2020年高考物理一轮复习热点题型专题16 动量守恒定律及其应用(原卷版)

合集下载

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

2020届高考物理一轮复习说课课件《动量守恒定律》(共16张PPT)

2020届高考物理一轮复习说课课件《动量守恒定律》(共16张PPT)
2020一轮备考 《动量守恒定律》
考情分析 学情分析 复习目标 备考策略
感谢聆听!敬请指导!
一、考情分析------考纲
主题
内容
要求 说明
选力学
碰撞与动 量守恒
动量、动量定理、动量守恒 定律及其应用

只限于 一维

弹性碰撞和非弹性碰撞

3-5
单位
制和 实验 实验七:验证动量守恒定律
……
实验
一、考情分析------考纲
2018
15
Ⅱ卷
用动量定理求冲击力 能量三大观点解题,有可能
24 动量守恒与动能定理综合 成为高考压轴题的重点题型
Ⅰ卷 14 2017
动量守恒、火箭反冲
(3)碰撞模型是近年来高
Ⅱ卷 15
原子核衰变、动量守恒 考命题的重点
Ⅰ卷 35
用动量定理求冲击力
二、学情分析
1. 有努力,有困难 2. 学业繁重,习惯难养 3. 注重刷题,忽视基础,疏于反思
的核心素养。
引导:
(2018·课标全国Ⅱ)高空坠物极易 ①情境的理解,如何模型化; 对行人造成伤害.若一个50 g的鸡 ②过程的理解,分过程与全过程; 蛋从一居民楼的25层坠下,与地面 ③力的概念理解,冲击力、重力、
的碰撞时间约为2 ms,则该鸡蛋对 合力。什么时候重力可忽略;
地面产生的冲击力约为( )
对2019年考试大纲和考试说明的思考
1.考点内容不变
• 2018年和2019年的考试大纲中:
考点、考点级别、考点内容几乎完全相同,均无大的变化。
• 2019年考试说明:现在正处于新旧高考交替的历史转折时期,考点 内容的几乎不变是为了保障新旧高考的平稳过渡。

动量守恒定律及其应用—高考物理总复习专题PPT课件(原文)

动量守恒定律及其应用—高考物理总复习专题PPT课件(原文)
第六章 动量守恒定律
第二节 动量守恒定律及其应用
一、动量守恒定律 1.内容 如果一个系统不受外力,或者所受外力的矢量和为 零,这个系统的总动量保持不变. 2.表达式 (1)p=p′,系统相互作用前总动量 p 等于相互作用后 的总动量 p′. (2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体 组成的系统,作用前的动量和等于作用后的动量和.
普适性
不仅适用于低速宏观系统,也适用于高速微观 系统
2.应用动量守恒定律解题的步骤
典例 (2019·宁夏银川一中月考)如图所示, 物块 A 和 B 通过一根轻质不可伸长的细绳连接, 跨放在质量不计的光滑定滑轮两侧,质量分别为 mA=2 kg,mB=1 kg.初始时 A 静止于水平地面上, B 悬于空中.先将 B 竖直向上举高 h=1.8 m(未触 及滑轮)然后由静止释放.一段时间后细绳绷直,A、B 以 大小相等的速度一起运动,之后 B 恰好可以和地面接触.g 取 10 m/s2.
1.关于系统动量守恒的条件,下列说法正确的是 ()
A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就 不守恒 C.只要系统所受的合外力为零,系统动量就守恒 D.系统中所有物体的加速度为零时,系统的总动量 不一定守恒 答案:C
二、碰撞、反冲、爆炸 1.碰撞 (1)定义:相互作用的几个物体,在极短的时间内它们的 运动状态发生显著变化,这个过程就可称为碰撞. (2)特点:作用时间极短,内力(相互碰撞力)远大于外力, 总动量守恒. 2.碰撞分类 (1)弹性碰撞:碰撞后系统的总动能没有损失. (2)非弹性碰撞:碰撞后系统的总动能有损失. (3)完全非弹性碰撞:碰撞后合为一体,机械能损失最多.
mv0=mvA1+MvC1, 12mv20=12mv2A1+12Mv2C1, 联立可得:vA1=mm+-MM v0,vC1=m2+mM v0.

全国通用 2020版高考物理一轮复习:第6章 第2讲 动量守恒定律及其应用

全国通用 2020版高考物理一轮复习:第6章 第2讲 动量守恒定律及其应用

第2讲动量守恒定律及其应用一、动量守恒定律1.内容:如果系统不受外力,或者所受外力的合力为零,这个系统的总动量保持不变。

2.常用的四种表达形式(1)p=p′,即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同。

(2)Δp=p′-p=0,即系统总动量的增量为零。

(3)Δp1=-Δp2,即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量。

(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等。

3.常见的几种守恒形式及成立条件(1)理想守恒:系统不受外力或所受外力的合力为零。

(2)近似守恒:系统所受外力虽不为零,但内力远大于外力。

(3)分动量守恒:系统所受外力虽不为零,但在某方向上合力为零,系统在该方向上动量守恒。

二、碰撞1.碰撞现象:两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用的过程。

2.碰撞特征(1)作用时间短。

(2)作用力变化快。

(3)内力远大于外力。

(4)满足动量守恒。

3.碰撞的分类及特点(1)弹性碰撞:动量守恒,机械能守恒。

(2)非弹性碰撞:动量守恒,机械能不守恒。

(3)完全非弹性碰撞:动量守恒,机械能损失最多。

三、爆炸现象爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量守恒。

四、反冲运动1.物体的不同部分在内力作用下向相反方向运动的现象。

2.反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。

(判断正误,正确的画“√”,错误的画“×”。

)1.动量守恒定律中的速度是相对于同一参考系的速度。

(√)2.质量相等的两个物体发生碰撞时,一定交换速度。

(×)3.系统的总动量不变是指系统总动量的大小保持不变。

(×)4.系统的动量守恒时,机械能也一定守恒。

(×)1.(动量守恒条件)(多选)如图所示,在光滑水平面上有A、B两个木块,A、B之间用一轻弹簧连接,A靠在墙壁上,用力F向左推B使两木块之间的弹簧压缩并处于静止状态。

高中物理动量守恒定律试题(有答案和解析)含解析

高中物理动量守恒定律试题(有答案和解析)含解析

高中物理动量守恒定律试题(有答案和解析)含解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

2020年高考物理一轮复习考点归纳专题6-动量守恒定律附答案

2020年高考物理一轮复习考点归纳专题6-动量守恒定律附答案

2020年高考一轮复习知识考点归纳专题06 动量守恒定律目录【基本概念、规律】 (1)【重要考点归纳】 (2)考点一动量定理的理解及应用 (2)考点二动量守恒定律与碰撞 (2)考点三爆炸和反冲人船模型 (3)实验:验证动量守恒定律 (4)【思想方法与技巧】 (5)动量守恒中的临界问题 (5)【基本概念、规律】一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=mv.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系(1)动量的变化量:Δp=p′-p.(2)动能和动量的关系:E k=p2 2m.二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.三、碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类【重要考点归纳】考点一动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二动量守恒定律与碰撞1.动量守恒定律的不同表达形式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向.(4)Δp =0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p ′1+p ′2.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2. (3)速度要合理.①碰前两物体同向,则v 后>v 前;碰后,原来在前的物体速度一定增大,且v ′前≥v ′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有m 1v 1=m 1v ′1+m 2v ′2①12m 1v 21=12m 1v ′21+12m 2v ′22② 由①②得v ′1=m 1-m 2v 1m 1+m 2 v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度.②当m 1>m 2时,v ′1>0,v ′2>0,碰撞后两球都向前运动.③当m 1<m 2时,v ′1<0,v ′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三 爆炸和反冲 人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等。

2020版高考物理一轮复习练习:动量守恒定律(含解析)

2020版高考物理一轮复习练习:动量守恒定律(含解析)

动量守恒定律小题狂练⑱小题是基础练小题提分快1.[2019·北京东城区模拟](多选)两物体组成的系统总动量守恒,这个系统中( )A.一个物体增加的速度等于另一个物体减少的速度B.一物体受合力的冲量与另一物体所受合力的冲量相同C.两个物体的动量变化总是大小相等、方向相反D.系统总动量的变化为零答案:CD解析:两个物体组成的系统总动量守恒,即p1+p2=p′1+p′2,等式变形后得p1-p′1=p′2-p2,即-Δp1=Δp2,-m1Δv1=m2Δv2,所以每个物体的动量变化大小相等,方向相反,但是只有在两物体质量相等的情况下才有一个物体增加的速度等于另一个物体减少的速度,故A错误,C正确;根据动量定理得I1=Δp1,I2=Δp2,每个物体的动量变化大小相等,方向相反,所以每个物体受到的冲量大小相等,方向相反,故B错误;两物体组成的系统总动量守恒,即系统总动量的变化为零,D正确.2.[2019·湖北省襄阳四中检测](多选)关于动量守恒的条件,下列说法正确的是( ) A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统所受合外力所做的功为零,系统动量一定守恒C.只要系统所受合外力的冲量始终为零,系统动量一定守恒D.系统加速度为零,系统动量一定守恒答案:CD解析:只要系统所受外力的矢量和为零,系统动量就守恒,与系统内是否存在摩擦力无关,故A错误;系统所受合外力做的功为零,系统所受合外力不一定为零,则系统动量不一定守恒,故B错误;力与力的作用时间的乘积是力的冲量,系统所受到合外力的冲量为零,则系统受到的合外力为零,系统动量守恒,故C正确;系统加速度为零,由牛顿第二定律可得,系统所受合外力为零,系统动量守恒,故D正确.3.[2017·全国卷Ⅰ]将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A.30 kg·m/s B.5.7×102kg·m/sC.6.0×102kg·m/s D.6.3×102kg·m/s答案:A解析:燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p,根据动量守恒定律,可得p-mv0=0,解得p=mv0=0.050 kg×600如图所示,一个质量为M的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m的小木块.现使木箱获得一个向左的初速度] 如图所示,静止在光滑水平面上的木板m L-ddm L+dd D.mdL-答案:B解析:据题意,人从船尾走到船头过程中,动量守恒,则有m L-dd,所以.[2019·福建省四地六校联考]如图所示,A、B两物体的中间用一段细绳相连并有一上后,A、B、C均处于静止状态.若地面光滑,则在细绳被剪时刻两物块达到共同速度1 m/s,且弹簧都处于伸长状态时刻弹簧由压缩状态恢复到原长m1:m2=:2的动能之比为E k1:E k2=:1的过程中,的速度增大,m1:m=:1m/s,v B=-1 m/s k1:=:1D正确.10.[2019·广州模拟有一轻弹簧固定于其左端,另一质量也为.甲、乙两物块组成的系统在弹簧压缩过程中动量守恒.当两物块相距最近时,物块甲的速率为零车碰撞瞬间,两车动量守恒,机械能也守恒.从两车粘在一起到小球摆到最高点的过程中,A、B、0.16 m.碰前滑块Ⅰ与滑块Ⅱ速度大小之比为:2.碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大.碰前滑块Ⅰ的动能比滑块Ⅱ的动能小,则碰前速度大小之比为:2碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前滑块Ⅰ的动量大小小于滑块Ⅱ的动量大小,两质量分别为远大于两小球的半径,落地瞬间,所有的碰撞都是弹性碰撞,且都发生在竖直方向、碰撞时间均可忽略不计.已知.弹丸和木块的速率都是越来越小.弹丸在任一时刻的速率不可能为零如图所示,一半径为R的小球由A点静止释放,,动量大小为p A=4 kg·m/s,小球.三球与弹簧组成的系统总动量守恒,总机械能不守恒如图所示,总质量为M带有底座的足够宽框架直立在光滑水平面的小球通过细线悬挂于框架顶部O处,细线长为当小球第一次回到O点正下方时,2mm2v20M+m2LD mM-m2v20M+m2L设小球第一次回到点正下方时,小球与框架的速度分别为m v1-v22L,解得细线的拉力两物体在光滑水平面上沿同一直线运动,如图表示发生碰撞前后的的质量比为:2作用前后总动量守恒作用前后总动量不守恒m A:m=:2(m/s)2,作用后总动如图所示,光滑水平面上有两个质量分别为B开始处于静止状态,多选)如图所示,将一轻质弹簧从物体将其上端悬挂于天花板,下端系一质量为m1=2.0 kg的物体m处由静止释放质量为R且内壁光滑的半圆槽置于光滑水平面上,的物块.现让一质量为m的小球自左侧槽口点进入槽内,并能从C点离开半圆槽,则以下结论中正确的是的木箱静止在光滑的水平面上,木箱内粗糙的底板正中央放着的小木块,小木块可视为质点.现使木箱和小木块同时获得大小为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考物理一轮复习热点题型归纳与变式演练专题16 动量守恒定律及其应用【专题导航】目录热点题型一动量守恒的理解和判断 (1)动量守恒的条件判断 (2)某一方向上的动量守恒问题 (2)爆炸反冲现象中的动量守恒 (3)热点题型二对碰撞现象中规律的分析 (3)碰撞的可能性分析 (4)弹性碰撞规律求解 (4)非弹性碰撞的分析 (5)【题型演练】 (6)【题型归纳】热点题型一动量守恒的理解和判断1.动量守恒定律适用条件(1)前提条件:存在相互作用的物体系.(2)理想条件:系统不受外力.(3)实际条件:系统所受合外力为0.(4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力.(5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒.2.动量守恒定律的表达式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp=0,系统总动量的增量为零.3.动量守恒定律的“五性”动量守恒的条件判断【例1】.一颗子弹水平射入置于光滑水平面上的木块A 并留在其中,A 、B 用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A 及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( )A .动量守恒,机械能守恒B .动量不守恒,机械能守恒C .动量守恒,机械能不守恒D .无法判定动量、机械能是否守恒【变式】如图所示,A 、B 两物体质量之比m A ∶m B =3∶2,原来静止在平板车C 上,A 、B 间有一根被压缩的弹簧,地面光滑.当弹簧突然被释放后,以下系统动量不守恒的是( )A .若A 、B 与C 上表面间的动摩擦因数相同,A 、B 组成的系统B .若A 、B 与C 上表面间的动摩擦因数相同,A 、B 、C 组成的系统C .若A 、B 所受的摩擦力大小相等,A 、B 组成的系统D .若A 、B 所受的摩擦力大小相等,A 、B 、C 组成的系统某一方向上的动量守恒问题【例2】.(多选)(2019·佛山模拟)如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽上高h 处由静止开始自由下滑( )A .在下滑过程中,小球和槽之间的相互作用力对槽不做功B .在下滑过程中,小球和槽组成的系统水平方向动量守恒C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球能回到槽上高h 处【变式】质量为M 的小车静止于光滑的水平面上,小车的上表面和14圆弧的轨道均光滑.如图所示,一个质量为m的小球以速度v0水平冲向小车,当小球返回左端脱离小车时,下列说法中正确的是()A.小球一定沿水平方向向左做平抛运动B.小球可能沿水平方向向左做平抛运动C.小球可能沿水平方向向右做平抛运动D.小球可能做自由落体运动爆炸反冲现象中的动量守恒【例3】.(2017·高考全国卷Ⅰ)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A.30 kg·m/s B.5.7×102 kg·m/sC.6.0×102 kg·m/sD.6.3×102 kg·m/s【变式】如图所示,小车AB放在光滑水平面上,A端固定一个轻弹簧,B端粘有油泥,AB总质量为M,质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时AB和C都静止,当突然烧断细绳时,C被释放,C离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,下列说法正确的是()A.弹簧伸长过程中C向右运动,同时AB也向右运动B.C与B碰前,C与AB的速率之比为M∶m C.C与油泥粘在一起后,AB立即停止运动D.C与油泥粘在一起后,AB继续向右运动热点题型二对碰撞现象中规律的分析1.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E′k1+E′k2或p212m1+p222m2≥p′212m1+p′222m2.(3)速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞.碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,即v′前≥v′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.碰撞模型类型(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,有m 1v 1=m 1v ′1+m 2v ′212m 1v 21=12m 1v ′21+12m 2v ′22 解得v ′1=(m 1-m 2)v 1m 1+m 2,v ′2=2m 1v 1m 1+m 2. 结论:①当两球质量相等时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v ′1>0,v ′2>0,碰撞后两球都沿速度v 1的方向运动.③当质量小的球碰质量大的球时,v ′1<0,v ′2>0,碰撞后质量小的球被反弹回来.④撞前相对速度与撞后相对速度大小相等.(2)完全非弹性碰撞①撞后共速.②有动能损失,且损失最多.碰撞的可能性分析【例2】.(2019·天津高三质检)甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg·m/s ,p 2=7 kg·m/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s ,则两球质量m 1与m 2间的关系可能是( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2【变式】两球A 、B 在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s.当A 追上B 并发生碰撞后,两球A 、B 速度的可能值是( )A .v ′A =5 m/s ,v ′B =2.5 m/sB .v ′A =2 m/s ,v ′B =4 m/sC .v ′A =-4 m/s ,v ′B =7 m/sD .v ′A =7 m/s ,v ′B =1.5 m/s弹性碰撞规律求解【例3】(2019·安徽江南十校联考)如图所示,一个质量为m 的物块A 与另一个质量为2m 的物块B 发生正碰,碰后B 物块刚好能落入正前方的沙坑中.假如碰撞过程中无机械能损失,已知物块B 与地面间的动摩擦因数为0.1,与沙坑的距离为0.5 m ,g 取10 m/s 2,物块可视为质点.则A 碰撞前瞬间的速度为( )A .0.5 m/sB .1.0 m/sC .1.5 m/sD .2.0 m/s【变式】如图所示,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.【变式2】.如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动,此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.非弹性碰撞的分析【例4】.(多选)(2019·宁夏银川模拟)A 、B 两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a 、b 分别为A 、B 两球碰前的位移随时间变化的图象,c 为碰撞后两球共同运动的位移随时间变化的图象,若A 球质量是m =2 kg ,则由图判断下列结论正确的是 ( )A .碰撞前、后A 球的动量变化量为4 kg·m/sB .碰撞时A 球对B 球所施的冲量为-4 N·sC .A 、B 两球碰撞前的总动量为3 kg·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J【变式1】如图甲所示,光滑水平面上有P 、Q 两物块,它们在t =4 s 时发生碰撞,图乙是两者的位移—时间图象,已知物块P 的质量为m P =1 kg ,由此可知( )A .碰撞前P 的动量为4 kg·m/sB .两物块的碰撞可能为弹性碰撞C .物块Q 的质量为4 kgD .两物块碰撞过程中P 对Q 作用力的冲量是3 N·s【变式2】质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子的正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,在整个过程中,系统损失的动能为( )A.12mv 2B.mM 2m +Mv 2C.12N μmgL D .N μmgL 【题型演练】1.如图所示,甲木块的质量为m 1,以v 的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m 2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )A .甲木块的动量守恒B .乙木块的动量守恒C .甲、乙两木块所组成系统的动量守恒D .甲、乙两木块所组成系统的动能守恒2.(2019·泉州检测)有一个质量为3m 的爆竹斜向上抛出,到达最高点时速度大小为v 0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m ,速度大小为v ,方向水平向右,则另一块的速度是( )A .3v 0-vB .2v 0-3vC .3v 0-2vD .2v 0+v3.如图所示,两滑块A 、B 在光滑水平面上沿同一直线相向运动,滑块A 的质量为m ,速度大小为2v 0,方向向右,滑块B 的质量为2m ,速度大小为v 0,方向向左,两滑块发生弹性碰撞后的运动状态是( )A .A 和B 都向左运动B .A 和B 都向右运动C .A 静止,B 向右运动D .A 向左运动,B 向右运动4.A 、B 两船的质量均为m ,都静止在平静的湖面上,现A 船中质量为12m 的人,以对地的水平速度v 从A 船跳到B 船,再从B 船跳到A 船……经n 次跳跃后,人停在B 船上,不计水的阻力,则( )A .A 、B 两船速度大小之比为2∶3B .A 、B (包括人)两船动量大小之比为1∶1C .A 、B (包括人)两船的动能之比为2∶3D .A 、B (包括人)两船的动能之比为1∶15.一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )6.2017年7月9日,斯诺克世界杯在江苏无锡落下帷幕,由丁俊晖和梁文博组成的中国A 队在决赛中1比3落后的不利形势下成功逆转,最终以4比3击败英格兰队,帮助中国斯诺克台球队获得了世界杯三连冠.如图所示为丁俊晖正在准备击球,设在丁俊晖这一杆中,白色球(主球)和花色球碰撞前、后都在同一直线上运动,碰前白色球的动量p A =5 kg·m/s ,花色球静止,白色球A 与花色球B 发生碰撞后,花色球B 的动量变为p ′B =4 kg·m/s ,则两球质量m A 与m B 间的关系可能是( )A .mB =m A B .m B =14m AC .m B =16m A D .m B =6m A 7.如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s ,则( )A .该碰撞为弹性碰撞B .该碰撞为非弹性碰撞C .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶108.如图所示,小车(包括固定在小车上的杆)的质量为M ,质量为m 的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O 点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是( )A .2LM M +mB .2Lm M +mC .ML M +mD .mL M +m9.如图所示,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C .B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短.求从A 开始压缩弹簧直至与弹簧分离的过程中:(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.10.如图所示,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。

相关文档
最新文档