北京四中111104初三数学期中试卷
北京四中初三数学期中试题 (含答案)

初三数学试卷班级__________ 学号__________ 姓名__________ 成绩__________ 考生须知1.本试卷共8页,共26道题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写班级、姓名和学号。
3.答案一律填写在答题纸上,在试卷上作答无效。
4.考试结束后,将试卷和答题纸一并交回。
一、选择题(每题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.二次函数y =(1x +)22-的最小值是 ( )A .1B .1-C .2D .2-2.如图,⊙O 是△ABC 的外接圆,40OCB ∠=︒,则A ∠的大小为( )A .40︒B .50︒C .80︒D .100︒3.若将抛物线25y x =先向右平移2个单位,再向上平移1个单位,则得到的新抛物线的表达式为( )A .2521y x =-+() B .25+21y x =+() C .2521y x =--() D .25+21y x =-() 4. 如图, AB 为⊙O 的弦, 点C 为AB 的中点,AB =8,OC =3, 则⊙O 的半径长为( )A .4B .5C .6D .75.已知A (12-,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y=-(x -2)2的图象上,则y 1,y 2,y 3的大小关系为( )A. y 1<y 2<y 3B. y 1<y 3<y 2C. y 3<y 1<y 2D. y 3<y 2<y 1 6.如图,⊙O 中直径AB ⊥DG 于点C ,点D 是弧EB 的中点,CD 与BE 交于点F .下列结论①∠A =∠E ,②∠ADB =90°,③FB=FD 中正确的个数为( )A .0B .1C .2D .3AB CO第2题图第4题图第6题图7.已知抛物线2(0)y ax bx c a =++≠上部分点的横坐标x 与纵坐标y 的对应值如下表:x… 2- 1-0 1 23 … y…4-2 24-…下列结论:①抛物线开口向下; ②当−1<x <2时,y >0;③抛物线的对称轴是直线12x =; ④函数2(0)y ax bx c a =++≠的最大值为2. 其中所有正确的结论为( )A .①②③B .①③C .①③④D .①②③④ 8.如图,在平面直角坐标系xOy 中,以 0) (3,为圆心作⊙P , ⊙P 与x 轴交于A 、B ,与y 轴交于点C 2) (0,,Q 为⊙P 上 不同于A 、B 的任意一点,连接QA 、QB ,过P 点分别作 PE ⊥QA 于E ,PF ⊥QB 于F .设点Q 的横坐标为x ,y PF PE =+22.当Q 点在⊙P 上顺时针从点A 运动到点B的过程中,下列图象中能表示y 与x 的函数关系的部分..图象是( )A. B.C.D.二、填空题(本题共16分,每小题2分)9.若抛物线26y x x m =++与x 轴只有一个公共点,则m 的值为 .10.如图,A ,B ,C 是⊙O 上的三个点,如果∠AOB =140°, 那么∠ACB 的度数为 .11.若点(1,5),(5,5)是抛物线y =x 2+bx +c(a ≠0)上的两个点, 则b = .第8题图BCAO第10题图12. 筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,如图1,点P 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5 m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为 m .13.如图,在平面直角坐标系中,点A ,B ,C 都在格点上, 过A ,B ,C 三点作一圆弧,则圆心的坐标是 . 14. 已知关于x 的二次函数42++=bx ax y 的图象如右图所示,则关于x 的方程02=+bx ax 的根为_____________. 15.元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy 中,⊙A 经过坐标原点O ,并与两坐标轴分别交于B 、C 两点,点B 的坐标为(2,0),点D 在⊙A 上,且∠ODB =30°,求⊙A 的半径. 元元的做法如下,请你帮忙补全解题过程.解:如图2,连接BC. ∵∠BOC =90°,∴BC 是⊙A 的直径. (依据是___________________________________________)431254312OxyC BA 第13题图图1图2第12题图yx41-4O第14题图图2图1第15题图∵∠ODB =30°,∴∠OCB =∠ODB =30°.(依据是_________________________________________)∴BC OB 21=.∵OB=2,∴BC =4.即⊙A 的半径为2.16.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论: ⊥abc <0; ⊥20a b +=; ⊥4a −2b +c >0; ⊥若,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是 .三、解答题 (本题共68分,第17题每小题5分共10分,第18、19、21、22、24题每题6分,第20、23、25、26题每题7分) 17. 解关于x 的方程.(1)0232=++x x ; (2)01222=--x x .18. 已知抛物线的顶点为(-2,2),且过坐标原点,求抛物线的解析式.19.如图,AB 是⊙O 的一条弦,OD ⊥AB 于点C ,交⊙O 于点D ,连接OA .若AB = 4,CD =1,求⊙O 半径的长.0m n >>C D OAB第16题图20. 已知抛物线y=-x 2+2x +3,回答下列问题: (1)画出该函数图象(要求列表、2B 铅笔画图);(2)当−3<x <3时,y 的取值范围是__________.21. 如图,⊥ABC 中AB=AC ,以AB 为直径作⊙O 交BC 于点D ,DE AC 于点E . 求证:(1)BD=DC ;(2)DE 是⊙O 的切线.22. 学生会要组织“四中杯”篮球赛,赛制为单循环形式(每两队之间都赛一场). (1)如果有4支球队参加比赛,那么共进行 场比赛;(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?x … ... y …...23.在画函数图象时,我们常常通过描点、平移或翻折的方法.某班“数学兴趣小组”根据学到的函数知识探究函数22||y x x =-的图象与性质,并利用函数图象解决问题.探究过程如下,请补充完整.(1)函数22||y x x =-的自变量x 的取值范围是________. (2)化简:当x >0时函数y =_________,当x <0时函数y =________.(3)根据上题,在如图所示的平面直角坐标系中描点, 画出该函数的图象,并写出该函数的一条性质: ______________________________________________. (4)若直线y=k 与该函数只有两个公共点,根据图象判断 k 的取值范围为________.24. 在平面直角坐标系xOy 中,抛物线2+232y mx mx m =-+. (1) 求抛物线的对称轴;(2) 过点)20(,P 作与x 轴平行的直线,交抛物线于点M ,N .求点M ,N 的坐标; (3) 横、纵坐标都是整数的点叫做整点.如果抛物线和线段MN 围成的封闭区域内(不包括边界)恰有3个整点,求m 的取值范围.25. (1)已知等边三角形ABC ,请作出△ABC 的外接圆⊙O .在⊙O 上任取一点P (异于A 、B 、C 三点),连结P A 、PB 、PC .①依题意补全图形,要求尺规作图,不写作法,保留作图痕迹; ②请判断P A 、PB 、PC 的关系,并给出证明.(2)已知⊙O ,请作出⊙O 的内接等腰直角三角形ABC ,∠C =90°.在⊙O 上任取一点P (异于A 、B 、C 三点),连结P A 、PB 、PC.①依题意补全图形,要求尺规作图,不写作法,保留作图痕迹; ②请判断P A 、PB 、PC 的关系,并给出证明.26.在平面直角坐标系xOy 中,对于△ABC ,点P 在BC 边的垂直C ABO平分线上,若以点P为圆心,PB为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.右图所示,点P即为△ABC关于边BC的“Math点”已知点P(0, 4),Q(a, 0)(1)如图1,a=4,在点A(1, 0)、B( 2, 2)、C( 2√3, 2√3) 、D( 5, 5)中,△POQ关于边PQ的“Math点”为.(2)如图2,a=4√3,①已知D(0 , 8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线y=−√3x+b交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.图1图2初三期中测试数学学科参考答案:一、选择题1、D2、B3、A4、B5、B6、D7、A8、A 二、填空题9、9 10、110 11、-6 12、2 13、(2,1) 14、-3,0 15、90º的圆周角所对的弦是直径,同弧所对的圆周角相等。
北京四中111104初三数学期中试卷

数学试卷(考试时间为120分钟,试卷满分为120分)班级学号姓名分数一、选择题(每题4分,共32分.以下各题均有四个选项,此中只有一个..是切合题意的.)1.以下事件是必定事件的是().A.任意掷两个均匀的骰子,向上边的点数之和是 6B.掷一枚硬币,正面向上C.3 个人分红两组,必定有两个人分在一组D.翻开电视,正在播放动画片2.抛物线 2y (x1) 2 能够由抛物线2y x 平移而获得,以下平移正确的选项是().A.先向左平移 1 个单位,再向上平移 2 个单位B.先向左平移 1 个单位,再向下平移 2 个单位C.先向右平移 1 个单位,再向上平移 2 个单位D.先向右平移 1 个单位,再向下平移 2 个单位3.已知一顶圆锥形纸帽底面圆的半径为10cm,母线长为50cm,则圆锥形纸帽的侧面积为().A. 2250 cm B.2500 cm C.2 2750 cm D.1000 cm4.两圆半径分别为 2 和3,圆心坐标分别为(1,0)和(-4,0),则两圆的地点关系是().A.外离B.外切C.订交D.内切5.同时扔掷两枚硬币,出现两枚都是正面的概率为().1 1 3 1 A.B.C.D.4 3 4 2y N6.如图,在平面直角坐标系中,点P在第一象限,⊙P 与x 轴P 相切于点Q ,与y 轴交于M (0,2) ,N (0,8) 两点,则点P 的坐标是Mx ().OQA.(5,3) B.(3,5) C.(5,4) D.(4,5)7.抛物线 2 1y x kx 与2y x x k 订交,有一个交点在x 轴上,则k 的值为().A.0 B. 2 C.- 1 D.1 48.如图,在直角梯形ABCD 中,AD ∥BC, C 90 ,CD 6cm,A D AD=2cm,动点P、Q 同时从点B 出发,点P 沿BA、AD、DC 运P动到点C 停止,点Q 沿BC 运动到C 点停止,两点运动时的速度都是1cm/s,而当点P抵达点A时,点Q 正好抵达点C .B Q C设P 点运动的时间为t (s) ,△BPQ 的面积为y 2(cm ) .以下图中能正确表示整个运动中y 对于t 的函数关系的大概图象是().A.B.C.D.二.填空题(每题4分,此题共16分)9.正六边形边长为3,则其边心距是___________cm.10.函数 2 2 3( 2 2)y x x x 的最小值为_________,最大值为__________.11.如图,在△ABC 中,BC=4,以点A 为圆心,2 为半径的⊙A与BC 相切于点D,交AB 于E,交AC 于F,点P 是⊙A 上一点,且∠EPF=40 °,则图中阴影部分的面积是 AP_______________.F EBD C12.已知二次函数 2y ax bx c 知足:(1)a b c;(2)a b c ;(3)图象与x轴有2 个交点,且两交点间的距离小于2;则以下结论中正确的有.①a 0 ②a b c 0 ③c 0 ④a 2b 0 ⑤b 1 2a 4三.解答题(每题5分,此题共30分)13.计算:31 150 2 2 14.用配方法解方程:2 3122x 2x 3 015.已知 2 2 1m my (m 1)x (m 3)x m ,当m 为什么值时,是二次函数?16.如图,在半径为 6 cm 的⊙O 中,圆心O 到弦AB 的距离OC 为3 cm.试求:(1)弦AB 的长;(2)A⌒B 的长.OA C B17.已知二次函数y=ax2+bx+c 的图象的极点位于x 轴下方,它到x 轴的距离为4,下表是x 与y 的对应值表:x 0 2y 0 - 3 - 4 - 3 0(1)求出二次函数的分析式;yxO(2)将表中的空白处填写完好;2+bx+c的图象;(3)在右侧的坐标系中画出y=ax(4)依据图象回答:2+bx+ c的值大于0._______________________ 当x 为什么值时,函数y=ax18.如图,在△ABC 中,∠C=90°,AD 是∠BAC 的均分线,O 是AB 上一点,以OA 为半径的⊙O 经过点D.(1)求证:BC 是⊙O 切线;A (2)若BD =5,DC=3,求AC 的长.OB CD四.应用题(19题6分,20题5分,21题4分)19.桐桐和大诚玩纸牌游戏.以下图是同一副扑克中的 4 张扑克牌的正面,将它们正面朝下洗匀后放在桌上,桐桐先从中抽出一张,大诚从节余的 3 张牌中也抽出一张.桐桐说:若抽出的两张牌的数字都是偶数,你获胜;不然,我获胜.(1)请用列表(或树状图)表示出两人抽牌可能出现的全部结果;(2)若按桐桐说的规则进行游戏,这个游戏公正吗?请说明原因.20.某体育品商铺在销售中发现:某种体育器械均匀每日可售出20 件,每件可赢利40 元;若售价减少 1 元,均匀每日便可多售出 2 件;若想均匀每日销售这类器械盈利1200 元,那么每件器械应降价多少元?若想赢利最大,应降价多少?21.用尺规作图找出该残片所在圆的圆心O 的地点.(保存作图印迹,不写作法)五.解答题(此题5分)22.已知如图,正方形AEDG 的两个极点A、D 都在⊙O 上,AB 为⊙O 直径,射线线ED 与⊙O 的另一个交点为C,试判断线段AC 与线段BC 的关系.BOGAE D C六.综合运用(23、25题7分,24题8分)23.已知:对于x 的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2- bx+ k c (c≠0)的图象与x 轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k 的值;2 2()的值;kc b ab(2)求代数式akc2- bx+ c=0 ②必有两个不相等的实数根.(3)求证:对于x 的一元二次方程ax24.已知:如图,在直角坐标系xoy 中,点A(2,0),点 B 在第一象限且△OAB为正三角形,△OAB 的外接圆交y 轴的正半轴于点C,过点C 的圆的切线交x 轴于点D.(1)求B、C 两点的坐标;(2)求直线CD 的函数分析式;(3)设E、F 分别是线段AB、AD 上的两个动点,且EF 均分四边形ABCD 的周长.尝试究:当点 E 运动到什么地点时,△AEF 的面积最大?最大面积是多少?第24 题图25.抛物线 2 3y ax bx 交x 轴于A、B两点,交y 轴于点C ,已知抛物线的对称轴为直线x 1,AB 4.(1)求二次函数 2 3y ax bx 的分析式;(2)在抛物线对称轴上能否存在一点P ,使点P 到B、C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明原因;(3)平行于x 轴的一条直线交抛物线于M、N 两点,若以MN 为直径的圆恰巧与x 轴相切,求此圆的半径.初三期中考试参照答案及评分标准四中一、选择题:(此题共32 分,每题 4 分)题号 1 2 3 4 5 6 7 8答案 C C B B A D B B 二、填空题:(此题共16 分,每题 4 分)9.3 2210.- 4, 5 11. 48912.①②③⑤(少选 1 个扣 1分,多项选择或选错均不得分)三、解答题:(此题共30 分,每题 5 分)13.计算:50 2 122 0133解:原式=5 2 2 1 27 ⋯⋯⋯⋯..4 分(化简运算对一个数给 1 分)= 4 2 28⋯⋯⋯⋯⋯⋯⋯⋯ 5 分14.用配方法解方程:122x 2x 3 0解:122(x4x) 3 0 ⋯⋯⋯..1 分122(x 2 ) 5 ⋯⋯⋯..3 分x 2 10∴x1 2 10, x2 2 10 ⋯⋯..5 分15.已知 2 2 1m my m x m x m ,当m 为什么值时,是二次函数?( 1) ( 3)解:依题设,若原函数为二次函数,则有m 1 02m 2m 1 2⋯⋯⋯.2 分解得m=3 ⋯⋯⋯...5 分16.如图,在半径为 6 cm 的⊙O 中,圆心O 到弦AB 的距离OC 为3 cm.试求:(1)弦AB 的长;(2)A⌒B 的长.解:依题设有OC⊥AB 于C,又∵AB 为⊙O 的弦1∴AC=BC= AB ⋯⋯⋯ 2 分2 AOC B连结OA 则 2 2AC OA OC又∵OA=6,OC=3∴AC=3 3 ∴AB=6 3 ⋯⋯⋯3 分(2)由(1)知,在Rt△ACO 中,OA=6,OC=3 ∴∠OAC=30°∴∠AOC=60°∴∠AOB=120°⋯⋯⋯4 分⌒∴AB = 132 OA =4 ⋯⋯⋯..5 分2+b x+c 的图象的极点位于x 轴下方,它到x 轴的距离为4,下17.已知二次函数y=ax表是x 与y 的对应值表:x -1 0 1 2 3y 0 -3 -4 -3 0 (1)求出二次函数的分析式;解:由上表可知,二次函数图象的对称轴为直线x=1,极点坐标为(1,4)⋯⋯1 分∴二次函数分析式可变形为 2y a( x 1) 4又由图象过(0,-3),有-3= a-4,解得a=1∴二次函数分析式为 2 2 3y x x .....2 分(2)将表中的空白处填写完好;.....3 分(3)在右侧的坐标系中画出y=ax2+bx+ c的图象;⋯⋯⋯4 分(4)依据图象回答:当x 为什么值时,函数y=ax2+b x+c 的值大于0.x<- 1 或x>3.....5 分18.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的均分线,O 是AB 上一点,以OA 为半径的⊙O 经过点D.(1)求证:BC 是⊙O 切线;(2)若BD =5,DC=3,求AC 的长.解:(1)证明:如图1,连结OD.A ∵OA=OD,AD 均分∠BAC,O ∴∠ODA =∠OAD ,∠OAD =∠CAD.⋯⋯⋯⋯⋯⋯ 1 分∴∠ODA =∠CAD.∴OD //AC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∴∠ODB =∠C =90 .B D C∴BC 是⊙O 的切线.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分图1(2)解法一:如图2,过 D 作DE⊥AB 于E.A∴∠AED =∠C =90 .又∵AD =AD,∠EAD =∠CAD,∴△AED≌△ACD.EO∴AE= A C,DE =DC =3.B在Rt△BED 中,∠BED =90 ,由勾股定理,得图2D C2 DE2BE= BD 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分设AC =x(x>0),则AE= x.在Rt△ABC 中,∠C=90 ,BC=BD +DC=8,AB =x+4,由勾股定理,得2 x2+8 = (x+4)2.解得x=6.即AC=6.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分解法二:如图3,延伸AC 到E,使得AE=AB.A ∵AD=AD,∠EAD =∠BAD,∴△AED≌△ABD.O∴ED =B D= 5.在Rt△DCE 中,∠DCE =90 ,由勾股定理,得B D C2 DC2CE= DE 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分图3E 在Rt△ABC 中,∠ACB=90 ,BC=BD+DC =8,由勾股定理,得AC2 + B C2= AB 2.2 即AC2+8 =(AC +4)2.解得AC=6.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分19.解:(1)树状图为:共有12 种可能结果.···················································································3 分(2)游戏公正.···················································································4 分∵两张牌的数字都是偶数有 6 种结果:(6,10),(6,12),(10,6),(10,12),(12,6),(12,10).∴桐桐获胜的概率P=612=12.··································································5 分大诚获胜的概率也为12.···········································································6 分∴游戏公正.20.某体育品商铺在销售中发现:某种体育器械均匀每日可售出20 件,每件可赢利40 元;若售价减少 1 元,均匀每日便可多售出 2 件.若想均匀每日销售这类器械盈利1200 元,那么每件器械应降价多少元?若想赢利最大,应降价多少?解:设若想盈余1200 元,每件器械应降价x 元,则有( 4 0 x ) ( 2 0x 2 ) 1 2 ⋯⋯⋯⋯⋯.2 分可解得x1 10, x2 20 ,答:若想盈余1200 元,每件器械降价10 元或20 元均可⋯⋯⋯.3 分设降价x 元时,盈余为y 元,则y (40 x)(20 2x) 0<x<40 ⋯⋯⋯.4 分分析式可变形为 2y 2(x 15) 1250 且0<15<40由此可知,当降价15 元时,最大赢利为1250 元.⋯⋯⋯⋯5 分.21.用尺规作图找出该残片所在圆的圆心O 的地点.(保存作图印迹,不写作法)任作2 弦给1 分,两条中垂线各 1 分,标出并写出点O 即为所求给 1 分五.解答题(此题 5 分)22.已知如图,正方形AEDG 的两个极点A、D 都在⊙O 上,AB 为⊙O 直径,射线线ED 与⊙O 的另一个交点为C,试判断线段AC 与线段BC 的关系.解:线段AC 与线段BC 垂直且相等⋯⋯⋯1 分证明:连结AD ⋯⋯⋯2 分∵四边形AEDG 为正方形B ∴∠ADE=45°∵四边形ABCD 内接⊙O A G O∴∠B+∠ADC =180°⋯⋯...3 分又∵∠ADE+∠ADC=180°∴∠B=∠ADE=45°又∵AB O为⊙直径E D C∴∠ACB=90°,即AC⊥BC ⋯⋯4 分∴∠BAC=45°∴AC=BC ⋯⋯..5分23.解:(1)解:由kx= x+2,得(k- 1)x=2.依题意k- 1≠0.∴2x .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分k 1∵方程的根为正整数,k 为整数,∴k- 1=1 或k- 1=2.∴k1= 2,k2=3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)解:依题意,二次函数y=ax2- bx+ k c 的图象经过点(1,0),∴0 =a- b+ k c,kc = b- a .∴( 2 2 22 2 2kc) b ab (b a) b ab b abakc a(b a)ab2a2ab 2 ab 2a ab= 1.2ab a⋯3 分(3)证明:方程②的鉴别式为Δ=(- b)2- 4ac= b2- 4ac.由a≠0,c≠0,得ac≠0.证法一:(i )若ac<0,则- 4ac>0.故Δ=b2- 4ac>0.此时方程②有两个不相等的实数根.⋯⋯ 4 分(ii )若ac>0,由(2)知a- b+kc =0,故b= a+kc.2- 4ac= (a+kc)2- 4ac= a2+2kac+(kc)2- 4ac = a2- 2kac+(kc)2+4kac- 4acΔ=b=(a- kc)2+4ac(k- 1).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∵方程kx=x+2 的根为正实数,∴方程(k- 1)x=2 的根为正实数.由x>0,2>0,得k- 1>0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2 0,∴4ac(k- 1)>0.∵(a- kc)∴Δ=(a- kc)2+4 a c(k- 1)>0.此时方程②有两个不相等的实数根.⋯⋯⋯⋯7 分证法二:(i )若ac<0,则- 4ac>0.故Δ=b2- 4ac>0.此时方程②有两个不相等的实数根.⋯⋯4 分(ii )若ac>0,∵抛物线y= a x2- bx+kc 与x 轴有交点,∴Δ1=(- b)2- 4akc =b2- 4akc 0.(b2- 4ac)- (b2- 4akc)=4ac(k- 1).由证法一知k- 1>0,∴ b2- 4ac> b2- 4akc 0.∴Δ= b2- 4ac>0.此时方程②有两个不相等的实数根.⋯⋯⋯⋯⋯⋯⋯7 分综上,方程②有两个不相等的实数根.证法三:由已知, a b kc,∴ 2 2 2 22 b 4ac b 4c(b kc) (b 2c) 4(k 1)c能够证明b 2c 和c 不可以同时为0(不然a 0),而k 1 0,所以 2 0.24.解:(1)∵A(2,0),∴OA =2.作BG⊥OA 于G,∵△OAB 为正三角形,∴OG =1,BG= 3 ,∴B(1, 3 ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分连AC,∵∠AOC =90°,∠ACO =∠ABO=60°.AOC 90 ,∴OC= 2 33.(第24 题)∴C(0,2 3 ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分3(2)∵∠AOC =90°,∴AC 是圆的直径,又∵CD 是圆的切线,∴CD⊥AC.∴∠OCD =30°,OD=23 .∴D(23,0).设直线CD 的函数分析式为y=kx+ b(k≠0),b 0 2 3323k b,解得kb233则3∴直线CD 的分析式为y=2 33x .⋯4 分3(3)∵AB=OA =2,OD= 2,CD=2 OD=34,BC=OC =32 3 ,32 3∴四边形ABCD 的周长6+.3 设AE= t,△AEF 的面积为S,则AF =3+3 ∵S=t43-t S=t,343(3+ t3)=3(3+ t339 373t.4632).EF∵点E、F 分别在线段AB、AD 上,∴0 t3233t 2231 3∴t 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分3(第24 题)∴当 t= 9 3 6 时,S 最大= 7 3 12 3 8 .⋯⋯⋯⋯ 8 分25.(1)设抛物线的分析式为 2y a( x 1) h ,∵点B( 3,0) 、C(0,3)在抛物线上,∴4a h 0,a h 3.解得ah1,4.∴抛物线的分析式为 2 2y (x 1) 4 x 2x 3 .⋯⋯⋯⋯⋯ 2 分(2) 2 2 3 ( 1)( 3)y x x x x ,∴A(1,0),B(3,0).∴ 2 2AC 1 3 10 .∴PA=PB ,∴PB PC PA PC .⋯⋯⋯..3 分如图1,在△PAC 中,PA PC AC ,当P 在AC 的延伸线上时,PA PC AC 10 .设直线AC 的分析式为y kx b ,∴k bb0,3.解得kb3,3.∴直线AC 的分析式为y 3x 3.当x 1 时,y 3 3 6 .∴当点P 的坐标为(1,6)时,PA PC 的最大值为10 .⋯⋯⋯⋯⋯.5 分(3)如图2,当以MN 为直径的圆与x 轴相切时,y r .N∵点N 的横坐标为 1 r ,∴ 2 2y (r 1) 2(r 1) 3 r 4 .N∴r 2 4 r .解得1 17r ,121 17r .⋯⋯⋯⋯⋯..7 分22。
北京四中九年级(上)期中数学模拟试卷

时,代数式 2x2+8x-3 的最
(“大”或者“小”)值为
.
三、计算题(本大题共 1 小题,共 8.0 分)
17. 解方程:x2-2x=8.
四、解答题(本大题共 4 小题,共 39.0 分) 18. .已知抛物线 y=x2+bx+c 的对称轴为 x=2,且过点 C(0,3)
1 求此抛物线的解析式; 2 证明:该抛物线恒在直线 y=-2x+1 上方.
A. 1
B. 2
C. 3
D. 4
3. 如果关于 x 的一元二次方程 ax2+x-1=0 有实数根,则 a 的取值范围是( )
A. a>−14
B. a≥−14
C. a≥−14 且 a≠0
D. a>14 且 a≠0
4. 用配方法解方程:x2-4x+2=0,下列配方正确的是( )
A. (x−2)2=2
B. (x+2)2=2
A. (−a,−b)
B. (−a.−b−1)
C. (−a,−b+1)
D. (−a,−b−2)
7. 如图,抛物线 y=x2+bx+c 与 x 轴交于 A,B 两点,与 y 轴 交于点 C,∠OBC=45°,则下列各式成立的是()
A. b−c−1=0 B. b+c−1=0 C. b−c+1=0 D. b+c+1=0
交 BD 于 P 点且 PB=2,PD=4,则 AD 的长为( )
第 1 页,共 13 页
A. 23
B. 26
C. 22
D. 4
10. △ABC 中,AB=AC,∠BAC=30°,将 AB 绕着点 A 逆时针旋转 m°(0<m<360)至
2022-2023学年北京四中九年级(上)期中数学试卷(含答案解析)

2022-2023学年北京四中九年级(上)期中数学试卷1.下列四个图形中,是中心对称图形的是( )A. B. C. D.2.抛物线y=(x+2)2−1的顶点坐标是( )A. (−1,2)B. (−2,1)C. (−2,−1)D. (−1,−2)3.如图,⊙O是△ABC的外接圆,∠BOC=100∘,则∠A的度数为( )A. 30∘B. 50∘C. 80∘D. 100∘4.下列方程中,有两个相等的实数根的方程是( )A. x2+3x=0B. x2+2x−1=0C. x2+2x+1=0D. x2−x+3=05.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )A. y=5(x−2)2+1B. y=5(x+2)2+1C. y=5(x−2)2−1D. y=5(x+2)2−16.如图,△OAB绕点O逆时针旋转75∘,得到△OCD,若∠AOB=40∘,则∠AOD等于( )A. 115∘B. 75∘C. 40∘D. 35∘7.如图,⊙O的半径是1,点P是直线y=−x+2上一动点,过点P作⊙O的切线,切点为A,连接OA,OP,则AP的最小值为( )A. √2−1B. 1C. √2D. √38.单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.从起跳到着陆的过程中,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x−ℎ)2+k(a<0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )A. 4mB. 7mC. 8mD. 10m9.已知某个二次函数的最小值为−1,请你写出一个符合,上述条件的二次函数的表达式为______.10.已知扇形的半径为2cm,圆心角为120∘,则此扇形的弧长是______ cm.11.A(−1,y1),B(2,y2)在二次函数y=−x2+2x+1的图象上,则y1与y2的大小关系为______.(用“>”,“<”,“=”连接)12.若抛物线y=x2+4x+m与x轴没有公共点,则m的取值范围是______.13.如图,在平面直角坐标系中,点A,B,C都在格点上,过A,B,C三点作一圆弧,则圆心的坐标是__________.14.如图,MA,MB是⊙O的两条切线,A,B为切点,若∠AMB=60∘,AB=√3,则⊙O的半径等于______.15.为响应国家号召打赢脱贫攻坚战,小明利用信息技术开了一家网络商店,将家乡的土特产销往全国.今年6月份盈利12000元,8月份盈利27000元,求6月份到8月份盈利的月平均增长率.设6月份到8月份盈利的月平均增长率为x,根据题意,可列方程为______.16.已知二次函数y=ax2+bx+c(a>0)的对称轴为直线x=−1,它的图象经过点A(1,y1),B(−2,y2),C(−4,0).对于下列四个结论:①y1<y2;②c=−8a;③方程ax2+bx+c=0的解为x1=−4,x2=2;④对于任意实数t,总有a(t2+9)+bt+c≤0.其中正确的结论是______(填写序号).17.解下列方程:(1)x2−5x=0;(2)2x2−x−1=0.18.下面是“过圆外一点作圆的切线”的尺规作图过程.已知:⊙O和⊙O外一点P.求作:过点P的⊙O的切线.作法:如图,①连接OP;OP的长为半径作弧,两弧相交于M,N两点;②分别以点O和点P为圆心,大于12③作直线MN,交OP于点C;④以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;⑤作直线PA,PB.直线PA,PB即为所求作⊙O的切线.(1)请根据上述作法完成尺规作图;(2)连接OA,OB,可证∠OAP=∠OBP=90∘,理由是______;(3)直线PA,PB是⊙O的切线,依据是______.19.已知二次函数C:y=−x2+2x+3.(1)将y=−x2+2x+3化成y=a(x−ℎ)2+k的形式;(2)在图中画出二次函数C的图象;(3)当−1≤x≤2时,利用图象直接写出y的取值范围.20.如图,在平面直角坐标系xOy中,A(−1,1),B(−4,2),C(−3,3).(1)将△ABC先向右平移5个单位长度,再向下平移2个单位长度,得到△A1B1C1,请在图中画出△A1B1C1;(2)将△ABC绕点A顺时针旋转90∘得到△AB2C2,请在图中画出△AB2C2;(3)连接A1C2,线段A1C2的长等于______.21. 已知关于x 的方程kx 2+(k −2)x −2=0(k ≠0).(1)求证:此方程总有实数根;(2)若k 为整数,且此方程有两个不相等的整数根,求k 的值.22. 如图,在⊙O 中,AB 是直径,CD 是弦,且AB ⊥CD 于点E ,CD =8,BE =2.求⊙O 的半径.23. 如图,有一农户要建一个矩形菜地,菜地的一边利用长为12m 的墙(AD ≤12m),另外三边用26m 长的篱笆围成.求当矩形的边长BC 为多少m 时,菜地面积为80m 2?24. 如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CD 平分∠ACB ,交AB 于点E ,交⊙O 于点D ,延长BA 到点P ,使得PE =PC.(1)求证:PC 与⊙O 相切;(2)若⊙O 的半径5,AC =6,求CD 的长.25. 已知函数y =x 2+bx +c(x ≥2)的图象过点A(2,1),B(5,4).(1)直接写出y =x 2+bx +c(x ≥2)的解析式;(2)如图,请补全分段函数y ={−x 2+2x +1(x <2)x 2+bx +c(x ≥2)的图象(不要求列表). 并回答以下问题:①写出此分段函数的一条性质:______;②若此分段函数的图象与直线y =m 有三个公共点,请结合函数图象直接写出实数m 的取值范围;(3)横、纵坐标都是整数的点叫做整点,记(2)中函数的图象与直线y =12x −1围成的封闭区域(不含边界)为“W区域”,请直接写出区域内所有整点的坐标.26.已知,抛物线C1:y=−x2+bx+c经过点A(2,1),B(0,1).(1)求抛物线C1的对称轴;(2)平移抛物线C1:y=−x2+bx+c,使其顶点在直线y=−2x+1上,设平移后的抛物线C2的顶点的横坐标为m.求抛物线C2与y轴交点的纵坐标的最大值.(3)在(2)的条件下,抛物线C2与y轴交于点M,将其向左平移2个单位得到点N,若抛物线C2与线段BN只有1个公共点,直接写出m的取值范围.27.如图,在正方形ABCD中,点E在线段CB的延长线上,连接AE,并将线段AE绕点E顺时针旋转90∘,得到线段FE,连接AF,BD,CF,线段AF与线段BD相交于点M.(1)请写出∠ECF的度数,并给出证明;(2)求证:点M是线段AF的中点;(3)直接写出线段CF,BM和AD的数量关系.28.在平面直角坐标系xOy中,已知点A和B,对于点P定义如下:以点A为对称中心作点P 的对称点,再将对称点绕点B逆时针旋转90∘,得到点Q,称点Q为点P的反转点.已知⊙O的半径为1.(1)如图,点A(2,1),B(3,2),点P在⊙O上,点Q为点P的反转点.①当点P的坐标为(−1,0)时,在图中画出点Q;②当点P在⊙O上运动时,求线段AQ长的最大值;(2)已知点A是⊙O上一点,点B和P是⊙O外两个点,点Q为点P的反转点.若点P在第一象限内,点B在第四象限内,当点A在⊙O上运动时,直接写出线段PQ长的最大值和最小值的差.答案和解析1.【答案】B【解析】解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180∘后与原来的图形重合,所以不是中心对称图形.选项B能找到这样的一个点,使图形绕某一点旋转180∘后与原来的图形重合,所以是中心对称图形.故选:B.根据中心对称图形的概念判断.把一个图形绕某一点旋转180∘,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.【答案】C【解析】解:∵y=(x+2)2−1,∴抛物线顶点坐标为(−2,−1),故选:C.由二次函数顶点式求解.本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.3.【答案】B【解析】解:∵∠BOC=100∘,∴∠A=12∠BOC=50∘.故选:B.直接根据圆周角定理即可得出结论.本题考查的是三角形的外接圆与外心,圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.4.【答案】C【解析】解:A、Δ=9−4×1×0=9>0,故A不符合题意.B、Δ=4−4×1×(−1)=8>0,故B不符合题意.C、Δ=4−4×1×1=0,故C符合题意.D、Δ=1−4×1×3=−11<0,故D不符合题意.故选:C.根据根的判别式即可求出答案.本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.5.【答案】A【解析】【分析】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.根据平移规律,可得答案.【解答】解:y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为y=5(x−2)2+1,故选A.6.【答案】D【解析】解:∵△OAB绕点O逆时针旋转75∘到△OCD的位置,∴∠BOD=75∘,∴∠AOD=∠BOD−∠AOB=75∘−40∘=35∘.故选:D.首先根据旋转角定义可以知道∠BOD=75∘,而∠AOB=40∘,然后根据图形即可求出∠AOD.此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.7.【答案】B【解析】解:∵PA为⊙O的切线,∴OA⊥PA,且OA=1,∴当OP最小时,PA最小,∴当OP与直线y=−x+2垂直时,OP最小,如图,设直线y=−x+2交x轴、y轴于点B、C,则B(2,0),C(0,2),∴OB=OC=2,∴BC=2√2,∴OP=1BC=√2,即OP的最小值为√2,2∴PA的最小值=√OP2−OA2=1,故选:B.连接OA、OP,由切线性质可知OA⊥PA,且OA=1,则当OP最小时,PA最小,故当OP与直线y=−x+2垂直时,PA最小,再利用等腰直角三角形的性质可求得OP的值,可求得答案.本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.8.【答案】C【解析】解:设运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系为y =ax 2+bx +c ,把图中数据(0,20),(5,22.75),(14,21,40)代入解析式,得{25a +5b +c =22.75196a +14b +c =21.40c =20,解得{a =−0.05b =0.80c =20.00,∴y =−0.05x 2+0.80x +20.00=−0.05(x −8)2+23.20,∵−0.05<0,∴当x =8时,y 最大,故选:C.根据图中数据用待定系数法求函数解析式,再根据函数的性质求y 最大时x 的值即可.本题主要考查了二次函数的应用,待定系数法求函数关系式,解题关键是求出函数解析式.9.【答案】y =x 2−1(答案不唯一)【解析】解:∵抛物线y =x 2−1开口向上,顶点坐标为(0,−1),∴函数最小值为−1,故答案为:y =x 2−1.(答案不唯一)根据二次函数顶点纵坐标为函数最值求解.本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.10.【答案】43π【解析】解:扇形的弧长=120⋅π⋅2180=43πcm.故答案为4π3.直接利用弧长公式计算.本题考查了弧长的计算:记住弧长公式:l =nπR 180(弧长为l ,圆心角度数为n ,圆的半径为R),在弧长的计算公式中,n 是表示1∘的圆心角的倍数,n 和180都不要带单位.11.【答案】<【解析】解:当x=−1时,y1=−x2+2x+1=−1−2+1=−2,当x=2时,y2=−x2+2x+1=−4+4+1=1,所以y1<y2.故答案为:<.分别计算出自变量为−2和1对应的函数值即可得到y1与y2的大小关系.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.【答案】m>4【解析】解:∵若抛物线y=x2+4x+m与x轴没有公共点,∴Δ=b2−4ac=42−4×1×m<0.即16−4m<0,解得:m>4,故答案为:m>4.根据抛物线与x轴的没有交点,即Δ=b2−4ac<0,即可求出m的取值范围.本题主要考查抛物线与x轴的交点.熟记抛物线与x轴的交点个数与系数的关系是解决此题的关键.13.【答案】(2,1)【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.本题考查垂径定理的应用,解答此题的关键是熟知垂径定理.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,1).故答案为:(2,1).14.【答案】1【解析】解:∵MA、MB是⊙O的两条切线,A、B为切点,∠AMB=30∘,∠OAM=90∘,∴AM=BM,∠OMA=12∵OA=OB,∴OM是AB的垂直平分线,∵AB=√3,∴AC =√32,Rt △OAM 中,∠AOM =60∘,∵∠ACO =90∘,∴sin60∘=AC OA ,∴OA =√32√32=1,∴⊙O 的半径等于1,故答案为:1.根据切线长定理可得:AM =BM ,∠OMA =12∠AMB =30∘,∠OAM =90∘,由同圆的半径相等可知:OA =OB ,所以根据线段垂直平分线的逆定理可知:OM 是AB 的中垂线,由∠AOM =60∘,利用特殊的三角函数值或直角三角形30度的性质可得圆的半径的长.本题考查了切线长定理、线段垂直平分线的性质、三角函数等知识,熟练掌握切线长定理是关键.15.【答案】12000(1+x)2=27000【解析】解:依题意得12000(1+x)2=27000,故答案为:12000(1+x)2=27000.利用今年8月份的盈利=今年6月份的盈利×(1+6月份到8月份盈利的月平均增长率)2,即可得出关于x 的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.【答案】②③【解析】解:∵抛物线开口向上,对称轴为直线x =−1,1−(−1)>−1−(−2),∴点A 与对称轴的距离大于点B 与对称轴的距离,∴y 1>y 2.①错误.∵抛物线经过C(−4,0),对称轴为直线x =−1,∴抛物线经过(2,0),∴方程ax 2+bx +c =0的解为x 1=−4,x 2=2,③正确.∵−b 2a =−1,∴b =2a ,由抛物线经过(2,0)可得4a +2b +c =8a +c =0,∴c =−8a ,②正确.∵抛物线开口向上,4ac−b 24a =−32a 2−4a 24a =−9a ,∴函数最小值为y=−9a,∴at2+bt+c≥−9a,即a(t2+9)+bt+c≥0,④错误.故答案为:②③.根据抛物线开口方向及点A,B与对称轴距离的大小关系可判断①,由抛物线对称轴可得a与b 的关系,由抛物线经过(−4,0)可得抛物线与x轴的另一交点坐标,从而判断②③,由b与a,c与a的关系可得抛物线顶点纵坐标,从而判断④.本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.17.【答案】解:(1)x2−5x=0,x(x−5)=0,x=0或x−5=0,所以x1=0,x2=5;(2)2x2−x−1=0,(2x+1)(x−1)=0,2x+1=0或x−1=0,,x2=1.所以x1=−12【解析】(1)利用因式分解法把方程转化为x=0或x−5=0,然后解一次方程即可;(2)利用因式分解法把方程转化为2x+1=0或x−1=0,然后解一次方程即可.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.18.【答案】直径所对的圆周角为直角过半径的外端且与半径垂直的直线为圆的切线【解析】解;(1)如图,PA、PB为所作;(2)∵OP为直径,∴∠OAP=∠OBP=90∘;故答案为:直径所对的圆周角为直角;(3)∵∠OAP=∠OBP=90∘,∴OA⊥PA,OB⊥PB,∵OA、OB为⊙O的半径,∴直线PA,PB是⊙O的切线.故答案为:过半径的外端且与半径垂直的直线为圆的切线.(1)根据几何语言画出对应的几何图形即可;(2)根据圆周角求解;(3)根据切线的判定定理求解.本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、圆周角定理和切线的判定.19.【答案】解:(1)y=−x2+2x+3=−(x−1)2+4;(2)由y=−(x−1)2+4得顶点坐标为(1,4),开口向下,当x=0时,y=3,当x=3或−1时,y=0,作出函数图象如下图所示,(3)由图象可知,当x=1时,y最大值=4;当x=−1时,y最小值=0,∴当−1≤x≤2时,y的取值范围为0≤y≤4.【解析】(1)由完全平方公式化为顶点式;(2)由顶点式得到顶点坐标,再画出几个点,然后用平滑的曲线连接,从而得到二次函数的图象;(3)结合函数图象求出y的取值范围.本题考查了二次函数的顶点式、二次函数的图象和二次函数的性质,解题的关键是准确画出二次函数的图象.20.【答案】5【解析】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求;(3)线段A1C2的长=√32+42=5.故答案为:5.(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用旋转变换的性质分别作出B,C的对应点B2,C2即可;(3)利用勾股定理求解即可.本题考查作图-旋转变换,平移变换,勾股定理等知识,解题的关键是周围旋转变换,平移变换的性质,属于中考常考题型.21.【答案】(1)证明:∵k≠0,Δ=(k−2)2−4k×(−2)=(k+2)2≥0,∴方程总有两个实数根;(2)解:kx2+(k−2)x−2=0(k≠0),(kx−2)(x+1)=0,,x2=−1,解得x1=2k因为该方程的两根均整数,所以2为整数,k∵方程有两个不相等的整数根,∴Δ=(k−2)2−4k×(−2)=(k+2)2>0,∴k≠−2,∴整数k为±1或2.【解析】(1)先计算判别式的值,然后根据判别式的意义判断方程总有两个实数根;(2)先利用因式分解法求得kx2+(k−2)x−2=0(k≠0)的解为x1=2,x2=−1,然后根据整数k的整除性可确定整数k的值.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.22.【答案】解:连接OC,设⊙O的半径为x.∵直径AB⊥弦CD,CD=4,∴CE=12在Rt△OEC中,由勾股定理可得x2=(x−2)2+42,解得x=5,∴⊙O的半径为5.【解析】本题考查了垂径定理和勾股定理,能根据垂径定理求出CE是解此题的关键.连接OC,根据垂径定理求出CE,根据勾股定理得出方程,求出方程的解即可.23.【答案】解:设矩形菜地AB的长为x m,则BC的长为(26−2x)m,由题意得:x(26−2x)=80,化简得:x2−13x+40=0,解得:x1=5,x2=8,当x=5时,26−2x=16>12(不合题意舍去),当x=8时,26−2x=10,∴BC的长为10m,答:当矩形的边长BC为10m时,菜地面积为80m2.【解析】设矩形菜地AB的长为x m,则BC的长为(26−2x)m,由矩形的面积公式建立方程,解方程即可.本题考查了一元二次方程的应用、矩形的面积公式等知识,解答时寻找题目的等量关系是关键.24.【答案】(1)证明:如图,连接OC、OD,则OC=OD,∴∠OCD=∠ODC,∵AB是⊙的直径,∴∠ACB=90∘,∵CD平分∠ACB,∴∠ACD=∠BCD=1∠ACB=45∘,2∴∠AOD=2∠ACD=90∘,∵PE=PC,∴∠PCE=∠PEC,∵∠PEC=∠OED,∴∠PCE=∠OED,∴∠OCP=∠PCE+∠OCD=∠OED+∠ODC=90∘,∴PC⊥OC,∵OC是⊙O的半径,∴PC与⊙O相切.(2)解:如图,连接BD,在Rt△ABC中,AC=6,AB=10,∴BC=√AB2−AC2=8,∵∠PCA+∠OCA=90∘,∠B+∠OAC=90∘,∠OCA=∠OAC,∴∠PCA=∠B,∵∠P=∠P,∴△PAC∽△PCB,∴AP CP =CP BP =AC BC =68=34,∴CP 2=PA ⋅PB ,CP =43AP ,∴CP 2=AP(AP +10),∴169AP 2=AP 2+10AP ,∴AP =907或AP =0(不符合题意,舍去),∴CP =PE =1207,∴AE =PE −PA =1207−907=307,∵∠BOD =2∠BCD =90∘,OB =OD =5,∴BD =√OB 2+OD 2=√52+52=5√2,∵∠BCD =∠ECA ,∠CDB =∠CAE ,∴△CDB ∽△CAE ,∴CD AC =BD AE, ∴CD =AC⋅BD AE =6×5√2307=7√2,∴CD 的长是7√2.【解析】(1)连接OC 、OD ,先证明∠AOD =2∠ACD =90∘,再证明OCP =∠PCE +∠OCD =∠OED +∠ODC =90∘,即可证明PC 与⊙O 相切;(2)连接BD ,根据勾股定理求出BC =8,先证明△PAC ∽△PCB ,得AP CP =CP BP =AC BC =34,所以PC 2=PA ⋅PB ,即可求得AP =907,CP =PE =1207,AE =307,再由勾股定理求得BD =5√2,然后证明△CDB ∽△CAE ,即可根据相似三角形的对应边成比例求得CD =7√2.此题重点考查圆的切线的判定、圆周角定理、相似三角形的判定与性质、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.25.【答案】抛物线关于点(2,1)成中心对称【解析】解:(1)把A(2,1),B(5,4)代入解析式得:{4+2b +c =125+5b +c =4, 解得{b =−6c =9, ∴y =x 2+bx +c(x ≥2)的解析式为y =x 2−6x +9;(2)如图所示:①性质:抛物线关于点(2,1)成中心对称,故答案为:抛物线关于点(2,1)成中心对称;②由图象可得:实数m的取值范围为0<m<2;(3)如图:由函数图象可得:“W区域“内所有整点的坐标为(0,0),(1,1).(1)用待定系数法求函数解析式即可;(2)①根据函数图象写出性质即可;②由图象可求出m的取值范围;(3)根据图象求整点坐标即可.本题考查了待定系数法求函数解析式,二次函数的性质,关键是对函数性质的掌握和运用.26.【答案】解:(1)∵抛物线C1:y=−x2+bx+c经过点A(2,1),B(0,1),∴{−4+2b+c=1c=1,解得{b =2c =1, ∴抛物线C 1:y =−x 2+2x +1,∴抛物线C 1的对称轴为直线x =−22×(−1)=1;(2)∵抛物线C 2的顶点的横坐标为m ,抛物线顶点在直线y =−2x +1上, ∴抛物线顶点纵坐标为−2m +1,∴抛物线C 2的解析式为y =−(x −m)2−2m +1,将x =0代入y =−(x −m)2−2m +1得y =−m 2−2m +1, ∴抛物线与y 轴交点的纵坐标为−m 2−2m +1,∵−m 2−2m +1=−(m +1)2+2,∴抛物线C 2与y 轴交点的纵坐标的最大值为2.(3)由(2)得抛物线与y 轴交点M 坐标为(0,−m 2−2m +1), ∴点N 坐标为(−2,−m 2−2m +1),当m =0时,抛物线顶点坐标为M(0,1),与点B 重合,符合题意,当m >0时,抛物线延直线y =−2x +1向下移动,不符合题意,当m <0时,抛物线延直线y =−2x +1向上移动,当点N落在抛物线上时,由点M,N的对称性可得抛物线对称轴为直线x=−1,∴m=−1,∴−1≤m≤0符合题意,当m减小,点M与点B重合时,−m2−2m+1=1,解得m=0(舍)或m=−2,∵−m2−2m+1=−(m−1)2+2,∴m<−2时,点M向下移动,∴m≤−2符合题意.综上所述,−1≤m≤0或m≤−2.【解析】(1)通过待定系数法求解.(2)由C2的顶点的横坐标为m,顶点在直线y=−2x+1上,可得抛物线C2的顶点式,将x=0代入解析式求出抛物线与y轴交点纵坐标,再通过配方法求解.(3)由点M坐标可得点N坐标,由抛物线C2的顶点在直线y=−2x+1上可得抛物线的运动轨迹,结合图象求解.本题考查二次函数的综合应用,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系,通过数形结合求解.27.【答案】(1)解:∠ECF=45∘,理由如下:如图1,过点F作FG⊥CB于G,由旋转得:AE=EF,∠AEF=90∘,∴∠AEB+∠FEG=90∘,∵四边形ABCD是正方形,∴∠ABC=∠ABE=90∘,AB=BC,∴∠BAE+∠AEB=90∘,∴∠BAE=∠FEG,∵∠ABE=∠EGF=90∘,∴△ABE≌△EGF(AAS),∴AB=EG,BE=FG,∴EG=BC,∴BE=CG,∴FG=CG,∵∠CGF=90∘,∴∠ECF=45∘;(2)证明:如图2,过点F作FH//CD,交BD于H,交BC于G,∵四边形ABCD是正方形,∴AB//CD,AB=CD,∠DBC=45∘,∵∠ECF=45∘,∴∠ECF=∠DBC,∴BD//CF,∴四边形DHFC是平行四边形,∴FH=CD,∵AB=CD,∴AB=FH,∵AB//CD,CD//FH,∴AB//FH,∴∠ABM=∠FHM,∵∠AMB=∠FMH,∴△ABM≌△FHM(AAS),∴AM=FM,∴点M是线段AF的中点;(3)解:√2AD=2BM+FC,理由如下:∵△ABD是等腰直角三角形,∴BD=√2AD,由(2)知:△ABM≌△FHM,四边形DHFC是平行四边形,∴BM=MH,HD=FC,∵BD=BM+MH+HD,∴√2AD=2BM+CF.【解析】(1)如图1,过点F作FG⊥CB于G,证明△ABE≌△EGF(AAS),可得△CGF是等腰直角三角形,即可解答;(2)如图2,过点F作FH//CD,交BD于H,交BC于G,证明四边形DHFC是平行四边形,得FH=CD,再证明△ABM≌△FHM(AAS),可得结论;(3)根据(2)中的结论可解答.本题是四边形综合题,考查了全等三角形的判定与性质、旋转的性质、正方形的性质等知识,本题综合性强,解此题的关键是根据旋转的启发正确作出辅助线得出全等三角形,属于中考常考题型.28.【答案】解:(1)①如图,当P(−1,0)时,点P关于点A的对称点P′(5,2),把点P′绕点B逆时针旋转90∘得到Q(3,4).图形如图所示.②当点P在⊙O上运动时,点P关于点A的对称点P″在以T(4,2)为圆心,半径为1的圆上运动,此时点P关于点B的旋转对称点Q在圆J(3,3)为圆心,半径为1是圆上运动到,连接AJ.∵AJ=√12+22=√5,∴AQ的最大值=√5+1;(2)如图,作直径PD,连接P′D,AO.∵PA=AP′,OP=OD,∴DP′=2AO=2,∴当点P确定时,点P′的运动轨迹是以D为圆心,2为半径的圆,连接BD,将线段BD绕点B顺时针旋转90∘,得到BG,连接GQ.∵∠P′BQ=∠DBG=90∘,∴∠P′BD=∠GBQ,∵BP′=BQ,BD=BG,∴△P′BD≌△QBG(SAS),∴DP′=BG=2,∴此时点Q的运动轨迹是以G为圆心,2为半径的圆,∴PQ的最大值与最小值的差是2.【解析】(1)①如图,当P(−1,0)时,点P关于点A的对称点P′(5,2),把点P′绕点B逆时针旋转90∘得到Q(3,4).图形如图所示.②判断出的Q的运动轨迹,可得结论;(2)如图,作直径PD,连接P′D,AO.证明DP′=2AO=2,推出当点P确定时,点P′的运动轨迹是以D为圆心,2为半径的圆,连接BD,将线段BD绕点B顺时针旋转90∘,得到BG,连接GQ.证明△P′BD≌△QBG(SAS),推出DP′=BG=2,推出此时点Q的运动轨迹是以G为圆心,2为半径的圆,由此可得结论.本题属于几何变换综合题,中心对称变换,旋转变换,全等三角形的判定和性质,轨迹等知识,解题关键是理解题意,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。
北京市第四中学2024~2025学年上学期九年级期中考试数学试卷

北京市第四中学2024~2025学年上学期九年级期中考试数学试卷一、单选题1.下面四个标志中是中心对称图形的是()A .B .C .D .2.方程220x x -=的根是()A .2x =B .0x =C .2x =-,=0D .=2,=03.若()13,A y -,()22,B y -,()33,C y 为二次函数()21y x =+图象上的三点,则1y ,23,y y 的大小关系是()A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<4.二次函数()()57y x x =-+的图象的对称轴是()A .直线1x =-B .直线1x =C .直线2x =D .直线6x =5.如图,AB 为⊙O 直径,点,C D 在⊙O 上,如果70ABC ∠=︒,那么D ∠的度数为()A .20︒B .30︒C .35︒D .70︒6.2024年北京第一季度GDP 约为1.058万亿元,第三季度GDP 约为1.167万亿元,设2024年北京平均每季度GDP 增长率为x ,则可列关于x 的方程为()A .()21.0581 1.167x -=B .()1.05812 1.167x +=C .()21.0581 1.167x +=D .()21.1671 1.058x -=7.如图是一个钟表表盘,若连接整点2时与整点10时的B 、D 两点并延长,交过整点8时的切线于点P ,若切线长2PC =,表盘的半径长为()A .3BC .D .8.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),已知计划中的篱笆(不包括门)总长为12m ,现有四种方案(如图)中面积最大的方案为()A 方案为一个封闭的矩形B 方案为一个等边三角形,并留一处1m 宽的门C 方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留1m 宽的门D 方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留1m 宽的门A .B .C .D .二、填空题9.在平面直角坐标系xOy 中,将抛物线23y x 向上平移1个单位,得到的抛物线表达式为.10.如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,∠A=50°,则∠DCE 的度数为.11.抛物线y =x 2-5x +6与y 轴交点的坐标是.12.如图,,PA PB 分別切⊙O 于,A B 两点,点C 为AB 上一点,过点C 作⊙O 的切线分别交,PA PB 于,M N 两点,若PMN 的周长为10,则切线长PA 等于.13.已知22310a a -+=,则代数式()()233a a a -++的值为.14.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度是cm .15.二次函数()20y ax bx c a =++≠的部分图象如图所示,图象过点()1,0-,对称轴为直线2x =,抛物线与y 轴交点在()0,1A 和()0,2B 之间(不与A B 、重合).下列结论:①0abc >;②93a c b +>;③40a b +=;④当0y >时,15x -<<;⑤a 的取值范围为2155a -<<-.其中正确结论有(填序号)16.如图,在直角三角形ABC 中,90A ∠=︒,D 是AC 上一点,10BD =,AB CD =,则BC 的最大值为.三、解答题17.解下列方程:(1)23610x x -+=;(2)()233x x x -=-.18.如图,在平面直角坐标系中,已知ABC V 的三个顶点的坐标分别为()1,1A -,()3,1B -,()1,4C -.将ABC V 绕着点B 顺时针旋转90︒后得到11A BC V .(1)请在图中画出11A BC V ;(2)线段BC 旋转过程中所扫过的面积是______(结果保留π).19.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE.(1)求证:AEB ADC ≌ ;(2)连接DE ,若96ADC ∠=︒,求BED ∠的度数.20.已知关于x 的一元二次方程()22840x k x k +--=.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于3,求k 的取值范围.21.已知:如图,O 及O 外一点P .求作:直线PB ,使PB 与O 相切于点B.李华同学经过探索,想出了两种作法.具体如下(已知点B 是直线OP 上方一点):作法一(如图1)作法二(如图2)①接OP ,作线段OP 的垂直平分线,交OP 于点A ;②以点A 为圆心,以AO 的长为半径作A ,A 交O 于点B ;③作直线PB ,则直线PB 是⊙O 的切线.①连接OP ,交O 于点M ,过点M 作OP 的垂线MN ;②以点O 为圆心,以OP 的长为半径作弧,交直线MN 于点Q ;③连接OQ ,交于点B ;④作直线PB ,则直线PB 是的切线.证明:如图1,连接OB ,PO 为A 直径,∴90PBO ∠=︒.(______)∴PB OB ⊥,∵OB 是O 的半径,∴直线PB 是O 的切线.证明:……请仔细阅读,并完成相应的任务:(1)“作法一”中的“依据”是指______;(2)请写出“作法二”的证明过程.22.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过()0,2A -,()2,0B 两点.(1)求这个二次函数的解析式;(2)填写表格并在给出的平面直角坐标系中画出这个函数的图象;x⋅⋅⋅1-01212⋅⋅⋅y⋅⋅⋅2-0⋅⋅⋅(3)若一次函数y mx n =+的图象也经过,A B 两点,结合图象,直接写出不等式2x bx c mx n ++<+的解集.23.如图,在Rt ABC △中,90C ∠=︒,BE 平分ABC ∠交AC 于点E ,点D 在AB 上,DE EB ⊥.(1)求证:AC 是BDE V 的外接圆的切线;(2)若2AD =,AE =,求EC 的长.24.如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线2(20)y a x k =-+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米、垂直距离为6米.已知发射石块在空中飞行的最大高度为10米(1)求抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙;25.如图1,线段AB 及一定点,C P 是线段AB 上一动点,作直线CP ,过点A 作AQ CP ⊥于点Q ,已知7cm AB =,设,A P 两点间的距离为cm x ,,A Q 两点间的距离为1cm y ,,P Q 两点间的距离为2cm y .小明根据学习函数的经验,分别对函数12,y y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程:第一步:按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y 、2y 与x 的几组对应值./cm x 00.30.50.81 1.52345671/cmy 00.280.490.7911.481.872.372.612.722.762.782/cmy 00.080.090.0600.290.73 1.82 3.03 4.20 5.33 6.41第二步:在同一平面直角坐标系xOy 中,描出表中各组数值所对应的点()()12,,,x y x y ,并画出函数12,y y 的图象.解决问题:(1)在给出的平面直角坐标系中(图2)补全函数2y 的图象;(2)结合函数图象,解决问题:当APQ △中有一个角为30︒时,AP 的长度约为______cm .26.在平面直角坐标系xOy 中,已知抛物线()2240y ax a x a =-≠.(1)当1a =时,求抛物线的顶点坐标;(2)已知()11,M x y 和()22,N x y 是抛物线上的两点.若对于15x a =,256x ≤≤,都有12y y <,求a 的取值范围.27.已知,如图,在ABC V 中,90ACB ∠=︒,45ABC ∠=︒,点D 在BC 的延长线上,点E 在CB 的延长线上,DC BE =,连接AE ,过C 作CF AE ⊥于F ,CF 交AB 于G ,连接DG .(1)求证:AEB ACF ∠=∠;(2)用等式表示CG ,DG 和AE 的数量关系,并证明.28.对于平面直角坐标系xOy 内的直线l 和点P ,若点A 关于l 作轴对称变换得到点1A ,点1A 关于点P 作中心对称变换得到点2A ,我们则称点2A 为点A 关于直线l 和点P 的“正对称点”.已知()1,0B -,()2,0C ,(1)写出B 关于y 轴和点C 的“正对称点”的坐标______;(2)已知点()112,02C m m ⎛⎫≤≤ ⎪⎝⎭,存在过原点O 的直线1l ,使得点B 关于直线1l 和点1C 的“正对称点”在直线2:l y x b =+上,求b 的取值范围;(3)已知点H 是直线1x =上的一点,且点H 的纵坐标小于0,()3,0C ,E 点在以C 为圆心1为半径的圆上,对于直线6x =上的点()6,F h ,以F 为圆心,1为直径作圆F ,若圆F 上存在点B 关于直线OH 和点E 的“正对称点”,直接写出h 的取值范围.。
2022-2023学年北京西城区四中初三(上)期中数学试卷及答案

2022北京四中初三(上)期中数考生须知1.本试卷共8页,共28道小题,满分100分.考试时间120分钟. 2.在试卷和答题卡上准确填写班级、姓名和学号. 3.答案一律填写在答题纸上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、选择题(本题共16分,每小题2分)第1-8学题均有四个选项,符合题意的选项只有一个.1. 下列四个图形中,是中心对称图形的是( ).A. B. C. D.2. 抛物线=+−y x 212)(的顶点坐标是( ). A.1,2B. −2,1)(C. −−2,1)(D. −−1,2)(3. 如图,⊙O 是△ABC 的外接圆,∠=︒BOC 100,则∠A 的大小为( )A. 30°B. 50°C. 80°D. 100°4. 下列方程中,有两个相等的实数根的方程是( ). A. +=x x 302 B. +−=x x 2102 C. ++=x x 2102D. −+=x x 3025. 若将抛物线=y x 52先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( ) A. =−+y x 5212)(B. =++y x 5212)(C. =−−y x 5212)(D. =+−y x 5212)(6. 如图,△OAB 绕点O 逆时针旋转︒75,得到OCD ,若∠=︒AOB 40,则∠AOD 等于( ).A. 115°B. 75°C. 40°D. 35°7. 如图,O 的半径是1,点P 是直线=−+y x 2上一动点,过点P 作O 的切线,切点为A ,连接OA ,OP ,则AP 的最小值为( ).A.−1B. 1C.D.8. 单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.从起跳到着陆的过程中,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系=−+<y a x h k a 02)()(.如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( ).A. 4mB. 7mC. 8mD. 10m二、填空题(本题共16分,每小题2分)9. 已知某个二次函数的最小值为−1,请你写出一个符合,上述条件的二次函数的表达式为______. 10. 半径为2,圆心角为120°扇形弧长为____________________. 11. −A y 1,1)(,By 2,2)(在二次函数=−++y x x 212的图象上,则y 1与y 2的大小关系为______.(用“>”,“<”,“=”连接.)12. 若抛物线=++y x x m 42与轴没有公共点,则m 的取值范围是______.13. 如图,在平面直角坐标系中,点A ,B ,C 都在格点上,过A ,B ,C 三点作一圆弧,则圆心的坐标是_____.14. 如图,MA ,MB 是的两条切线,A ,B 为切点,若°∠=AMB 60,=AB 的半径等于______.15. 为响应国家号召打赢脱贫攻坚战,小明利用信息技术开了一家网络商店,将家乡的土特产销往全国.今年6月份盈利12000元,8月份盈利27000元,求6月份到8月份盈利的月平均增长率.设6月份到8月份盈利的月平均增长率为,根据题意,可列方程为______.16. 已知二次函数=++>y ax bx c a 02)(的对称轴为直线−x =1,它的图象经过点A y 1,1)(,−B y 2,2)(,−C 4,0)(.对于下列四个结论:①<y y 12; ②=−c a 8;③方程++=ax bx c 02的解为=−x 41,=x 22;④对于任意实数t ,总有+++≤a t bt c 902)(. 其中正确的结论是______.(填写序号).三、解答题(本题共68分)解答应写出文字说明、演算步骤或证明过程.17. 解下列方程: (1)−=x x 502; (2)−−=x x 2102.18. 下面是“过圆外一点作圆的切线”的尺规作图过程. 已知:和外一点①连接; ②分别以点和点为圆心,大于的长为半径作圆,交于(1)请根据上述作法完成尺规作图; (2)连接,OB ,可证∠=∠=︒OAP OBP 90,理由是________________________;(3)直线PA ,PB 是的切线,依据是________________________.19. 已知二次函数C :=−++y x x 232.(1)将=−++y x x 232化成=−+y a x h k 2)(的形式; (2)在图中画出二次函数C 的图象;(3)当−≤≤x 12时,利用图象直接写出的取值范围.20. 如图,在平面直角坐标系xOy 中,−A 1,1)(,−B 4,2)(,−C 3,3)(.(1)将ABC 先向右平移5个单位长度,再向下平移2个单位长度,得到△A B C 111,请在图中画出△A B C 111;(2)将ABC 绕点A 顺时针旋转90°得到AB C 22,请在图中画出AB C 22; (3)连接A C 12,线段A C 12的长等于______. 21. 已知关于的方程+−−=≠kx k x k 22002)()(.(1)求证:此方程总有实数根;(2)若k 为整数,且此方程有两个不相等的整数根,求k22. 如图,在⊙O 中,AB 是直径,CD 是弦,且AB ⊥CD 于点E ,CD =8,BE =2.求⊙O 的值.的半径.23. 如图,有一农户要建一个矩形菜地,菜地的一边利用长为12m 的墙(≤AD 12m ),另外三边用26m 长的篱笆围成.求当矩形的边长BC 为多少m 时,菜地面积为80m 2?24. 如图,AB 是的直径,点C 为上一点,CD 平分∠ACB ,交AB 于点E ,交于点D ,延长BA 到点,使得=PE PC .(1)求证:PC 与相切;(2)若半径5,=AC 6,求CD 的长.25. 已知函数=++≥y x bx c x 22)(的图象过点A 2,1)(,B 5,4)(.(1)直接写出=++≥y x bx c x 22)(的解析式;(2)如图,请补全分段函数⎩++≥⎨=−++<⎧x bx c x y x x x (2)21(2)22图象(不要求列表).并回答以下问题:①写出此分段函数的一条性质:________________________;②若此分段函数的图象与直线=y m 有三个公共点,请结合函数图象直接写出实数m 的取值范围; (3)横、纵坐标都是整数的点叫做整点,记(2)中函数的图象与直线=−y x 211围成的封闭区域(不含边界)为“W 区域”,请直接写出区域内所有整点的坐标.26. 已知,抛物线C 1:=−++y x bx c 2经过点A 2,1)(,B 0,1)(. (1)求抛物线C 1的对称轴;(2)平移抛物线C 1:=−++y x bx c 2,使其顶点在直线=−+y x 21上,设平移后的抛物线C 2的顶点的横坐标为m .求抛物线C 2与轴交点的纵坐标的最大值.(3)在(2)的条件下,抛物线C 2与轴交于点M ,将其向左平移2个单位得到点N ,若抛物线C 2与线段BN 只有1个公共点,直接写出m 的取值范围.27. 如图,在正方形ABCD 中,点E 在线段CB 的延长线上,连接AE ,并将线段AE 绕点E 顺时针旋转90°,得到线段FE ,连接AF ,BD ,CF ,线段AF 与线段BD 相交于点M .(1)依据题意完成作图,请写出∠ECF 的度数,并给出证明; (2)求证:点M 是线段AF 的中点;(3)直接写出线段CF ,BM 和AD 的数量关系. 28. 在平面直角坐标系xOy 中,已知点A 和B ,对于点定义如下:以点A 为对称中心作点的对称点,再将对称点绕点B 逆时针旋转90°,得到点Q ,称点Q 为点的反转点.已知的半径为1.(1)如图,点A 2,1)(,B 3,2)(,点在上,点Q 为点的反转点.①当点的坐标为−1,0)(时,在图中画出点Q ; ②当点在上运动时,求线段AQ 长的最大值;(2)已知点A 是上一点,点B 和是外两个点,点Q 为点的反转点.若点在第一象限内,点B 在第四象限内,当点A 在上运动时,直接写出线段PQ 长的最大值和最小值的差.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】B 【解析】【分析】据轴中心对称图形的概念即可一一判定【详解】解:图形A 是轴对称图形,不是中心对称图形,故该选项不符合题意; 图形B 是中心对称图形,故该选项符合题意; 图形C 不是中心对称图形,故该选项不符合题意;图形D 是轴对称图形,不是中心对称图形,故该选项不符合题意; 故选:B【点睛】本题考查了中心对称图形识别:把一个图形绕某一点旋转︒180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心. 2. 【答案】C 【解析】【分析】根据二次函数的顶点式即可求得 【详解】解:抛物线的顶点坐标是,故选:C .【点睛】本题考查了根据二次函数的顶点式求顶点坐标,熟练掌握和运用根据二次函数的顶点式求顶点坐标是解决本题的关健. 3. 【答案】B 【解析】【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得∠BOC =2∠A ,进而可得答案.【详解】解:∵⊙O 是△ABC 的外接圆,∠BOC =100°, ∴∠A =21∠BOC =50°. 故选B .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 4. 【答案】C 【解析】【分析】利用根的判别式逐一分析各选项即可得到答案. 【详解】解:∵,∴>=−=−⨯⨯=b ac 4941050,2故A 不符合题意;的∵,∴()24441180,b ac =−=−⨯⨯−=> 故B 不符合题意; ∵,∴22424110,b ac =−=−⨯⨯= 故C 符合题意; ∵,∴()21413110,=−−⨯⨯=−< 故D 不符合题意; 故选C .【点睛】本题考查的是一元二次方程根的判别式,掌握“当0,> 一元二次方程有两个不相等的实根,当0,= 一元二次方程有两个相等的实根,当0,< 一元二次方程没有实数根”是解本题的关键.5. 【答案】A 【解析】【分析】根据函数平移的法则:上加下减,左加右减进行求解. 【详解】解:∵抛物线先向右平移2个单位,再向上平移1个单位∴平移后解析式为:()2521y x =−+ 故选:A【点睛】本题考查了二次函数的平移,熟练掌握函数平移的法则是解答此题的关键. 6. 【答案】D 【解析】【分析】首先根据旋转的性质可知75BOD ∠=︒,而,然后根据图形即可求出【详解】解:∵绕点逆时针旋转,得到,75BOD,40AOB ∠=︒,754035AOD BOD AOB ∴∠=∠−∠=︒−︒=︒故选:D .【点睛】此题主要考查了旋转的性质,解题的关键是理解旋转前后对应边、对应角相等. 7. 【答案】B 【解析】【分析】根据题意设(,2)P a a −+,则OP =的半径是1得1OA =,根据是的切线得90OAP ∠=︒,即可得OAP △是直角三角形,在Rt OAP △中,根据勾股定理得222AP OP OA =−,即可得222(1)1AP a =−+,根据二次函数的性质得当10a −=时,有最小值,即可得. 【详解】解:∵点是直线上∴设(,2)P a a −+,∴OP =,∵的半径是1,∴1OA =, ∵是的切线,∴90OAP ∠=︒, ∴OAP △是直角三角形,在Rt OAP △中,根据勾股定理得,222AP OP OA =− 222(2)1AP a a =+−−222441AP a a a =+−+− 22243AP a a =−+ 222(1)1AP a =−+当10a −=时,有最小值,即2011AP =+=,1AP =,故选:B .【点睛】本题考查了切线的性质,勾股定理,二次函数的性质,解题的关键是掌握并灵活运用这些知识点. 8. 【答案】C 【解析】【分析】将点()()()0,20,5,22.75,14,21.40分别代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【详解】解:根据题意知,抛物线2y ax bx c =++经过点()()()0,20,5,22.75,14,21.40,则2025522.751961421.40c a b c a b c =⎧⎪++=⎨⎪++=⎩, 解得: 1204520a b c ⎧=−⎪⎪⎪=⎨⎪=⎪⎪⎩∴抛物线为21420,205y x x =−++ 所以()458m 1220x =−=⎛⎫⨯− ⎪⎝⎭,该运动员起跳后飞行到最高点.即该运动员起跳后飞行到最高点时,水平距离为8m . 故选:C .【点睛】此题考查了二次函数的应用,根据题意建立二次函数的模型再利用二次函数的性质解决问题是解本题的关键.二、填空题(本题共16分,每小题2分)9. 【答案】21y x =− 【解析】【分析】由二次函数的最小值为1,− 可令1,0,1,a b c ===− 从而可得二次函数的解析式. 【详解】解:∵某个二次函数的最小值为,∴这个二次函数可以为:21.y x =− 故答案为:21.y x =− (答案不唯一)【点睛】本题考查的是二次函数的定义,二次函数的性质,熟练的利用二次函数的最值构建二次函数是解本题的关键. 10. 【答案】43π 【解析】【分析】把已知数据代入弧长公式计算,得到答案. 【详解】解:扇形的弧长=120241803ππ⨯=故选:B .【点睛】本题考查的是弧长的计算,掌握弧长公式:180n rl π=是解题的关键. 11. 【答案】12y y <【解析】【分析】根据二次函数的性质即可解答.【详解】解:二次函数()222112y x x x =−++=−−+,∴对称轴为直线1x =,10a =−<,∴该抛物线的开口向下,在对称轴的右侧y 随x 的增大而减小,抛物线上点与点()33,y 关于对称轴对称,13y y ∴=,32>, 32y y ∴<, 12y y ∴<,故答案为:12y y <.【点睛】本题考查了二次函数的性质,熟练掌握和运用二次函数的性质是解决本题的关键. 12. 【答案】4m >##4m < 【解析】 【分析】由抛物线与轴没有公共点,可得24410,m =−⨯⨯<再解不等式可得答案.【详解】解:∵抛物线与轴没有公共点,∴24410,m =−⨯⨯<解得:4,m > 故答案为: 4.m >【点睛】本题考查的是抛物线与轴的交点问题,掌握“当24b ac =−△<0时,抛物线与轴没有交点”是解本题的关键. 13. 【答案】(2,1) 【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB 和BC 的垂直平分线,交点即为圆心.【详解】根据垂径定理的推论:弦的垂直平分线必过圆心, 可以作弦AB 和BC 的垂直平分线,交点即为圆心. 如图所示,则圆心是(2,1). 故答案为:(2,1).【点睛】本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”. 14. 【答案】1 【解析】【分析】根据题意得90OAM ∠=︒,可得30OMA ∠=︒,根据OA OB =得OM 是的垂直平分线,得90ACM ACO ∠=∠=︒,即可得2AC =,根据角之间的关系得30OAC ∠=︒,设OC x =,则2AO x =,在t R AOC 中,根据勾股定理得,222AC OC AO +=,进行计算得12x =,即可得. 【详解】解:,是的两条切线,∴AM BM =,90OAM ∠=︒, ∵,∴1302OMA AMB ∠=∠=︒, ∵OA OB =, ∴OM 是的垂直平分线,∴90ACM ACO ∠=∠=︒,∵∴122AC AB ==, ∴180180903060CAM ACM AMC ∠=︒−∠−∠=︒−︒−︒=︒, ∴906030OAC OAM CAM ∠=∠−∠=︒−︒=︒, 设OC x =,则2AO x =, 在t R AOC 中,根据勾股定理得,222AC OC AO +=222(2)2x x += 22344x x += 112x =,212x =−(舍),则1212AO =⨯=, 故答案为:1.【点睛】本题考查了切线的性质,垂经定理,勾股定理,直角三角形的性质,解题的关键是掌握并灵活运用这些知识点. 15. 【答案】212000127000x【解析】【分析】根据题意即可列出一元二次方程,即可解答. 【详解】解:设6月份到8月份盈利的月平均增长率为,根据题意得:212000127000x , 故答案为:212000127000x.【点睛】本题考查了一元二次方程的实际应用,理解题意,列出方程是解决本题的关键. 16. 【答案】②③##③② 【解析】【分析】根据二次函数的开口向上,距离对称轴越远的点的函数值越大可判断①;由对称轴为1,2bx a=−=− 可得2,b a = 它的图象经过点,1640,a b c −+= 从而可判断②;由二次函数的对称轴为直线,它的图象经过点,可得抛物线与轴的另一个交点的坐标为:()2,0, 从而可判断③;当时,函数取得最小值289,y a b c a a a a =−+=−−=− 从而可判断④.【详解】解:∵二次函数的对称轴为直线,∴函数图象的开口向上,距离对称轴越远的点的函数值越大,对称轴为直线1,2bx a=−=− ∵它的图象经过点,,而()()112,12121,−−=−−−=−+= ∴21,y y < 故①不符合题意; 由对称轴为1,2bx a=−=− 可得2,b a = ∵它的图象经过点,∴1640,a b c −+=∴1641688,c a b a a a =−+=−+=− 故②符合题意; ∵二次函数的对称轴为直线,它的图象经过点,∴抛物线与轴的另一个交点的坐标为:()2,0, ∴方程的解为,;故③符合题意;当时,函数取得最小值289,y a b c a a a a =−+=−−=−∴对于任意实数有29,at bt c a ++≥− 即()290,a t bt c +++≥ 故④不符合题意;故答案为:②③【点睛】本题考查的是二次函数的性质,二次函数与一元二次方程的关系,熟练的利用二次函数的性质“判断代数式的符号,判断方程的根,代数式的最值”是解本题的关键.三、解答题(本题共68分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】(1)120, 5.x x == (2)121, 1.2x x =−= 【解析】【分析】(1)先把方程的左边分解因式,再化为两个一次方程,再解一次方程即可; (2)先把方程左边分解因式,再化为两个一次方程,再解一次方程即可; 【小问1详解】 解:∵,∴()50,x x −= ∴0x =或50,x −= 解得:120, 5.x x == 【小问2详解】 ∵, ∴()()2110,x x +−= ∴210x +=或10,x −= 解得:121, 1.2x x =−= 【点睛】本题考查的是因式分解法解一元二次方程,掌握“利用因式分解把原方程化为两个一次方程”是解本题的关键.18. 【答案】(1)画图见解析 (2)直径所对的圆周角是直角(3)过半径的外端且垂直于这条半径的直线是圆的切线. 【解析】分析】(1)根据题干提示语句画图即可;(2)由,OAP OBP ∠∠是直径所对的圆周角,从而可得答案; (3)由切线的判定定理直接可得答案.【小问1详解】解:如图,根据语句作图如下:【【小问2详解】 连接,,可证,理由是直径所对的圆周角是直角;故答案为:直径所对的圆周角是直角 【小问3详解】 直线,是的切线,依据是过半径的外端且垂直于这条半径的直线是圆的切线.【点睛】本题考查的是复杂的尺规作图,作线段的垂直平分线,作圆的切线,圆周角定理的应用,切线的判定定理的应用,熟练尺规作图的方法是解本题的关键. 19. 【答案】(1)()21 4.y x =−−+ (2)画图见解析 (3)0 4.y ≤≤ 【解析】【分析】(1)利用配方法把抛物线的一般式化为顶点式即可; (2)先列表,再描点,再用平滑曲线连接即可;(3)先确定函数的最大值,再结合函数的图象求解当1,2x x =−=时的函数值,从而可得答案. 【小问1详解】 解:2214x x()214,x =−−+【小问2详解】 列表:【小问3详解】根据图象可得:当1x =时,函数取得最大值4,当时,1230,y =−−+=当2x =时,4433,y =−++= 当时,0 4.y ≤≤【点睛】本题考查的是把抛物线的一般式化为顶点式,画二次函数的图象,利用二次函数的图象确定函数的最值,熟练的画二次函数的图象是解本题的关键. 20. 【答案】(1)见解析 (2)见解析 (3)5 【解析】【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点1A ,1B ,即可;(2)利用旋转变换的性质分别作出B ,C 的对应点2B ,即可;(3)利用勾股定理求解即可. 【小问1详解】解:作图如下:111A B C △即为所求;【小问2详解】AB C即为所求;解:作图如下:22解:如图:连接,125AC ==, 故答案为:5.【点睛】本题考查作图−平移变换与旋转变换,勾股定理等知识,解题关键是掌握平移变换、旋转变换的性质.21. 【答案】(1)证明见解析 (2)1k =±或 2.k = 【解析】【分析】(1)分两种情况讨论:当0k =时,方程为一元一次方程,当当0k ≠时,方程为一元二次方程,再证明0,≥ 从而可得答案;(2)先利用因式分解的方法解一元二次方程可得122,1x x k ==−,结合2k为整数,为整数,21k ≠−,从而可得答案. 【小问1详解】 解:对于,当0k =时,方程为220,x −−= 解得:1,x =− 方程有实数根, 当0k ≠时,()()2242k k =−−⨯− 2448k k k =−++ 244k k =++()220k =+≥,∴0≥,∴此时方程有两个实数根, 综上:总有实数根.【小问2详解】 ∵有两个不相等的整数根,∴()()210kx x −+=,且0k ≠, ∴20kx −=或10x +=, 解得:122,1x x k==−, ∵2k为整数,为整数,21k ≠−,∴1k =±或 2.k =【点睛】本题考查的是一元二次方程根的判别式的应用,利用因式分解的方法解一元二次方程,清晰的分类讨论是解本题的关键. 22. 【答案】⊙O 的半径为5. 【解析】分析】连接OC ,根据垂径定理求出CE ,根据勾股定理得出方程,求出方程的解即可.【详解】解:连接OC ,设⊙O 的半径为x . ∵直径AB ⊥弦CD , ∴142CE CD ==, 在Rt △OEC 中,由勾股定理可得x 2=(x ﹣2)2+42, 解得 x =5, ∴⊙O 的半径为5.【点睛】本题考查了垂径定理和勾股定理,能根据垂径定理求出CE 是解此题的关键. 23. 【答案】10 【解析】【分析】设矩形的边长为m x ,则m AD x =,26113m 22x AB x −⎛⎫==− ⎪⎝⎭,根据矩形的面积公式,列【出方程,即可求解.【详解】解:设矩形的边长为m x ,则m AD x =,26113m 22x AB x −⎛⎫==− ⎪⎝⎭,根据题意得: 113802x x ⎛⎫−= ⎪⎝⎭, 解得:1210,16x x ==,∵,∴10x =,答:当矩形的边长为10m 时,菜地面积为. 【点睛】本题主要考查了一元二次方程的应用,矩形的性质,明确题意,准确列出方程是解题的关键.24. 【答案】(1)见解析 (2)【解析】【分析】(1) 连接OC ,OD ,可证得=OCD ODC ∠∠,根据圆周角定理可得90ACB ∠=︒,再根据平分,可得45ACD BCD ∠=∠=︒,290AOD ACD ∠=∠=︒,90OED ODE ∠+∠=︒,再根据等腰三角形的性质即可证得PCE OED ∠=∠,90PCE OCD ∠+∠=︒,据此即可证得;(2)首先根据勾股定理可求得的长,()22255PC PA +=+,再由PCA PBC ∽,可得304PA AE =−,即可求得,最后由CAE CDB ∽,即可求得.【小问1详解】证明:如图:连接OC ,OD ,OC OD =,=OCD ODC ∴∠∠ AB 是的直径,90ACB ∴∠=︒, CD 平分,45ACD BCD ∴∠=∠=︒,290AOD ACD ∴∠=∠=︒,90OED ODE ∴∠+∠=︒,PE PC =,PCE PEC ∴∠=∠,PEC OED ∠=∠,PCE OED ∴∠=∠,90PCE OCD ∴∠+∠=︒,PC ∴与相切;【小问2详解】解:90AOD BOD ,BD ∴===, AB 是的直径,90ACB ∴∠=︒,8BC ∴==,90PCO ∠=︒,PC PE =,222PC OC PO ∴+=,()()22255PA AE PA ∴++=+,2210PA AE AE PA ⋅+=, CPA BPC ∠=∠,PCA PBC ∠=∠,PAC PCB ∴∽,PC AC PB CB∴=,6=108PA AE PA ++, 得304PA AE =−,()()2230410304AE AE AE AE ∴−⋅+=−,得271003000AE AE −+=, 解得307AE =或10AE =(舍去), CAE CDB ∠=∠,ACE DCB ∠=∠,CAE CDB ∴∽,CA AE CD DB ∴=,306CD =CD ∴=【点睛】本题考查了圆周角定理,角平分线的定义,等腰三角形的性质,切线的判定定理及性质,勾股定理,相似三角形的判定与性质,作出辅助线是解决本题的关键.25. 【答案】(1)抛物线的解析式为()2692y x x x =−+≥; (2)①当3x ≥时,函数值y 随着x 的增大而增大;②当02m <<时,此分段函数的图象与直线有三个公共点;(3)区域内所有整点坐标为(00),,(1)0,,(11),. 【解析】【分析】(1)利用待定系数法求解即可;(2)①结合图象即可求解;②分别两个抛物线的顶点坐标,观察图象即可求解;(3)画出图象,观察图象即可求解.【小问1详解】解:∵函数的图象过点,.∴4212554b c b c ++=⎧⎨++=⎩, 解得69b c =−⎧⎨=⎩, ∴抛物线的解析式为()2692y x x x =−+≥; 【小问2详解】解:补全分段函数的图象如图所示,,①此分段函数的一条性质:当3x ≥时,函数值y 随着x 的增大而增大;②函数2221(1)2y x x x =−++=−−+,顶点坐标为(12),, 函数2269(3)y x x x =−+=−,顶点坐标为(30),, ∴当02m <<时,此分段函数的图象与直线有三个公共点; 【小问3详解】解:如图,观察图象,区域内所有整点的坐标为(00),,(1)0,,(11),. 【点睛】本题考查二次函数的图象及性质;能够准确画出函数的图象,通过观察图象获取性质是解题的关键.26. 【答案】(1)直线 1.x =(2)抛物线与轴交点的纵坐标的最大值为2.(3)当抛物线与线段只有一个交点时,的范围为:12m =−或5 1.m −≤−< 【解析】【分析】(1)把点,代入抛物线的解析式,再利用待定系数法求解二次函数的解析式,再求解对称轴方程即可;(2)设平移后的抛物线的顶点为:(),21,m m −+ 平移后的抛物线的解析式为:()221,y x m m =−−−+ 再令0,x = 建立二次函数的关系式,从而可得答案;(3) 由平移先秋季()2,2,N − 由平移后的抛物线的解析式为:()221,y x m m =−−−+分两种情况讨论:当抛物线的顶点在上时,此时抛物线与线段只有一个交点,当抛物线()221y x m m =−−−+过点()2,2N −时,可得:121,5,m m =−=− 结合(2)可得答案.【小问1详解】解:∵抛物线:经过点,,∴1,421c b c =⎧⎨−++=⎩ 解得:2,1b c =⎧⎨=⎩ ∴抛物线为:2+21,y x x =−+∴抛物线的对称轴为直线()2 1.21x =−=⨯− 【小问2详解】∵()22+2112,y x x x =−+=−−+抛物线的顶点坐标为:()1,2, ∵平移抛物线:,使其顶点在直线上,∴设平移后的抛物线的顶点为:(),21,m m −+∴平移后的抛物线的解析式为:()221,y x m m =−−−+当0x =时,()222112,y m m m =−−+=−++∴抛物线与轴交点的纵坐标的最大值为2.【小问3详解】∵()0,2,M∴()2,2,N −∵平移后的抛物线的解析式为:()221,y x m m =−−−+ ∴当抛物线的顶点在上时,此时抛物线与线段只有一个交点, ∴212,m −+= 解得:1,2m =− 由②得:当1m =−时,抛物线为:()213,y x =−++当2y =时,此时()2132,x −++=解得:120,2,x x此时抛物线刚好经过,M N 两点,当抛物线()221y x m m =−−−+过点()2,2N −时, ∴()22212,m m −−−−+=整理得:2650,m m ++=解得:121,5,m m =−=−∴当抛物线与线段只有一个交点时,5 1.m −≤−<综上:当抛物线与线段只有一个交点时,的范围为:12m =−或5 1.m −≤−< 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,构建二次函数利用二次函数的性质解决实际问题,抛物线与线段的交点问题,灵活的运用二次函数的性质是解本题的关键.27. 【答案】(1)45.ECF ∠=︒(2)证明见解析 (3).2AD CF =+【解析】【分析】(1)先按照题意补全图形,过F 作FK BC ⊥于,K 再利用正方形的性质与旋转的性质证明,AEB EFK ≌ 可得,,AB EK BE FK == 证明,,EK BC EB KC == 可得,FK KC = 结合,FK KC ⊥从而可得答案;(2)如图,延长FK 交于,Q 证明,,ABQ MQF QF AB ∠=∠= 证明,ABM FQM ≌ 可得,AM FM = 从而可得答案;(3)由(1)(2)得:CFK 为等腰直角三角形,BKQ 为等腰直角三角形,,EK AB = 可得,,22CK CF BK BQ == 结合,BM MQ = 可得2,,BM BK == 结合正方形的性质可得.2AD BK CK CF =+=+ 【小问1详解】 解:如图,补全图形如下:过F 作FK BC ⊥于,K由旋转可得:,90,AE FE AEF =∠=︒∴90,AEB FEK ∠+∠=︒∵正方形,ABCD∴,90,AB BC ABC ABE FKE =∠=∠=︒=∠∴90,FEK EFK ∠+∠=︒∴,AEB EFK ∠=∠∴,AEB EFK ≌∴,,AB EK BE FK ==∴,,EK BC EB KC ==∴,FK KC = 而,FK KC ⊥∴45.ECF ∠=︒【小问2详解】如图,延长FK 交于,Q∵正方形,ABCD 则45,DBC ∠=︒ 而90,BKQ FKC ∠=∠=︒∴45,,BQK QBK BK QK ∠=∠=︒=∴,,ABQ MQF QF QK KF QK BE BK BE KE AB ∠=∠=+=+=+==∵,AMB FMQ ∠=∠∴,ABM FQM ≌∴,AM FM =∴是的中点.【小问3详解】由(1)(2)得:CFK 为等腰直角三角形,BKQ 为等腰直角三角形,,EK AB =∴,,22CK CF BK BQ == 又∵,ABM FQM ≌∴,BM MQ =∴2,,BM BK ==∵正方形,ABCD∴,AD BC AB ==∴.2AD BK CK =+=+ 【点睛】本题考查的是正方形的性质,旋转的性质,全等三角形的判定与性质,勾股定理的应用,等腰直角三角形的判定与性质,熟练地利用旋转的性质解题是关键.28. 【答案】(11(2)4【解析】【分析】(1)①根据新定义画出的点,即可, ②根据定义,将作点关于的对称点为()4,2,将点()4,2,绕点,逆时针旋转90︒得到()3,3,以()3,3K 为圆心,1为半径作圆,结合图形可知的最大值为AQ ',根据点到圆的距离即可求解.(2)根据位似变换的性质,旋转的性质,找到点的轨迹,根据点到圆的距离即可求解.【小问1详解】解:①如图,点即为所求,②如图,点,, 作点关于的对称点为()4,2,将点()4,2,绕点,逆时针旋转90︒得到()3,3, 以()3,3K 为圆心,1为半径作圆,则当点在上运动时,点的轨迹为以()3,3K 为圆心,1为半径的圆, ∴线段长的最大值为AQ ';∴AK ==∴最大值为1AQ AK KQ ''=+=;【小问2详解】如图,依题意,作出点关于点的对称点,P ', ∵点在上运动,PA AP '= 所以,O O '是以为位似中心,位似比为12:的位似图形,∴O '的半径为2,根据题意,点在第四象限,作点的反转点,即将O '绕点逆时针旋转90︒, 根据旋转的性质可得O ''的半径不变,为2, ∴线段长的最大值为2PO ''+,最小值为2PO ''−,∴最大值和最小值的差为4.【点睛】本题考查了位似变换,旋转的性质,根据题意画出图形是解题的关键.。
北京市第四中学2021~2022学年九年级上学期期中数学试题(含答案与解析)

(1)请你求出一次函数,二次函数的表达式;
(2)结合图象,请直接写出当x取何值时,y1>y2.
19.下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.
已知:如图,⊙O及⊙O上一点P.
求作:过点P的⊙O的切线.
作法:如图,作射线OP;
A.0个B.1个C.2个D.3个
二、填空题(本题共16分,每小题2分)
9.已知 是关于 的一元二次方程 的一个根,则 ___________
10.在半径为1cm的圆中,圆心角为120°的扇形的弧长是_____cm.
11.二次函数 的最大值为_______.
12.已知二次函数 的图象与 轴只有一个交点.请写出 一组满足条件的 的值: __________, _________________
收集数据
七年级66 70 71 78 71 78 75 78 58
63 90 80 85 80 89 85 86 80 87
八年级61 65 74 70 71 74 74 76 63
91 85 80 84 87 83 82 80 86
整理、描述数据
成绩 /分数
七年级成绩统计情况
八年级成绩统计情况
频数
4.将二次函数 的图象向左平移1个单位,再向下平移5个单位,得到的函数图象的表达式是()
A. B. C. D.
【答案】B
【解析】
【分析】直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】解:将二次函数 的图象向左平移1个单位,再向下平移5个单位,得到的函数图象的表达式是: .
故选:B.
【点睛】本题考查了二次函数的图象与性质,熟知函数图象平移变换的法则是解答此题的关键.
北京四中九年(下)期中考试卷及答案

北京四中初三期中测试题 (答题时间:120分钟 总分:120分) 一. 选择题:(每小题3分,共30分) 1.若y =(2-m )22m x 是二次函数,则m 等于( ) A .±2 B .2 C .-2 D .不能确定 2. 二次函数y=2(x -1)2-5的图象的开口方向,对称轴和顶点坐标为( ) A. 开口向上,对称轴为直线x=-1,顶点(-1,-5) B. 开口向上,对称轴为直线x=1,顶点(1,5) C. 开口向下,对称轴为直线x=1,顶点(1,-5) D. 开口向上,对称轴为直线x=1,顶点(1,-5) 3. 下列抛物线中,开口向上且开口最小的抛物线为( ) A. y=x 2+1 B. y=43x 2-2x+3 C. y=2x 2 D. y=-3x 2-4x+7 4. 已知二次函数y=kx 2-7x -7的图象与x 轴没有交点,则k 的取值范围为( ) A. k ﹥-47 B. k ≥-47且k ≠0 C. k ﹤-47 D. k ﹥-47且k ≠0 5. 二次函数图象y=2x 2向上平移1个单位,再向右平移3个单位,所得抛物线的关系式为( ) A. y=2(x+3)2+1 B. y=2(x -3)2+1 C. y=2(x+3)2-1 D. y=2(x -3)2-1 6. 如图,函数y=ax 2和y=-ax+b 在同一坐标系中的图象可能为( ) 7. 如图是二次函数y=ax 2+bx+c 的图象,点P (a+b ,ac )是坐标平面内的点,则点P 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 密 封 线 内 不 要 答 题 班级:_______ 姓名:__________(7题) (8题)8.如图,两根等高的电线杆的水平距离是50米,某人在杆的底部连结上E 处,测得一根杆顶的仰角是60°,另一根杆顶的仰角为30°,则电线杆顶距地面的高度是( )A .25米B .12.5米C .D .米9.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,数据如图3,如果把小敏画的的三角形的面积记作S 1,小颖画的三角形的面积记作S 2,那么你认为( )A .12S S >B .12S S <C .12S S =D .不能确定9题 15题图10. 抛物线的顶点坐标为P (1,3),且开口向下,则函数y 随自变量x 的增大而减小的x 的取值范围为( )A. x ﹥3B. x ﹤3C. x ﹥1D. x ﹤1二. 填空题:(每小题3分,共30分)11.已知三角形三边的比是25∶24∶7,则最小角的余弦值为 ,最小角的正切值为______.12.若sin(10)α-︒=α为 . 13. 若二次函数y=(m+8)x 2+2x+m 2-64的图象经过原点,则m= .14. 抛物线y=2x 2+bx+8的顶点在x 轴上,则b=E D C B A15.已知二次函数y=ax2+bx+c的图象如图所示.①这个二次函数的表达式是y=______;②当x=______时,y=3;③根据图象回答:当x______时,y>0.16. 二次函数y=2x2-4x-1的图象是由y=2x2+bx+c的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= . 17.不论x取何值,二次函数y=-x2+6x+c的函数值总为负数,则c 的取值范围为.18、如图所示,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2cm的速度向左运动,最终点A与点M重合,则重叠部分面积y( 平方厘米)与时间t(秒)之间的函数式为————19、开口向上的抛物线y=a(x+2)(x-8)与x轴交于A、B,与y 轴交于点C,且∠ACB=90°,则a= .20. 将抛物y=2x2+16x-1绕顶点旋转180°后所得抛物线为 .三.解答题:(共60分)21. 已知抛物线y=ax2+bx+c与y=2x2开口方向相反,形状相同,顶点坐标为(3,5). (1)求抛物线的关系式;(2)求抛物线与x轴、y 轴交点.坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
……….2
分
解得 m=3
………...5 分
16.如图,在半径为 6 cm 的⊙O 中,圆心 O 到弦 AB 的距离 OC 为 3 cm.试求:
⌒ (1) 弦 AB 的长; (2) AB的长.
解:依题设有 OC⊥AB 于 C,又∵AB 为⊙O 的弦
∴ AC=BC= 1 AB 2
……… 2 分
连结 OA 则 AC OA2 OC2 又∵OA=6,OC=3
( ).
A.0
B. 2
C.−1
D. 1 4
8.如图,在直角梯形 ABCD 中, AD ∥ BC , C 90 , CD 6cm ,
AD=2cm,动点 P、Q 同时从点 B 出发,点 P 沿 BA、AD、DC 运
动到点 C 停止,点 Q 沿 BC 运动到 C 点停止,两点运动时的速度
都是 1cm/s,而当点 P 到达点 A 时,点 Q 正好到达点 C .
O
A
C
B
17.已知二次函数 y=ax2+bx+c 的图象的顶点位于 x 轴下方,它到 x 轴的距离为 4, 下表是 x 与 y 的对应值表:
x
0
2
y
0
−3
−4
−3
(1)求出二次函数的解析式;
0
y
x
O
(2)将表中的空白处填写完整; (3)在右边的坐标系中画出 y=ax2+bx+c 的图象; (4)根据图象回答:
20.某体育品商店在销售中发现:某种体育器材平均每天可售出 20 件,每件可获利 40 元;若售价减少 1 元,平均每天就可多售出 2 件;若想平均每天销售这种器材盈利 1200 元,那么每件器材应降价多少元?若想获利最大,应降价多少?
4
21.用尺规作图找出该残片所在圆的圆心 O 的位置. (保留作图痕迹,不写作法)
(2) a b c 0 ;(3)图象与 x 轴有 2 个交点,且两交点间的距
离小于 2;则以下结论中正确的有
.
① a 0 ② a b c 0 ③ c 0 ④ a 2b 0 ⑤ b 1
2a 4
三.解答题(每小题 5 分,本题共 30 分)
13. 计 算 : 50 2 1 2 0 1 3
2. 抛 物 线 y (x 1)2 2 可 以 由 抛 物 线 y x2 平 移 而 得 到 , 下 列 平 移 正 确 的 是
( ). A.先向左平移 1 个单位,再向上平移 2 个单位 B.先向左平移 1 个单位,再向下平移 2 个单位 C.先向右平移 1 个单位,再向上平移 2 个单位 D.先向右平移 1 个单位,再向下平移 2 个单位 3.已知一顶圆锥形纸帽底面圆的半径为 10cm,母线长为 50cm,则圆锥形纸帽的侧 面积为( ).
第 24 题图
7
25.抛物线 y ax2 bx 3 交 x 轴于 A、B 两点,交 y 轴于点 C ,已知抛物线的对称轴 为直线 x 1, AB 4 . (1)求二次函数 y ax2 bx 3 的解析式; (2)在抛物线对称轴上是否存在一点 P ,使点 P 到 B、C 两点距离之差最大?若存 在,求出 P 点坐标;若不存在,请说明理由; (3)平行于 x 轴的一条直线交抛物线于 M、N 两点,若以 MN 为直径的圆恰好与 x 轴相切,求此圆的半径.
11.如图,在A△BC 中,BC=4以,点 A 为圆心,2 为半径的⊙A 与 BC 相切于点 交D,AB 于 E交,AC 于 F,点 P 是⊙A 上一点且,∠EPF=40°, 则图中阴影部分的面积是_______________.
12. 已 知 二 次 函 数 y ax2 bx c 满 足 : ( 1) a b c ;
akc
(3)求证: 关于 x 的一元二次方程 ax2−bx+c=0 ②必有两个不相等的实数根.
6
24. 已知:如图,在直角坐标系 xoy 中,点 A(2,0),点 B 在第一象限且△OAB 为正三角形,△OAB 的外接圆交 y 轴的正半轴于点 C,过点 C 的圆的切线交 x 轴于 点 D. (1)求 B、C 两点的坐标; (2)求直线 CD 的函数解析式; (3)设 E、F 分别是线段 AB、AD 上的两个动点,且 EF 平分四边形 ABCD 的周长. 试探究:当点 E 运动到什么位置时,△AEF 的面积最大?最大面积是多少?
B
D
C
图2
BE= BD2 DE 2 4 . ………………………………………………………4 分
设 AC=x(x>0), 则 AE=x. 在 Rt△ABC 中,∠C=90, BC=BD+DC=8, AB=x+4, 由勾股定理,得 x2 +82= (x+4) 2.
解得 x=6.
即 AC=6.
…………………………………………………………5 分
O
B
D
C
3
四.应用题(19 题 6 分,20 题 5 分,21 题 4 分) 19. 桐桐和大诚玩纸牌游戏.下图是同一副扑克中的 4 张扑克牌的正面,将它们正 面朝下洗匀后放在桌上,桐桐先从中抽出一张,大诚从剩余的 3 张牌中也抽出一张.
桐桐说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜. (1)请用列表(或树状图)表示出两人抽牌可能出现的所有结果; (2)若按桐桐说的规则进行游戏,这个游戏公平吗?请说明理由.
1
设 P 点运动的时间为 t(s) , △BPQ 的面积为 y (cm2 ) .下图中能正确表示整个运动中 y 关于 t 的函数关系的大致图象是( ).
A.
B.
C.
D.
二.填空题(每小题 4 分,本题共 16 分)
9.正六边形边长为 3,则其边心距是___________cm.
10.函数 y x2 2x 3(2 x 2) 的最小值为_________,最大值为__________.
10
解法二: 如图 3,延长 AC 到 E,使得 AE=AB.
∵ AD=AD, ∠EAD =∠BAD,
A
∴ △AED≌△ABD.
O
∴ ED=BD=5.
在 Rt△DCE 中,∠DCE=90, 由勾股定理,得 CE= DE2 DC2 4 . ………… ……………4 分
B
图3
D
C
在 Rt△ABC 中,∠ACB=90, BC=BD+DC=8, 由勾股定理,得
OA 为半径的⊙O 经过点 D.
(1)求证: BC 是⊙O 切线;
(2)若 BD=5, DC=3, 求 AC 的长.
解:(1)证明: 如图 1,连接 OD.
∵ OA=OD, AD 平分∠BAC, ∴ ∠ODA=∠OAD, ∠OAD=∠CAD. ………………1 分
A O
∴ ∠ODA=∠CAD.
∴ OD//AC.
五.解答题(本题 5 分) 22.已知如图,正方形 AEDG 的两个顶点 A、D 都在⊙O 上,AB 为⊙O 直径,射线 线 ED 与⊙O 的另一个交点为 C,试判断线段 AC 与线段 BC 的关系.
B
A
GO
E
DC
5
六.综合运用(23、25 题 7 分,24 题 8 分) 23已.知: 关于 x 的一元一次方程 kx=x+2 ①的根为正实数二,次函数 y=ax2−bx+kc(c≠0) 的图象与 x 轴一个交点的横坐标为 1. (1)若方程①的根为正整数,求整数 k 的值; (2)求代数式 (kc)2 b2 ab 的值;
y N
6.如图,在平面直角坐标系中,点 P 在第一象限,⊙ P 与 x 轴 P
相切于点 Q ,与 y 轴交于 M (0,2) , N (0,8) 两点,则点 P 的坐标 M
是( ).
OQ
x
A. (5,3)
B. (3,5)
C. (5,4)
D. (4,5)
7.抛物线 y x2 kx 1与 y x2 x k 相交,有一个交点在 x 轴上,则 k 的值为
数学试卷
(考试时间为 120 分钟,试卷满分为 120 分)
题 4 分,共 32 分.下列各题均有四个选项,其中只有一个是符合 题意的.) 1.下列事件是必然事件的是( ). A.随意掷两个均匀的骰子,朝上面的点数之和是 6 B.掷一枚硬币,正面朝上 C.3 个人分成两组,一定有两个人分在一组 D.打开电视,正在播放动画片
………..1 分
1 (x 2)2 5 2
………..3 分
x 2 10
∴ x1 2 10, x2 2 10 ……..5 分
15.已知 y (m 1)xm2 2m1 (m 3)x m ,当 m 为何值时,是二次函数?
m 1 0
解:依题设,若原函数为二次函数,则有
m
2
2m
1
2
表是 x 与 y 的对应值表:
x
-1
0
1
2
3
y
0
-3
-4
-3
0
(1)求出二次函数的解析式;
解:由上表可知,二次函数图象的对称轴为直线 x=1,
顶点坐标为(1,4) ……1 分
∴ 二次函数解析式可变形为 y a(x 1)2 4
又由图象过(0,-3),有-3=a-4,解得 a=1 ∴ 二次函数解析式为 y x2 2x 3 .....2 分
∴ AC= 3 3 ∴ AB= 6 3 ………3 分
9
O
A
C
B
(2)由(1)知,在 Rt△ACO 中,OA=6,OC=3
∴ ∠OAC=30° ∴ ∠AOC=60°
∴ ∠AOB=120°
………4 分
∴
⌒ AB=
1 2 OA = 4
3
………..5 分
17.已知二次函数 y=ax2+bx+c 的图象的顶点位于 x 轴下方,它到 x 轴的距离为 4,下