一元二次方程教学案例

合集下载

九年级数学上册(人教版)21.2.3解一元二次方程(因式分解法)优秀教学案例

九年级数学上册(人教版)21.2.3解一元二次方程(因式分解法)优秀教学案例
九年级数学上册(人教版)21.2.3解一元二次方程(因式分解法)优秀教学案例
一、案例背景
在我国九年级数学上册的教学中,一元二次方程是学生需要掌握的重要知识点。人教版教材21.2.3节主要介绍了利用因式分解法解一元二次方程。针对此部分内容,本教学案例旨在通过实际问题的引入,激发学生的兴趣,引导学生运用因式分解法解决一元二次方程,提高学生的数学思维能力和解决问题的能力。
3.在小组合作过程中,鼓励学生积极表达自己的观点,学会倾听他人的意见,形成良好的沟通与协作。
4.教师巡回指导,给予每个小组个性化的帮助,确保合作学习的顺利进行。
(四)反思与评价
在教学过程中,我将重视学生的反思与评价,以促进学生自我成长。具体措施如下:
1.鼓励学生在解题过程中进行自我反思,总结经验教训,提高解题能力。
四、教学内容与过程
(一)导入新课
1.教学开始时,我将以学生熟悉的实际情景引入新课,例如:“同学们,你们在体育课上是否尝试过投篮?如果想要将篮球投入篮筐,除了掌握投篮的力度外,还需要考虑什么因素呢?”通过这个问题,引导学生思考投篮角度与成功的关系。
2.接着,我会提出一个与一元二次方程相关的问题:“假设我们要求解最佳的投篮角度,使得篮球在空中的轨迹形成一个抛物线。我们可以通过什么数学方法来解决这个问题呢?”由此引出一元二次方程的概念。
5.针对不同学生的学习情况,给予个性化指导,帮助学生找到适合自己的学习方法。
(三)情感态度与价值观
1.培养学生热爱数学、勇于探索的精神,激发学生的学习内驱力。
2.培养学生面对困难时,保持积极的心态,敢于挑战自我,不断进取。
3.培养学生的团队意识,学会在合作中尊重他人,分享成功与快乐。
4.通过数学学习,使学生认识到数学在现实生活中的重要作用,增强学生的社会责任感。

苏教版九年级上册数学一元二次方程教案

苏教版九年级上册数学一元二次方程教案

苏教版九年级上册数学一元二次方程教案【教学目标】1. 理解一元二次方程的定义、一次项系数、二次项系数、常数项等概念。

2. 掌握解一元二次方程的基本方法,能够独立解决实际问题。

3. 培养学生的逻辑思维和分析问题的能力,提高学生的数学素养。

【教学重难点】1. 掌握一元二次方程的定义和性质。

2. 理解解一元二次方程的基本方法,掌握使用“公式法”和“配方法”解方程的技巧。

3. 学会应用一元二次方程解决实际问题。

【教学过程】1. 引入(5分钟)1)通过一元二次方程的解法让学生见到数学的神奇之处;2)教师利用一元二次方程的形式引发学生思考,如何求这个方程的解?2. 学习一元二次方程的性质(20分钟)1)概念解释:一元二次方程的定义和一次方程相似,都是一个带一个未知数的等式,但一元二次方程中未知数有平方项。

比如:$ax^2+bx+c=0$。

2)要点讲解:一元二次方程中三个系数分别为一次项系数$a$、二次项系数$b$和常数项$c$。

系数$a$不为0,否则该方程不是二次方程。

3)解题方法:推导出“公式法”和“配方法”公式法:对于一般的一元二次方程$ax^2+bx+c=0$,解法是:首先通过$\Delta=b^2-4ac$判断$ax^2+bx+c=0$,有无实根,然后用解根公式$x=\frac{ -b\pm \sqrt{b^2-4ac} }{2a}$求出方程的根。

配方法:通过变形,将一元二次方程转化为形如$(px+q)^2=k$的等式,称为配方法。

其中,$p,q$为已知常数,$p$可以由方程的二次项系数$a$求出,即$p=\sqrt{a}$。

3. 阐述一元二次方程的解法(20分钟)1)用公式法解一般一元二次方程,注意:二次项系数$b$为负数时,括号内前面要加上负号。

2)用公式法根据已知条件求解实际问题中的一元二次方程。

3)用配方法解非一般的一元二次方程。

例如$x^2+4x=5$,可以通过将该等式移项,形变为$(x+2)^2=9$,从而得出$x+2=3$或$x+2=-3$。

一元二次方程教学案例及反思

一元二次方程教学案例及反思

一元二次方程教学案例及反思一、案例背景1、教材分析:一元二次方程在初中代数学习中,具有重要的地位,起着承前启后的作用。

一方面对以前学习过的各种知识进行综合地应用,比如说整式、开平方、一元一次方程、一次方程组以及不等式的知识在这一章里都有应用,另一方面,一元二次方程又是前面所学知识的继续和发展,它还是以后学习其他方程以及数学知识的基础,比如说,二次函数、高中要学习的指数方程、对数方程等等都与一元二次方程有关。

这节课是人教版第22章的第一节课时,主要学习一元二次方程的定义、一般形式及其根的概念。

本节在引言方程的基础上,首先通过两个实际问题——面积问题和比赛问题,进一步引出一元二次方程的具体例子,然后再引导学生观察列出这三个具体方程,并发现它们在形式上的共同点,给出一元二次方程的定义。

2、学生分析在前面学生已经学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程等等,已经初步地感受了方程的模型作用,并且积累了一些利用方程解决实际问题的一些经验,解决了一些实际问题。

教师要在这基础上,通过实际问题,引导学生认识一元二次方程的定义、一般形式及其根的概念。

3、教学目标:(1)理解一元二次方程概念是以未知数的个数和次数为标准的;掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式;理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根。

(2)经历观察,归纳一元二次方程的概念,一元二次方程的根的概念及其一般形式和其它三种特殊形式。

(3)通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。

4、教学重点:一元二次方程的概念,一般形式和一元二次方程的根的概念。

5、教学难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。

6、教学思路:以实际问题为背景,引出一元二次方程及其有关概念,通过学生分组讨论,得到一元二次方程的一般形式,给出一元二次方程根的概念,组织学生分析一元二次方程的根的不唯一性。

人教版九年级数学上册21.2.3因式分解解一元二次方程优秀教学案例

人教版九年级数学上册21.2.3因式分解解一元二次方程优秀教学案例
3.教师应给予学生充分的指导和支持,引导学生在合作中相互尊重、相互帮助,培养学生的团队精神。
(四)反思与评价
1.教师可以引导学生对学习过程进行反思,让学生总结经验,提高解题能力。
2.教师应采用多元化的评价方式,既注重学生的知识掌握程度,也注重学生的能力发展和情感态度。
3.教师应及时给予学生反馈,鼓励学生的优点,指导学生改进不足,激发学生的学习动力。
3.通过对一元二次方程的因式分解和解题方法的探讨,培养学生分析问题、解决问题的能力。
(三)情感态度与价值观
1.培养学生热爱数学、崇尚科学的情感,激发学生学习数学的兴趣和自信心。
2.使学生认识到数学在实际生活中的重要性,提高学生运用数学知识解决实际问题的意识。
3.培养学生严谨治学、勤奋学习的良好学习习惯,树立学生的团队合作精神。
5.作业小结:教师布置相关的作业题,让学生巩固和应用所学的内容,加深对因式分解解一元二次方程的理解和掌握。教师鼓励学生在完成作业后进行自我检查和反思,及时发现和纠正自己的错误。教师对学生的作业进行及时的批改和反馈,指出学生的优点和不足,指导学生进一步提高。这些作业小结的环节有助于巩固学生所学知识,提高学生的解题能力和学习效果。
2.教师可以提供一些练习题,让学生通过讨论和合作,运用因式分解解一元二次方程的方法解决问题。
3.教师可以引导学生分享彼此的想法和解题过程,促进学生之间的交流和学习。
(四)总结归纳
1.教师可以引导学生总结因式分解解一元二次方程的基本思路和方法,让学生形成系统的知识结构。
2.教师可以强调因式分解解一元二次方程的优势和适用场景,让学生能够根据题目特点选择合适的解题方法。
本节课的教学内容主要包括:了解因式分解解一元二次方程的基本思路,掌握运用因式分解法解一元二次方程的步骤,能灵活运用因式分解法解决实际问题。在教学过程中,我将以案例的形式,引导学生参与课堂,激发学生的学习兴趣,培养学生的合作意识,提高学生的数学素养。

九年级数学上册《解一元二次方程》优秀教学案例

九年级数学上册《解一元二次方程》优秀教学案例
二、教学目标
(一)知识与技能
1.理解一元二次方程的概念,掌握其标准形式,并能识别一元二次方程的系数及常数项。
2.学会使用直接开平方法、配方法、公式法等解一元二次方程,并能够灵活运用这些方法解决实际问题。
3.掌握一元二次方程的根的判别式,了解判别式的应用,能够判断一元二次方程的根的性质(如实数根、无实数根、重根等)。
(二)讲授新知
在讲授新知的环节,我会首先明确一元二次方程的定义,如ax^2 + bx + c = 0(a≠0),并解释各个参数的含义。接着,我会通过具体的例子,如x^2 - 5x + 6 = 0,来讲解直接开平方法、配方法、公式法等解一元二次方程的步骤和技巧。
1.直接开平方法:我会展示如何将方程x^2 - 5x + 6 = 0转化为(x - 2)(x - 3) = 0,从而快速得出解x = 2或x = 3。
(三)小组合作
小组合作是一种有效的教学策略,能够培养学生的团队协作能力和沟通能力。我将根据学生的学习特点和兴趣,合理分组,让每个学生在小组内发挥自己的优势。在教学过程中,我会布置一些具有挑战性的任务,让学生在小组内共同探讨、共同解决。例如,让学生小组合作探究一元二次方程的不同解法,并总结各种解法的优缺点。这样既能提高学生的解题能力,又能培养学生的团队合作精神。
九年级数学上册《解一元二次方程》优秀教学案例
一、案例背景
在我国九年级数学课程中,一元二次方程是学生必须掌握的重要知识点,它既是初中数学的难点,也是高中数学的基础。在教学过程中,如何引导学生理解并熟练运用一元二次方程的解法,成为特级教师关注的焦点。本教学案例以人教版九年级数学上册《解一元二次方程》为背景,针对学生实际情况,设计了一系列实用性强的教学活动,旨在帮助学生克服恐惧心理,掌握解题方法,提高解题能力。通过本案例的学习,学生将能够熟练运用直接开平方法、配方法、公式法等解一元二次方程,并能在实际问题中运用所学知识解决问题。本案例注重激发学生的学习兴趣,培养学生的逻辑思维能力和团队合作精神,使学生在轻松愉快的氛围中掌握数学知识。

人教版数学九年级上册21.3实际问题与一元二次方程优秀教学案例

人教版数学九年级上册21.3实际问题与一元二次方程优秀教学案例
3.鼓励学生相互交流、分享解题过程,培养学生的沟通能力和团队合作精神;
4.教师巡回指导,给予学生必要的帮助和提示。
(四)总结归纳
1.让学生汇报各自小组的讨论成果,总结一元二次方程解决实际问题的方法;
2.教师引导学生归纳一元二次方程的解法及其应用,强调重点和难点;
3.结合学生的讨论,总结解决实际问题的策略和技巧;
4.培养学生自主探究、动手实践的能力,使其能在实际问题中灵活运用一元二次方程的解法。
(三)情感态度与价值观
1.让学生体验数学与生活的紧密联系,增强学生学习数学的兴趣和信心;
2.通过解决实际问题,让学生感受到数学在生活中的重要性,提高学生的数学应用意识;
3.培养学生勇于探索、积极动脑思考的良好学习习惯,增强学生的自主学习能力;
3.通过设置悬念,引发学生的好奇心,激发学生积极探索的欲望;
4.结合学生的认知水平,创设适宜难度的情境,使学生能顺利地进入学习状态。
(二)问题导向
1.引导学生分析问题,明确已知条件和所求目标,培养学生的问题解决能力;
2.鼓励学生提出假设,引导学生运用一元二次方程进行验证,培养学生的推理能力;
3.设计具有挑战性的问题,激发学生的思维,使学生在解决问题的过程中不断提高;
3.小组合作的学习方式:通过小组合作,学生能够相互交流、分享解题思路,培养团队合作精神和沟通能力。这种学习方式不仅提高了学生的学习效果,还使他们能够从同伴那里获得不同的观点和解决问题的方法。
五、案例亮点
1.生活情境的创设:本案例以购物场景为背景,让学生在熟悉的环境中感受数学与生活的紧密联系。这样的设计不仅激发了学生的学习兴趣,还使他们能够更容易地理解一元二次方程在实际问题中的应用,从而提高了教学的实效性。

九年级数学上册《一元二次方程的应用利率问题》优秀教学案例

九年级数学上册《一元二次方程的应用利率问题》优秀教学案例
四、教学内容与过程
(一)导入新课
在导入新课环节,我将通过一个生活化的情景,引导学生进入本节课的学习。我会向学生讲述小明存款的故事,并提出以下问题:“同学们,你们在生活中有没有遇到过类似的问题?如何帮助小明选择最合适的存款方式呢?”通过这个问题,激发学生的好奇心和求知欲,从而引出一元二次方程在利率问题中的应用。
在教学过程中,教师应关注学生的个体差异,因材施教,充分调动学生的积极性、主动性和创造性。通过本章节的学习,使学生不仅掌握一元二次方程在利率问题中的应用,而且提高他们解决实际问题的能力,培养他们积极向上的情感态度和正确的价值观。在此基础上,激发学生对数学学科的兴趣,为他们的终身学习和发展奠定坚实基础。
1.让学生回顾自己在解决问题过程中的思考过程,总结学到的知识和方法。
2.鼓励学生分享自己在小组合作中的体验,包括合作效果、沟通技巧等。
3.教师对学生的学习情况进行评价,既要关注学生的知识掌握程度,也要关注他们在解决问题、合作交流等方面的表现。
4.根据学生的反馈,教师及时调整教学策略,以提高教学效果。
二、教学目标
(一)知识与技能
1.理解并掌握一元二次方程在利率问题中的应用,能够运用一元二次方程解决实际问题。
2.学会分析利率问题中的数量关系,建立一元二次方程模型,并运用方程求解方法解决问题。
3.能够运用一元二次方程的求解方法,解决类似利率问题的其他实际应用问题,提高数学应用能力。
4.通过解决利率问题,使学生掌握基本的数学运算技能,提高数学逻辑思维能力。
(二)讲授新知
1.首先,我会带领学生回顾一元二次方程的基本概念,包括方程的定义、一般形式、求解方法等。
2.接下来,我会结合小明存款的例子,引导学生建立一元二次方程模型。在此过程中,讲解如何从实际问题中抽象出数学问题,以及如何运用一元二次方程求解。

初中数学教案案例模板范文(15篇)

初中数学教案案例模板范文(15篇)

初中数学教案案例模板范文(15篇)初中数学教案案例模板范文篇1教材分析:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。

教材通过一元二次方程a_2+b_+c=0(a≠0)的根_1、_2得出一元二次方程根与系数的关系,以及以数_1、_2为根的一元二次方程的求方程模型。

然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。

体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:一元二次方程根与系数的关系如果a_+b_+c=0(a≠0)的两根是_1,_2,那么_1+_2=,_1_2=。

问题6.在方程a_+b_+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4a c≥0时,_1+_2=,_1_2=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:3x(x-1)=5(x+2)
可化为3x2-8x-10=0
二次项系数:3
一次项系数:-8
常数项:-10
当堂练习
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0) 和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
新旧知识联系,导入新课
通过具体题目的运算引出“一元二次方程”的概念”
通过回忆,激发学生的学习兴趣。
自主探究
回答下列问题:
(1)上面方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?还是与多项式一样只有式子?
1、一元二次方程的概念:
等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
(让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的。)
【教学环节安排】
环节
教学问题设计
教学活动设计
问题最佳
解决方案
创设情境
问题:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?
通过解决实际问题引入一元二次方程的概念,同时可提高学生利用方程思想解决实际问题的能力。
加强对概念的理解
通过题目,把握“一元二次方程”的内涵和外延
理解公式及其派生的概念
固所学并进行检测
学生总结,教师点评
第22章一元二次方程
22.1一元二次方程
第1课时
【教学任务分析】
主备人
胡兴中单位九年级数来自组使用人胡兴中




知识与
技能
1.了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;
2.应用一元二次方程概念解决一些简单题目.
过程与
方法
1.通过设置问题,建立数学模型, 模仿一元一次方程概念给一元二次方程下定义
2.选做::若x2-2xm-1+3=0是关于x的一元二次方程,求m的值
教后反思
本节课从实际例子引入,学生采用同桌交流得到一元二次方程的概念。增进友谊,时间上不浪费而且方程间的异同集两人力量。对于一元二次方程ax2+bx+c=0中a≠0这一条件限制,学生逆用思维的方式解释,让我认识到学生在不知不觉中对反面论证这一重要数学思维方法已有所领会。
检验学生对于概念的利用情况是否熟练。
尝试应用
1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
2.把下列方程化为一元二次方程的形式,并写出它的二次项系数、常数项:
方程
一般形式
二次项系数
2.体会解决问题能力,发展实践能力与创新意识.
情感态度与价值观
通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。
重点
一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
难点
通过提出问题,建立一元二次方程的数学模型, 再由一元一次方程的概念迁移到一元二次方程的概念.
常数项
3x2=5x-1
(x+2)(x-1)=6
通过具体题目的运算引出“一元二次方程”的概念”
检验学生的学习效果,发现并纠正学生理解中的错误。
成果展示
1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3x(x+2)=4(x-1)+7
(2)(2x+3)2=(x+1)(4x-1)
(3)有等号吗?还是与多项式一样只有式子?
综上所述,一般地,任何一个关于x的一元二次方程, 经过整理, 都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
题目:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
一、复习导入
二、自学
三、导学
1、学习概念
2、列方程
3、推导公式
四、互学
五、巩固练习
六、归纳总结
七、布置作业
复习一元一次方程
课文第24页的问题:人体雕像设计
引导学生发现方程最高次数为二
引导学生计算课文25页的问题一与问题二
回答下列问题:
(1)上面两个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
理解公式及其派生的概念
重点关注学生的过程。
补偿提高
已知关于x的方程(k2-1 )x2 +(k+1)x-2=0
(1 )k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。
(2)k为何值时,此方程为一元一次方程
加强对概念的理解
学生总结,学生互相补充
作业设计
1.必做:教材P27习题2
布置教材P27第一题
本节课我们要掌握哪些东西?
1.必做:教材P27习题2 2.选做::若x2-2xm-1+3=0是关于x的一元二次方程,求m的值
回忆一元一次方程
试着计算该题
理解“一元二次方程”的概念
根据题意列方程
(1)都只含一个未知数x;
(2)它们的最高次数都是2次的;
(3) 都有等号,是方程.
找出二次项、二次项系数、一次项、一次项次数和常数项
相关文档
最新文档