调节阀选型归纳32页PPT

合集下载

调节阀的选型

调节阀的选型

调节阀的选型0 引言调节阀是调节系统中非常重要的一个环节,在生产实践中控制系统的正常与否,常常涉及到调节阀的问题。

调节阀所反应出来的问题又多集中在调节阀的工作特性和结构参数上,如流通能力、公称通径、阀芯引程及流量特性等。

在这些参数中,流通能力更重要,它的大小直接反映调节阀的容量,它是设计选型中的主要参数。

因此,调节阀的选择主要从以下几个因素进行考虑。

1 选择原则(1)满足自控系统的要求;(2)满足经济性的要求。

2 调节阀流量系数Cv及口径的计算(1) 流量系数C v(流通能力)的定义为:调节阀前后的压差为1Kg/cm2,重度为1g/cm2流体,每小时通过阀门的体积流量(m3/h)。

调节阀流量系数C v的计算方法很多,也比较繁琐,以下列出几种主要流通介质的C v值的计算方法。

表1 液体阻塞流:当阀前压力P1保持一定而阀后压力P2逐渐降低时,流经调节阀的流体流量会增加到一个极限值,这时即使P2再继续降低,流量也不会再增加,此极限流量即为阻塞流。

显然,形成阻塞流之后,相当于流量已达到饱和状态(临界状态),这时流经调节阀的流量不再随调节阀前后的压差△P的增加而增加。

因此,流体在阀内是否形成阻塞流,调节阀C值的计算公式将不一样。

判断是否是属于阻塞流的情况,就可以决定取用相应的C值计算公式。

(表2)情况相同。

表2 气体和蒸汽上表2中:C v—调节阀流量系数C f—临界流量系数G f—流体流动温度下的比重(水G f=1,15℃;空气G f=288G/T)G—气体比重(空气G=1.0)P1—调节阀进口压力,0.1MPa(绝对)P2—调节阀出口压力,0.1MPa(绝对)P v—液体流动温度下的饱和蒸汽压力,0.1MPa(绝对)P c—热力学临界压力,0.1MPa(绝对)Δp—压降,100kPa(ΔP=P1- P2)Δp s—口径计算用最大压降,0.1MPaΔp s=P1-(0.96- 0.28P v/P c)P v若P v<0.5P1,ΔP s=P1- P vq—液体流量,m3/hQ—气体流量,标准m3/h(15℃,绝对压力为101.3kPa时)T—绝对温度,K(K=273+℃)T sh—蒸汽过热温度,℃(饱和蒸汽T sh=0)W—流量,t/h(2) 阀口径的计算,根据生产能力、设备负荷、以被控介质的工况决定流通能力计算所需的数据,求得最大、最小流量时的C v max和C v min。

调节阀基础知识ppt课件

调节阀基础知识ppt课件

例式和两位式两种。所谓比例式是指输入信 号压力与推杆的行程成比例关系,这时它必 须与阀门定位器配用。两位式是根据输入执 行机构活塞两侧的操作压力差来完成的。活 塞由高压侧推向低压侧,就使推杆由一个极
用的有:
端位置推移至另一个极端位置。
①曲柄连杆式;
②齿轮齿条式; ③活塞螺旋式。
1035齿条式气缸角行程执执行机构
角行程调节阀:

#3高加低负荷疏水调
节阀
b.切断阀
如六期高、低加危急疏水调
节阀
可编辑课件PPT
5
执行器组成
执行器按其能源形式,分为气动、电动、液动三类。气动执行器由 气动执行机构和调节机构(通常称调节阀)两部分组成。
执行机构
FIELDVUE
阀门定位器
调节阀
可编辑课件PPT
6
执行器组成
在某些特殊场合,还需要配置一些辅助装置如:阀门定位器和手轮机构。 阀门定位器可提高调节质量,改善执行器的性能。手轮机构可以在调节系 统因停电、停气、调节器无输出或执行机头薄膜损坏失灵时由人直接操作, 保证生产的正常运行。
可编辑课件PPT
17
直行程阀门执行机低加正常疏水等
单弹簧
气开:反作用执行机构 可编辑课件PPT
气闭:正作用执行机构 18
顶装手轮
定位器
657气闭正作用执行机构
667气开反作用执行机构
667气开反作用调节阀
直行程阀门执行机构及定位 器—手轮的形式及应用
变与阀座之间的流通面积;角行程
阀芯通过旋转运动来改变与阀座间
的流通面积。
可编辑课件PPT
2


行 程 反 作 用
气动调节阀:气动调节阀就是以压缩空气为动力源,以气缸为执行器, 并借助于电/气阀门定位器、转换器、电磁阀、保位阀等附件驱动阀门, (阀芯阀座相对移动)来实现开关量或比例式调节,接收控制信号: 4—20mA电流信号并将电信号转变为压力信号(由定位器完成或电磁 阀完成)来调节管道介质的流量、压力、温度等各种工艺参数。

调节阀的选型归纳详解

调节阀的选型归纳详解

湖南石油化工职业技术学院
5.小流量阀
适用于较小流量的调节要求泄露量小的场合,具有结构简单 紧凑、密封性能好、使用可靠、体积小、重量轻、安装 维护方便等特点。
气动小流量调节阀
Hunan Petrochemical Vocational Technology College
电动小流量调节阀
湖南石油化工职业技术学院
6.角形阀
角形阀的特点如下:
① 节流、受力形式完全同单座阀,泄露量小,许用压差也小。 ② 流路简单,具有自洁性能,适用于不干净介质场合,还可进一步改为 放堵角阀。 ③ 流阻小,具有双座阀的流量系数。 ④ 适合于需要角形连接,高粘度或悬浮物和颗粒状物的场合。
电 动 角 形 阀
Hunan Petrochemical Vocational Technology College
湖南石油化工职业技术学院
7.高压阀(角形)
高压阀:指工称压力PN 为1080Mpa的阀门。
高压阀的特
点如下:耐
高压,成本高 。适合高静压 ,大压差,有 气蚀的场合。 如果介质对阀 芯的不平衡力 较大,必须选 配定位器
ZMBS气动薄膜高压角形调节阀
Hunan Petrochemical Vocational Technology College
Hunan Petrochemical Vocational Technology College
ZDLS电子式电动高压角形(多级)调节阀
湖南石油化工职业技术学院
9.阀体分离阀
阀体分离器:阀体可拆上、下两部分,便于清洗阀芯、阀体,可采用 耐磨蚀衬压件,加工、配装要求较高。
汽水分离阀
伯尔梅特分离阀
Hunan Petrochemical Vocational Technology College

调节阀PPT演示文稿

调节阀PPT演示文稿

流体体积流量计算公式为: Q C ( p1 p2 )
阻塞流是指, 当阀前压力p1保持恒定而逐步降低阀后压力p2时, 流经调 节阀的流量会增加到一个最大极限值, 若再继续降低p2流量也不再增加, 此极限流量称为阻塞流.
此时,调节阀的流量与阀前后压降 △p=p1-p2的关系以不再遵循公式
C
Q
的规律. 右图中,
Fk---比热比系数,气体与空气的绝热 指数之比, Fk=k/kair (kair=1.4) (表4.9)
② 液体(不可压缩流体)的阻塞流
ⅰ) 产生阻塞流的原理
p1 p2 调节阀内流体压力梯度图
24
第24页,共69页。
产生的条件: p p1 p2 FL2 ( p1 FF pv )
p1---调节阀进入端压强,
正作用: 信号压力增加时,推杆向下移动 (ZMA) 反作用: 信号压力增大时,推杆向上移动 (ZMB)
执行机构作用:将气压p--->阀杆位移L
9
第9页,共69页。
u(t): 控制器输出( 4~20 或 0~10 mA DC) pc : 调节阀气动控制信号; l: 阀杆相对位置; f : 相对流通面积;
由上两式可得调节阀流量方程
Q AF p1 p2
v
(4-3) A---与单位制有关的常数
当 ( p1 p2 ) 不变时,流量Q随 F v 而变化
根据C的定义,在流量方程中令p1-p2=1, ρ=1可得
CA F
v
因此, 对于其它的阀前后压降和介质密度, 则有
C
Q
( p1 p2)
(4-4)
注意: 流量系数C不仅与流通截面积F(或阀公称直径Dg)有关,而且还 与阻力系数ξv有关.同类结构的调节阀在相同的开度下具有相近的阻 力系数,因此口径越大流量系数也随之增大; 口径相同类型不同的调 节阀,阻力系数不同,流量系数也各不相同.

阀门选型知识简介分解.pptx

阀门选型知识简介分解.pptx

1 (2) 3
4
5
6 ( 7)

阀 门 类 别















ቤተ መጻሕፍቲ ባይዱ



第15页/共24页








四、阀门的编号
1 (2) 3
4
5
6 ( 7)
阀门类型
Z:闸阀J: 截止阀 X:旋塞阀 H:止回阀 Y:减压阀 A:安全阀 Q:球阀 D:蝶阀
连接形式
1:内螺纹 2:外螺纹 4:法兰 6 :焊接
3:明杆平行单闸板 4:明杆平行双闸板 5:暗杆楔式单闸板 6:暗杆楔式双闸板
公称压力(kgf/cm2)
第16页/共24页
四、阀门的编号
• 例: D941H -10 阀门的含义:
D 9 4 1 H-10
10—公称压力10Kgf/cm2 H—密封圈或衬里为不锈钢 1—明杆楔式单闸阀 4—法兰连接 驱动方式:电动 D—蝶阀
阀门材料及腐蚀 余量
1-碳钢 2-不锈钢 3-铜镍合金 4-铜铝合金 5-铸铁
端部连接形 式
F-平面法兰 J-钢圈法兰 R-凸面法兰 S- NPT螺纹 W-对焊 X-插焊 L-加长阀体 M-特殊端部
附加说明
F-通孔型 R-缩孔型 H-耐高温 L-升降型(单向阀) A-角型 E-偏心 P-活塞型(单向阀) Y-Y型(截止阀) C-加衬里 W-夹板式
第3页/共24页
二、阀门的分类
按用途和作用分类:
截断类:主要用于截断或接通介质流。如闸阀、截止阀、 球阀、碟阀、旋塞阀、隔膜阀

调节阀选型讲义

调节阀选型讲义

调节阀选型培训讲义一、调节阀的用途上世纪中叶以来,生产过程自动化是大规模工业生产中保证效益和质量的重要手段。

在生产过程自动调节系统中,调节阀是重要的环节之一。

调节阀又称控制阀,是执行器的主要类型。

系统中,调节阀接受仪表输出的控制信号,驱动动力操作去改变被调介质的流量和压力,是一种终端元件。

在工艺系统中,调节阀属于节流部件,起一个变阻元件的作用,其核心是一个可变位移的阀芯与不移动的阀座之间形成的节流窗口(节流面积),改变位置就可以改变调节阀的阻力特性,进而改变工艺系统的阻力特性,达到调节流量的目的,对生产中某些工艺参数(流量、压力、温度、液位等)进行自动调节,实现生产过程自动化。

调节阀主要应用在石油、化工、电站、轻工、造纸、医药、船舶、市政(包括环保)等行业的工业自动化系统中。

由于它对工业系统中的安全、高效运行有着举足轻重的作用,正确选择一个适用的调节阀就显得非常重要。

二、调节阀的类型和结构调节阀主要由阀、执行机构、调节阀附件三大部分组成。

1、阀阀由阀体、阀内件(阀芯、阀板、阀座、套筒等)、阀盖、填料函等组成,它需要具有以下基本要素:结构形式、公称通经、公称压力、与管道连接形式、适用温度范围、阀体和内件的材质、阀座直径和额定流量系数(Cv、Kv等)、流量特性、阀座泄露等级等。

2、执行机构执行机构通常为气动和电动两种,也有液动、气-液联动或其他特殊形式。

A:一般来说,气动执行机构分为薄膜式和气缸活塞式两种。

薄膜式主要为薄膜弹簧式,特殊情况下也有薄膜无弹簧式;气缸活塞式按与阀连接方式分为横式(一般与角行程阀连接)和竖式(与直行程阀连接)两种;按作用形式分为单作用式和双作用式两种。

B:电动执行机构主要分为直行程电动执行机构、角行程电动执行机构、多回转电动执行机构。

3、调节阀附件最常用的调节阀附件是阀门定位器以及与之必须配套的空气过滤减压阀。

其他附件种类较多,到目前为止我们曾选用过的有:阀位置信号发生器(行程开关、阀位变送器)、手轮机构、电磁换向阀、气动加速器、快速排气阀、气控换向阀、保位阀、阻尼(速度调节器)、三断保护装置、气源保护装置(内含电磁换向阀、气控换向阀、止逆阀、储气罐)等。

建议收藏——调节阀选型方法总结

建议收藏——调节阀选型方法总结

建议收藏——调节阀选型方法总结自动控制系统是通过执行器对被控对象进行作用的。

调节阀是生产过程自动化控制系统中最常见的一种执行器。

调节阀直接与流体接触控制流体的压力或流量。

正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程对于自动控制系统的稳定性起着十分重要的作用。

如果计算错误,选择不当,将直接影响控制系统的性能,使得自动控制系统产生震荡甚至不能正常运行。

因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑的重要环节。

1调节阀结构形式的选择常用的调节阀结构形式有直通单座阀、直通双座阀、套筒阀、偏心旋转阀、蝶阀、全功能超轻型调节阀、球阀,应当根据不同的使用情况,结合不同结构形式阀门各自的特点,从调节性能、适用温度、适用口径、耐压、适用介质条件、切断差压、泄流量、压力损失、重量、外观、成本等方面对调节阀的结构形式进行选择。

对调节阀进行结构的选择时,要根据相应的管路及介质条件,按照如下优选顺序进行选择①全功能超轻型调节阀→②蝶阀→③套筒阀→④单座阀→⑤双座阀→⑥偏心旋转阀→⑦球阀,只有当前一优选级别的阀门再某一方面不合适时,才考虑选择下一级类型的阀门。

注:关于调节阀的调节特性的评定调节阀的流量调节性能一般通过流量特性、可调比、小开度工作性能、Kv值和动作速度进行综合评价。

调节性能以其流量特性曲线进行衡定,一般认为等百分比特性为最优,其调节稳定,调节性能好,最利于流量压力调节。

而抛物线特性又比线性特性的调节性能好,快开特性为最不利于流量调节的流量特性。

因此在选用调节阀时,一般希望调节阀流量特性曲线为等百分比型。

可调比反映了调节阀的可调节流量范围,调节阀的可调比就是调节阀所能控制的最大流量与最小流量之比。

可调比也称可调范围,以R来表示,即R=Qmax/Qmin,Qmax为调节阀的最大可控流量,Qmin为调节阀的最小可控流量。

一般认为R的值越大,则调节阀的可调节范围越。

调节阀类型及选型

调节阀类型及选型

调节阀类型及选型调节阀又名控制阀,通过接受调节控制单元输出的控制信号,借助动力操作去改变流体流量。

调节阀一般由执行机构和阀门组成。

如果按其所配执行机构使用的动力,调节阀可以分为气动调节阀、电动调节阀、液动调节阀三种,即以压缩空气为动力源的气动调节阀,以电为动力源的电动调节阀,以液体介质(如油等)压力为动力的电液动调节阀,另外,按其功能和特性分,还有水力控制阀、电磁阀、电子式、智能式、现场总线型调节阀等。

调节阀的阀体类型选择调节阀的阀体种类很多,常用的阀体种类有直通单座、直通双座、角形、隔膜、小流量、三通、偏心旋转、蝶形、套筒式、球形等。

在具体选择时,可做如下考虑:(1)阀芯形状结构主要根据所选择的流量特性和不平衡力等因素考虑。

(2)耐磨损性当流体介质是含有高浓度磨损性颗粒的悬浮液时,阀的内部材料要坚硬。

(3)耐腐蚀性由于介质具有腐蚀性,尽量选择结构简单阀门。

(4)介质的温度、压力当介质的温度、压力高且变化大时,应选用阀芯和阀座的材料受温度、压力变化小的阀门。

(5)防止闪蒸和空化闪蒸和空化只产生在液体介质。

在实际生产过程中,闪蒸和空化会形成振动和噪声,缩短阀门的使用寿命,因此在选择阀门时应防止阀门产生闪蒸和空化。

调节阀执行机构的选择为了使调节阀正常工作,配用的执行机构要能产生足够的输出力来保证高度密封和阀门的开启。

对于双作用的气动、液动、电动执行机构,一般都没有复位弹簧。

作用力的大小与它的运行方向无关,因此,选择执行机构的关键在于弄清最大的输出力和电机的转动力矩。

对于单作用的气动执行机构,输出力与阀门的开度有关,调节阀上的出现的力也将影响运动特性,因此要求在整个调节阀的开度范围建立力平衡。

执行机构类型的确定对执行机构输出力确定后,根据工艺使用环境要求,选择相应的执行机构。

对于现场有防爆要求时,应选用气动执行机构。

从节能方面考虑,应尽量选用电动执行机构。

若调节精度高,可选择液动执行机构。

如发电厂透明机的速度调节、炼油厂的催化装置反应器的温度调节控制等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档