人教版数学七年级上册 代数式单元测试卷(含答案解析)

合集下载

人教版七年级数学上册《第三章代数式》单元测试卷及答案

人教版七年级数学上册《第三章代数式》单元测试卷及答案

人教版七年级数学上册《第三章代数式》单元测试卷及答案【主干体系建】思维导图扫描考点【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是( )A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= ( )A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是( )A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 ( )A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= ( )A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 ( )A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.参考答案【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是(C)A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为-6.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花(4a+10b)元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= (A)A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是(C)A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 (B)A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= (C)A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 21 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 (C)A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.【解析】(1)由题图可得,新房的面积为(a2+2a+4b)m2. (2)当a=5,b=6时a2+2a+4b=52+2×5+4×6=25+10+24=59(m2)所以这套新房铺地板砖所需的总费用为59×90=5 310(元).。

最新七年级数学代数式单元测试卷(含答案解析)

最新七年级数学代数式单元测试卷(含答案解析)

一、初一数学代数式解答题压轴题精选(难)1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。

七年级上册数学第三章《代数式》单元测试(含答案)

七年级上册数学第三章《代数式》单元测试(含答案)

七上第三章《代数式》单元测试班级:___________姓名:___________得分:___________ 一、选择题1.有下列各式:x−y3,−15a2b2,1y,1π,√x.其中单项式有()A. 1个B. 2个C. 3个D. 4个2.已知a,b为自然数,则多项式12x a−y b+2a+b的次数应当是()A. aB. bC. a+bD. a,b中较大的数3.某校七年级1班有学生a人,其中女生人数比男生人数的45多−(−2)人,则女生的人数为().A. 4a+159B. 4a−159C. 5a−159D. 5a+1594.若代数式x2+ax+9y−(bx2−x+9y+3)的值恒为定值,则−a+b的值为()A. 0B. −1C. −2D. 25.已知代数式x+2y+1的值是3,则代数式−2x−4y+2的值是()A. −2B. −4C. −6D. 不能确定6.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如多项式f(x)=ax3+bx+1,当x=1时,f(1)=6,那么f(−1)等于()A. 0B. −3C. −4D. −57.若(a+b)2017=−1,a−b=1,则a2017+b2017的值是()A. −1B. 0C. 1D. 28.边长为a的正方形,将边长减少b以后得到一个较小的正方形,所得较小正方形的面积比原来正方形的面积减少了().A. b2B. –b2+2abC. 2abD. a2–b29.有这样一道题,“当x=1213,y=−0.78时,求多项式7x3−6x3y+3x2y+3x3+6x3y−3x2y−10x3的值”.同学甲计算时用x=−1213,y=0.78代入,同学乙计算时用x=1213,y=0.78代入,结果两人的计算结果都正确,则原因是()A. 这个代数式的值只跟x,y的绝对值大小有关与符号无关B. 代数式化简结果只含有x,y的偶次项的原因C. 代数式化简结果x,y中其中一项系数为零,还有一项刚好与符号无关D. 代数式化简结果为零,与x,y的大小均无关系10.如图,若|a+1|=|b+1|,|1−c|=|1−d|,则a+b+c+d的值为()A. 0B. 2C. −2D. −1二、填空题11.一艘轮船沿江逆流航行的速度是28km/ℎ,江水的流速是2km/ℎ,则该轮船沿江顺流航行的速度是________.12.已知a2−2b−1=0,则多项式4b−2a2+5的值等于 ___ .13.一组按照规律排列的式子:x,x34,x59,x716,x925,⋯,其中第8个式子是_________.14.一个多项式与m2+m−2的和是m2−2m.这个多项式是______.15.一个两位数的个位数字为a,十位数字为b,这个两位数可表示为__.16.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为________。

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案一、整体代入法求值整体代入法求值,就是将一个复杂的表达式或方程看作一个整体,然后将其代入到另一个表达式或方程中进行求解的方法。

通过“比较各项系数”“拼拆各项构造整体”“比较各项系数”“拼拆各项构造整体”等方法“化繁为简”,将复杂的问题分解成若干个简单的问题,再逐一解决,最终汇聚成整体的答案。

一、 整体代入——比较各项系数1. 若代数式b a -2的值为1 ,则代数式b a 247-+ 的值为( ) .A. 7B. 8C. 9D. 102. 若a 、b 互为相反数,c 、d 互为倒数,则()=-+cd b a 3 .3. 已知代数式y x 2+的值是3 ,则代数式142-+y x 的值是 .4. 若6=+b a ,则=--b a 2218 ( ) .A. 6B. 6-C. 24-D. 125. 已知,0122=++a a 求3422-+a a 的值 . 6. 若72=-b a ,则b a 426+- 的值为 .7. 如果代数式b a -的值为4 ,那么代数式522--b a 的值为 . 8. 已知代数式y x -2的值是2- ,则代数式y x +-21 的值是 .二、 整体代入——拼拆各项构造整体1. 请回答下列各题:( 1 )化简:()().363252222y x xy xy y x --+ ( 2 )化简求值:已知,2,9==+ab b a 求()()⎪⎭⎫ ⎝⎛+--++-b ab a ab ab ab 2141025131532的值.2. 已知,12,5=-=+c b b a 则c b a -+2 的值为( ) . A. 17B. 7C. 17-D.7-3. 已知5=-b a ,2=+d c 则()()d a c b --+的值是( ) .A.3-B. 3C.7-D. 74. 已知3=-b a ,2=+dc 则()()d a c b --+ 的值为 .5. 已知,6,1422-=-=+bc b bc a 则22b a+ 的值是 ,bc b a 3222+-的值是6. 已知,5,14=-=+ab b a 求()()[]a b ab a b ab 65876+--++ 的值 .三、 整体代入——比较各项系数1. 代数式22++x x 的值为0 ,则代数式3222-+x x 的值为( ) . A. 6 B. 7 C. 6- D. 7-2. 解答下列问题:( 1 )若代数式7322++x x 的值为 8 ,那么代数式2025962++x x 的值为( 2 )若5,7==+xy y x .则代数式xy y x +--228的值为 ( 3 )若,5,162244=-=+xy y x y x 则()()()422244253y xy xy y x y x----- 的值是多 少?3. 若代数式y x 32-的值是1 ,那么代数式846+-x y 的值是 .4. 已知a ,b 互为相反数, c ,d 互为倒数, x 的绝对值为2 .求()()20252cd x cd b a x -+++-的值 .5. 已知a 与b 互为相反数,c 与d 互为倒数, m 的值为6-,求m cd mba +-+的值 . 6. 若代数式5322++x x 的值是 8 ,则代数式7642-+x x 的值是( ) . A. 1- B. 1 C. 9- D. 9 7. 若1-=-n m ,则()n m n m 222+-- 的值是 .四、 整体代入——拼拆各项构造整体1. 若32-=+mn m,1832=-mn n 则224n mn m -+ 的值为 .2. 已知2,522-==+ab b a ,求代数式()()222222353242b b ab ab ab a ++---+的值.3. 已知:1,4-==-mn n m .求:()()()mn n m m n mn n m mn ++--+-++-4223322的值 . 4. 已知(),07535172=-++-+y x y x 求=+y x 32 .5. 已知,62,1422-=-=+bc b bc a 则=-+bc b a 54322 ( ) .A. 18B. 18-C. 20D. 86. 已知2-=-+a c b ,则()()=-++⎪⎭⎫ ⎝⎛+-+--a c b c b a c b c b a a 2223132323232 参考答案一、 整体代入——比较各项系数【解答】()b a b a -+=-+227247把12=-b a 代入上式得:927=+=∴原式. 答案:C【解答】b a 、 互为相反数,d c 、互为倒数.,1,0==+∴cd b a(),3303-=-=-+∴cd b a 答案:3-【知识点】倒数的定义1. 【解答】由题意可知:,32=+y x 原式().516122=-=-+=y x【解答】,6=+b a(),612182182218=-=+-=--∴b a b a 答案:A 2. 【解答】,0122=++a a ()550512234222=-=-++=-+∴a a a a3. 【解答】()b a b a 226426--=+-,其中,72=-b a 所以原式8726-=⨯-=4. 【解答】,4=-b a ()35425252=-⨯=--=--b a b a5. 【解答】22-=-y x()()3212121=--=--=+-∴y x y x二、 整体代入——拼拆各项构造整体1.【解答】(1)原式222222913361510xy y x y x xy xy y x +=+-+=(2)原式b ab a ab ab ab 24252210---++-=(),255822524210b a ab ba ab +--=--⎪⎭⎫ ⎝⎛+-+-=其中.2,9==+ab b a.5206511618922558-=--=⨯-⨯-=∴原式 2.【解答】12,5=-=+c b b a()()171252=+=-++=-+∴c b b a c b a .答案:A3.【解答】2,5=+=-d c b a()()325-=+-=++-=+-+=∴d c b a d a c b 原式.答案:A4.【解答】,d a c b +-+=原式()()132-=-=--+=+-+=b a d c ba d c5.【解答】()();86142222=-+=-++=+bc b bc a b a()()();346282322222=--=--+=+-bc bbc abc b a答案:8;346.【解答】()34228=++=++=ab b a a b ab 原式三、整体代入——比较各项系数1. 【解答】2,0222-=+=++x x x x 即()734322-=--=-+=x x 原式.答案:D2. 【解答】(1)87322=++x x,1322=+∴x x则原式(),20282025320253232=+=++=x x(2),5,7==+xy y x()xy y x ++-=∴28原式151485728-=+-=+⨯-=(3)()()()422244253y xy xy y xyx -----()()115165,16,3225322442244422244=-=∴=-=+∴--+=+-+--=原式xy y x y x xy y x y x y xy xy y x y x3. 【解答】,132=-y x()6828322=+-=+--=∴y x 原式【解答】b a , 互为相反数,d c ,互为倒数,x 的绝对值为2,2,1,0±===+∴x cd b a当2=x 时,原式()();11241210220252=--=-+⨯+-=当2-=x 时,原式()()()();51241210220252=-+=-+-⨯+--= 所以()()20252cd x cd b a x -+++-的值为1或5.【解答】b a , 互为相反数0=+∴b ad c , 互为倒数1=∴cd.5610610=+-=-+-=+-+m cd mba 4. 【解答】由题意可知:85322=++x x,3322=+∴x x().1732276422-=-+=-+∴x x x x 答案:A5. 【解答】1-=-n m()()()()()3121222222=-⨯--=---=+-=n m n m nm n m四、整体代入——拼拆各项构造整体1. 【解答】方法一:,183,322=--=+mn n mn m∴将这两个等式的两边相减得:(),183322--=--+mn n mn m,21322-=+-+∴mn n mn m ,21422-=-+∴n mn m方法二:原式(),332222mn n mn m n mn mn m --+=-++= 将183,322=--=+mn n mn m 代入 得原式21183-=--=2.【解答】原式,691524822222b b ab a b ab a +-+--+=(),137,71372222ab b a b ab a ++-=-+-=当2,522-==+ab b a 时 原式612635-=--=.3. 【解答】原式,4223322mn n m m n mn n m mn ---+--++-=(),36336n m mn nm mn -+-=-+-=把1,4-==-mn n m 代入得:原式18126=+=.4. 【解答】 已知条件17-+y x 和()27535-+y x 都是非负数,且(),07535172=-++-+y x y x .3932,5127535170753517=+∴⎩⎨⎧==∴⎩⎨⎧=+=+∴=-+=-+∴y x y x y x y x y x y x5. 【解答】bc b a 54322-+()()182414324322=-⨯=-++=bc b bc a6. 【解答】原式().382323222=⨯=--=c b a。

代数式单元测试卷(初中数学)附答案

代数式单元测试卷(初中数学)附答案

代数式单元测试卷一.选择题(共10小题共20分)1.计算-3(x -2y )+4(x -2y )的结果是( )A .x -2yB .x+2yC .-x-2yD .-x+2y2.若2y m+5x n+3与-3x 2y 3是同类项,则m n =( )A .21B .21- C .1 D .-2 3.下列各式中,是3a 2b 的同类项的是( )A .2x 2yB .-2ab 2C .a 2bD .3ab4.若-x 3y m 与x n y 是同类项,则m+n 的值为( )A .1B .2C .3D .45.下列计算正确的是( )A .3a -2a =1B .x 2y-2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax-2xa=ax6.若单项式2x n y m-n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =37.下列判断错误的是( )A .若x <y ,则x +2010<y +2010B .单项式7432y x -的系数是-4 C .若|x -1|+(y -3)2=0,则x =1,y =3 D .一个有理数不是整数就是分数8.化简m-n-(m+n )的结果是( )A .0B .2mC .-2nD .2m -2n 9.已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( )A .2a+2bB .2b +3C .2a -3D .-110.若x-y =2,x-z =3,则(y-z )2-3(z-y )+9的值为( )A .13B .11C .5D .7 二.填空题(共10小题共30分)11.如果单项式-xy b+1与21x a-2y 3是同类项,那么(a-b )2015= . 12.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 .13.若-2x 2y m 与6x 2n y 3是同类项,则mn = .14.单项式-4x 2y 3的系数是 ,次数 .15.单项式322y x -的系数与次数之积为 . 16.多项式 与m 2+m-2的和是m 2-2m .17.多项式-2m 2+3m -21的各项系数之积为 . 18.在代数式3xy 2,m ,6a 2-a +3,12,22514xy yz x -,ab 32中,单项式有 个,多项式有 个.19.单项式-2πa 2bc 的系数是 .20.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2013个单项式是 .三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(每小题4分)合并同类项①3a-2b-5a+2b②(2m+3n-5)-(2m-n-5)③2(x 2y+3xy 2)-3(2xy 2-4x 2y )22.(每小题4分)化简:(1)16x-5x+10x(2)7x-y+5x-3y+3(3)a 2+(2a 2-b 2)+b 2(4)6a 2b+(2a+1)-2(3a 2b-a )23.(6分)已知|a-2|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值。

人教版七年级上册数学 代数式单元测试卷 (word版,含解析)

人教版七年级上册数学 代数式单元测试卷 (word版,含解析)

一、初一数学代数式解答题压轴题精选(难)1.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.2.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.3.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。

人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案一、单选题1.下列各式中,符合代数式书写规则的是( )A .5x ⨯B .112xy C .2.5t D .1x y -÷2.当2m =-,5n =时,代数式()3m n -+的值是( )A .6B .6-C .9D .9-3.代数式()55y -的正确含义是( )A .5乘y 减5B .y 的5倍减去5C .y 与5的差的5倍D .5与y 的积减去54.小明家距离学校m p ,小明从家出发骑车h t 可到学校,若要提前1h 到校(1t >),则每小时需行驶( )A .1m p t ⎛⎫+ ⎪⎝⎭B .1m pt ⎛⎫- ⎪⎝⎭ C .m 1pt - D .m 1pt +5.已知5x =,2y =且x y x y +=--,则x y -的值为( )A .3±B .3±或7±C .3-或7D .3-或7-6.当2x =时,代数式31px qx ++的值为2024,则当2x =-时,代数式31px qx ++的值为( ) A .2022 B .2022- C .2021 D .2021-7.按如图所示的运算程序,能使运算输出的结果为1的是( )A .3x = 4y =B .=1x - 1y =-C .2x = 1y =-D .2x =- 3y =8.已知x ,y ()22310x y --=,则下列式子的值最大的是( ).A .x y +B .x y -C .xyD .y x9.如图所示的正方形是由四个等腰直角三角形拼成的,则阴影部分的面积为( )A .22m n +B .22m n -C .2mnD .4mn10.已知四个不同的整数a b c d 、、、满足等式()()()()2015122479a b c d ----=,则+++a b c d 的值为( )A .0B .2015C .2058D .2067二、填空题11.小明买单价p 元的商品3件,给卖家q 元,应找回 元.12.设a b 、互为相反数,、c d 互为倒数,则()2024a b cd +-值是 .13.学校买来20个足球,每个a 元,又买来b 个篮球,每个58元.2058a b +表示 ;当45a = 10b = 则2058a b += 元.14.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的 .三、解答题15.线段AB 上有一点C ,AC 的长度是BC 的3倍少2,若BC 的长度用x 表示,则表示出AB 的长度.16.已知有理数a ,b ,c ,d ,e 其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c d ab e +++的值.17.若||2a =,b 既不是正数也不是负数,c 是最大的负整数.(1)分别求出a 、b 、c 的值;(2)求2022a b c +-的值.18.如图,是由长方形、正方形、三角形及圆组成的图形(长度单位:m ).(1)用式子表示图中阴影部分的面积:(2)按照图所示的尺寸设计并画出一个新的图形,使其面积等于参考答案1.C2.D3.C4.C5.D6.B7.D8.A9.C10.C11.()3q p -12.1-13. 买20个足球和b 个篮球一共的价钱 1480 14.a a b +/a b a + 15.42x -16.162或152- 17.(1)2a =± 0b = 1c =-;(2)3或1 18.(1)(2)。

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为  岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)1.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。

( 2 )A:60×90%x=54x,B:50×60×95%+100×60×85%+(x-150)×60×75%=45x+1200.【分析】(1)根据A、B两家的优惠办法分别列式求出在两家批发需要的费用。

(2)根据题意列式分别表示出在A、B两家批发x千克太湖蟹(150<x<200)所需的费用。

(3)将x=170分别代入(2)种表示的在A、B两家批发所需费用的两个式子计算,然后再比较大小即可。

2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。

(2)根据x=40时,分别求出两种优惠方案所付费用,再比较大小,即可作出判断。

(3)抓住已知:两种优惠方案可同时使用,可以先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,计算出所需费用,再比较大小,可得出结论。

4.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示2和﹣3的两点之间的距离是________(2)数轴上表示x和﹣2的两点之间的距离表示为________.(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=________(4)若|x+3|+|x﹣5|=8,利用数轴求出x的整数值.【答案】(1)3;5(2)|x+2|(3)6(4)解:∵|x+3|+|x﹣5|=8,∴﹣3≤x≤5,∵x为整数,∴x=﹣3,﹣2,﹣1,0,1,2,3,4,5【解析】【解答】解:(1)数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=6;故答案为:3,5;|x+2|;6.【分析】(1)根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上两点间的距离是大数减小数,可得答案;(3)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案;(4)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案.5.小方家住户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区城铺设地砖.(1)求a的值.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米,装修公司有A、B两种活动方案,如表:活动方案木地板价格地砖价格总安装费A8折8.5折2000元B9折8.5折免收料费及安装费)更低?【答案】(1)解:根据题意,可得a+5=4+4,解得a=3;(2)解:铺设地面需要木地板:4×2x+a[10+6−(2x−1)−x−2x]+6×4=8x+3(17−5x)+24=75−7x;铺设地面需要地砖:16×8−(75−7x)=128−75+7x=7x+53;(3)解:∵卧室2的面积为21平方米,∴3[10+6−(2x−1)−x−2x]=21,∴3(17−5x)=21,∴x=2,∴铺设地面需要木地板:75−7x=75−7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.A种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元),22335>22165,所以小方家应选择B种活动方案,使铺设地面总费用(含材料费及安装费)更低.【解析】【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积−三间卧室的面积,所得的差为地砖的面积;(3)根据卧室2的面积为21平方米求出x,再分别求出所需的费用,然后比较即可.6.某垃圾处理厂,对不可回收垃圾的处理费用为90元/吨,可回收垃圾的分拣处理费用也为90元/吨,分拣后再被相关企业回收,回收价格如下表:垃圾种类纸类塑料类金属类玻璃类回收单价(元/吨)500800500200A,B,C三个小区12月份产生的垃圾总量分别为100吨,100吨和m吨。

(1)已知A小区金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍。

设塑料类的质量为x吨,则A小区可回收垃圾有________吨,其中玻璃类垃圾有________吨(用含x的代数式表示)(2)B小区纸类与金属类垃圾总量为35吨,当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元,求12月份该小区可回收垃圾中塑料类垃圾的质量。

(3)C小区发现塑料类与玻璃类垃圾的回收总额恰好相等,所有可回收垃圾的回收总金额为12000元,设该小区塑料类垃圾质量为a吨,求a与m的数量关系。

【答案】(1)60;60-8x(2)解:由题意得:塑料类和玻璃类垃圾总质量为:100×60%-35=25(吨),设塑料类垃圾为x,则玻璃类垃圾为:25-x, 得:800x+(25-x)×200+35×500-100×90=16500,解得x=.(3)解:设玻璃类垃圾质量为y,则800a=200x,∴x=4a,∴纸类和金属类垃圾质量之和为:m-5a,∴(m-5a)×500+800a+200×4a=12000,整理得:5m-9a=120.【解析】【解答】(1)设塑料类的质量为x吨,纸类垃圾为2x吨,金属类垃圾为5x,则A小区可回收垃圾为:100×60%=60(吨),玻璃类垃圾为:60-(x+2x+5x)=60-8x.故答案为:60,60-8x.【分析】(1)设塑料类的质量为x吨,纸类垃圾为2x吨,金属类垃圾为5x, 因为可回收垃圾占垃圾总量的60%,则A小区可回收垃圾有60吨,玻璃类垃圾为:60-(x+2x+5x),即60-8x.(2)先求出塑料类和玻璃类垃圾总质量,设塑料类垃圾为x,则玻璃类垃圾为25-x, 然后根据12月份总收益为16500元列方程,求出x即可.(3)根据塑料类与玻璃类垃圾的回收总额恰好相等把玻璃类垃圾质量用含a的代数式表示,则纸类和金属类垃圾质量之和也可用含a的代数式表示,再根据可回收垃圾的回收总金额为12000元列式,最后化简即可得出a与m的数量关系。

相关文档
最新文档