pmin,*pmax;float sum=0;float ave=0;p=h->next; //指向首元结点pmin=pmax=p; //设置初始值sum+=p->data.score;p=p->next;for(;p!=NULL;p=p->next){if(p->data.score>pmax->data.score) pmax=p;if(p->data.score<pmin->data.score) pmin=p;sum+=p->data.score;}cout<<"给出最高分的评委姓名:"<<pmax-><<"年龄: "<<pmax->data.age<<"分值:"<<pmax->data.score<<endl;cout<<"给出最低分的评委姓名:"<<pmin-><<"年龄: "<<pmin->data.age<<"分值:"<<pmin->data.score<<endl;printf("\n");sum-=pmin->data.score;sum-=pmax->data.score;for (q=h,p=h->next;p!=NULL;q=p,p=p->next){if(p==pmin){q->next=p->next; p=q;}//删除最低分结点if(p==pmax) {q->next=p->next; p=q;}//删除最高分结点}ave=sum/(PWRS-2);cout<<"该选手的最后得分是:"<<ave<<endl;return 1;}实验结束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经济学院实验报告学院:专业: 计算机班级:学号:姓名:信息工程学院计算机实验中心制实验题目:线性表的链式存储结构和实现实验室:机房4 设备编号: 09 完成日期: 2012.04.09一、实验容1.会定义线性表的链式存储结构。

2.熟悉对单链表的一些基本操作(建表、插入、删除等)和具体的函数定义。

二、实验目的掌握链式存储结构的特点,掌握并实现单链表的常用的基本算法。

三、实验的容及完成情况1. 需求分析(1)线性表的抽象数据类型ADT的描述及实现。

本实验实现使用Visual c++6.0实现线性表链式存储结构的表示及操作。

具体实现要求:(2)完成对线性表链式存储结构的表示和实现。

(3)实现对单链表的创建。

(4)实现对单链表的插入和删除操作。

2.概要设计抽象数据类型线性表的定义:ADT LIST{抽象对象:D={ai|ai<-Elemset,i=1,2,…,n,n>=0}数据关系:R1={<ai-1,ai<-D,i=2,…,n}基本操作:InitList(&L)操作结果:构造一个空的线性表L。

DestoryList(&L)初始条件:线性表L已存在。

操作结果:销毁线性表LCLearList(&L)初始条件:线性表L已存在。

操作结果:将L重置为空表。

ListEmpty(L)初始条件:线性表L已存在。

操作结果:若L为空表,则返回TRUE,否则返回FALSE。

ListLength(L)初始条件:线性表L已存在。

操作结果:返回L中数据元素个数。

GetElem(L,I,&e)初始条件:线性表L已存在,1<=i<=ListLength(L)。

操作结果:用e返回L中第i个数据元素的值。

LocateElem(L,e,compare())初始条件:线性表L已存在,compare()是数据元素判定的函数。

操作结果:返回L中第1个与e满足关系compare()的数据元素的位序。

若这样的数据元素不存在,则返回值为0。

PriorElem(L,cur_e,&pre_e)初始条件:线性表L已存在。

操作结果:若cur_e是L的数据元素,且不是第一个,则用pre_e返回它的前驱,否则操作失败,pre_e无定义。

NextElem(L,cur_e,&next_e)初始条件:线性表L已存在。

操作结果:若cur_e是L的数据元素,且不是最后一个,则用pre_e返回它的后继,否则操作失败,pre_e无定义。

ListInsert(&L,I,e)初始条件:线性表L已存在,1<=i<=ListLength(L)+1。

操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1。

ListDelete(&L,I,&e)初始条件:线性表L已存在且非空,1<=i<=ListLength(L)。

操作结果:删除L中第i个数据元素,并用e返回其值,L的长度减1。

ListTraverse(L,visit())初始条件:线性表L已存在。

操作结果:依次对L的每个数据元素调用函数visit()。

一旦visit()失败,则操作失败。

}ADT List3.详细设计(1)抽象数据类型线性表链式存储结构的表示和实现c1.h:#include<stdio.h>#include<stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2typedef int Status;c2.h:typedef int ElemType;typedef struct LNode{ElemType data;struct LNode *next;}LNode,*Linklist; ;b02-1.h:int Createlist_L(Linklist &L,int n){Linklist p;int i;L=(Linklist)malloc(sizeof(LNode));L->next=NULL;for(i=n;i>0;--i){p=(Linklist)malloc(sizeof(LNode));scanf("%d",&p->data);p->next=L->next;L->next=p;}return OK;}Status GetElem_L(Linklist L,int i,ElemType &e){Linklist p;int j;p=L->next;j=1;while(p&&j<i){p=p->next;++j;}if(!p||j>i)return ERROR;e=p->data;return OK;}Status ListInsert_L(Linklist &L,int i,ElemType e) {Linklist p,s;int j;p=L;j=0;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)return ERROR;s=(Linklist)malloc(sizeof(LNode));s->data=e;s->next=p->next;p->next=s;return OK;}Status ListDelete_L(Linklist &L,int i,ElemType &e) {Linklist p,q;int j;p=L;j=0;while(p->next&&j<i-1){p=p->next;++j;}if(!(p->next)||j>i-1)return ERROR;q=p->next;p->next=q->next;e=q->data;free(q);return OK;}(2)主函数的伪码算法#include "c1.h"#include "c2.h"#include "b02-1.h"void main(){Linklist a;ElemType b,c;Createlist_L(a,10);ListInsert_L(a,3,50);ListInsert_L(a,5,65);ListDelete_L(a,7,c);GetElem_L(a,2,b);printf("%d\n",b);printf("%d\n",c);}4. 调试分析无定义,字母错误,标点符号不对5.用户使用说明打开可执行程序,即Visual c++6.0环境下,参照用户选择界面提示即可使用本程序6.测试结果程序具体执行如下:7.附录源程序如下:c1.h:#include<stdio.h>#include<stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2typedef int Status;c2.h:typedef int ElemType;typedef struct LNode{ElemType data;struct LNode *next;}LNode,*Linklist; ;b02-1.h:int Createlist_L(Linklist &L,int n){Linklist p;int i;L=(Linklist)malloc(sizeof(LNode));L->next=NULL;for(i=n;i>0;--i){p=(Linklist)malloc(sizeof(LNode));scanf("%d",&p->data);p->next=L->next;L->next=p;}return OK;}Status GetElem_L(Linklist L,int i,ElemType &e) {Linklist p;int j;p=L->next;j=1;while(p&&j<i){p=p->next;++j;}if(!p||j>i)return ERROR;e=p->data;return OK;}Status ListInsert_L(Linklist &L,int i,ElemType e) {Linklist p,s;int j;p=L;j=0;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)return ERROR;s=(Linklist)malloc(sizeof(LNode));s->data=e;s->next=p->next;p->next=s;return OK;}Status ListDelete_L(Linklist &L,int i,ElemType &e) {Linklist p,q;int j;p=L;j=0;while(p->next&&j<i-1){p=p->next;++j;}if(!(p->next)||j>i-1)return ERROR;q=p->next;p->next=q->next;e=q->data;free(q);return OK;}main.cpp:#include "c1.h"#include "c2.h"#include "b02-1.h"void main(){Linklist a;ElemType b,c;Createlist_L(a,10);ListInsert_L(a,3,50);ListInsert_L(a,5,65);ListDelete_L(a,7,c);GetElem_L(a,2,b);printf("%d\n",b);printf("%d\n",c);}四、实验总结熟悉对单链表的一些基本操作(建表、插入、删除等)和具体的函数定义。

相关文档
最新文档