2009考研数学(农)考试大纲

合集下载

农学考研数学大纲

农学考研数学大纲

数学(农)大纲一.函数.极限.持续函数的概念及暗示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数根本初等函数的性质及其图形初等函数函数关系的树立数列极限与函数极限的界说及其性质函数的左极限和右极限无限小量和无限大量的概念及其关系无限小量的性质及无限小量的比较极限的四则运算极限消失的两个准则:单调有界准则和夹逼准则两个主要极限:函数持续的概念函数间断点的类型初等函数的持续性闭区间上持续函数的性质1. 懂得函数的概念,控制函数的暗示法,会树立应用问题的函数关系.2. 懂得函数的有界性.单调性.周期性和奇偶性.3. 懂得复合函数及分段函数的概念,懂得反函数及隐函数的概念.4. 控制根本初等函数的性质及其图形,懂得初等函数的概念.5. 懂得数列极限和函数极限(包含左极限和右极限)的概念.6懂得极限的性质与极限消失的两个准则,控制极限的四则运算轨则,控制应用两个主要极限求极限的办法. 7懂得无限小量的概念和基赋性质,控制无限小量的比较办法,懂得无限大量的概念及其与无限小量的关系.8. 懂得函数持续性的概念(含左持续与右持续),会断定函数间断点的类型.9. 懂得持续函数的性质和初等函数的持续性,懂得闭区间上持续函数的性质(有界性.最大值和最小值定理.介值定理),并会应用这些性质.二.一元函数微分学导数和微分的概念导数的几何意义函数的可导性与持续性之间的关系平面曲线的切线和法线导数和微分的四则运算根本初等函数的导数复合函数和隐函数的微分法高阶导数微分中值定理洛必达(L’Hospital)轨则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数的最大值与最小值1. 懂得导数的概念及可导性与持续性之间的关系,懂得导数的几何意义,会求平面曲线的切线方程和法线方程.2. 控制根本初等函数的导数公式.导数的四则运算轨则及复合函数的求导轨则,会求分段函数的导数,会求隐函数的导数.3. 懂得高阶导数的概念,控制二阶导数的求法.4. 懂得微分的概念以及导数与微分之间的关系,会求函数的微分.5. 懂得罗尔(Rolle)定理和拉格朗日(Lagrange)中值定理,控制这两个定理的简略应用.6. 会用洛必达轨则求极限.7. 控制函数单调性的判别办法,懂得函数极值的概念,控制函数极值.最大值和最小值的求法及应用.8. 会用导数断定函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时, 的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐进线(程度.铅直渐近线).三.一元函数积分学原函数和不定积分的概念不定积分的基赋性质根本积分公式定积分的概念和基赋性质定积分中值定理积分上限的函数与其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分办法与分部积分法反常(广义)积分定积分的应用1. 懂得原函数与不定积分的概念,控制不定积分的基赋性质与根本积分公式,控制不定积分的换元积分法与分部积分法.2. 懂得定积分的概念和基赋性质,懂得定积分中值定理,懂得积分上限的函数并会求它的导数,控制牛顿-莱布尼茨公式以及定积分的换元积分法与分部积分法.3. 会应用定积分盘算平面图形的面积和扭转体的体积.4. 懂得无限区间上的反常积分的概念,管帐算无限区间上的反常积分.四.多元函数微分学多元函数的概念二元函数的几何意义二元函数的极限与持续的概念多元函数偏导数的概念与盘算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和前提极值二重积分的概念.基赋性质和盘算1. 懂得多元函数的概念,懂得二元函数的几何意义2. 懂得二元函数的极限与持续的概念.3. 懂得多元函数偏导数与全微分的概念,会求多元复合函数一阶.二阶偏导数,会求全微分,会求多元隐函数的偏导数.4. 懂得多元函数极值和前提极值的概念,控制多元函数极值消失的须要前提,懂得二元函数极值消失的充分前提.5. 懂得二重积分的概念与基赋性质,控制二重积分的盘算办法(直角坐标.极坐标).五.常微分方程常微分方程的根本概念变量可分别的微分方程一阶线性微分方程1. 懂得微分方程及其阶.解.通解.初始前提和特解等概念.2. 控制变量可分别的微分方程和一阶线性微分方程的求解办法.一.行列式行列式的概念和基赋性质行列式按行(列)睁开定理1. 懂得行列式的概念,控制行列式的性质.2. 会应用行列式的性质和行列式按行(列)睁开定理盘算行列式.二.矩阵矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分须要前提陪同矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价1. 懂得矩阵的概念,懂得单位矩阵.对角矩阵.三角矩阵的界说及性质,懂得对称矩阵.否决称矩阵及正交矩阵等的界说和性质.2. 控制矩阵的线性运算.乘法.转置以及它们的运算纪律,懂得方阵的幂与方阵乘积的行列式的性质.3. 懂得逆矩阵的概念,控制逆矩阵的性质以及矩阵可逆的充分须要前提,懂得陪同矩阵的概念,会用陪同矩阵求逆矩阵.4. 懂得矩阵的初等变换和初等矩阵及矩阵等价的概念,懂得矩阵的秩的概念,控制用初等变换求矩阵的逆矩阵和秩的办法.三.向量向量的概念向量的线性组合与线性暗示向量组的线性相干与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系1. 懂得向量的概念,控制向量的加法和数乘运算轨则.2. 懂得向量的线性组合与线性暗示.向量组线性相干.线性无关等概念,控制向量组线性相干.线性无关的有关性质及判别法.3. 懂得向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩.4. 懂得向量组等价的概念,懂得矩阵的秩与其行(列)向量组的秩之间的关系.四.线性方程组线性方程组的克莱姆(Cramer)轨则线性方程组有解和无解的剖断齐次线性方程组的基本解系和通解非齐次线性方程组的解与响应齐次线性方程组的解之间的关系非齐次线性方程组的通解1. 会用克莱姆轨则解线性方程组.2. 控制非齐次线性方程组有解和无解的剖断办法.3. 懂得齐次线性方程组的基本解系的概念,控制齐次线性方程组的基本解系和通解的求法.4. 懂得非齐次线性方程组解的构造及通解的概念.5. 控制用初等行变换求解线性方程组的办法.五.矩阵的特点值和特点向量矩阵的特点值和特点向量的概念.性质类似矩阵的概念及性质矩阵可类似对角化的充分须要前提及类似对角矩阵实对称矩阵的特点值.特点向量及其类似对角矩阵1. 懂得矩阵的特点值.特点向量的概念,控制矩阵特点值的性质,控制求矩阵特点值和特点向量的办法.2. 懂得矩阵类似的概念和类似矩阵的性质,懂得矩阵可类似对角化的充分须要前提,会将矩阵化为类似对角矩阵.3. 懂得实对称矩阵的特点值和特点向量的性质.一.随机事宜和概率随机事宜与样本空间事宜的关系与运算概率的基赋性质古典范概率前提概率概率的根本公式事宜的自力性自力反复实验1. 懂得样本空间的概念,懂得随机事宜的概念,控制事宜的关系与运算.2. 懂得概率.前提概率的概念,控制概率的基赋性质,管帐算古典范概率,控制概率的加法公式.减法公式.乘法公式.全概率公式以及贝叶斯(Bayes)公式.3. 懂得事宜的自力性的概念,控制用事宜自力性进行概率盘算;懂得自力反复实验的概念,控制盘算有关事宜概率的办法.二.随机变量及其散布随机变量随机变量的散布函数的概念及其性质离散型随机变量的概率散布持续型随机变量的概率密度罕有随机变量的散布随机变量函数的散布1.懂得随机变量的概念,懂得散布函数的概念及性质,管帐算与随机变量相接洽的事宜的概率.2.懂得离散型随机变量及其概率散布的概念,控制散布.二项散布.泊松(Poisson)散布及其应用.3.懂得持续型随机变量及其概率密度的概念,控制平均散布.正态散布.指数散布及其应用,个中参数为的指数散布的概率密度为.4.会求随机变量简略函数的散布三.多维随机变量的散布二维随机变量及其散布二维离散型随机变量的概率散布和边沿散布二维持续型随机变量的概率密度和边沿概率密度随机变量的自力性和不相干性经常应用二维随机变量的散布两个随机变量简略函数的散布1.懂得二维随机变量的概念,懂得二维随机变量的散布的概念和性质,懂得二维离散型随机变量的概率散布和边沿散布,懂得二维持续型随机变量的概率密度和边沿密度,会求与二维离散型变量相干事宜的概率.2.懂得随机变量的自力性及不相干性的概念,懂得随机变量互相自力的前提. 3懂得二维平均散布,懂得二维正态散布的概率密度,懂得个中参数的概率意义.4.会求两个自力随机变量和的散布四.随机变量的数字特点随机变量的数学期望(均值).方差.尺度差及其性质随机变量简略函数的数学期望矩.协方差.相干系数及其性质 1.懂得随机变量数字特点(数学期望.方差.尺度差.矩.协方差.相干系数)的概念,会应用数字特点的基赋性质,并控制经常应用散布的数字特点.2.会求随机变量简略函数的数学期望.五.大数定律和中间极限制理切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律棣莫弗一拉普拉斯(De Moivre-Laplace)定理列维一林德伯格(Levy-Lindberg)定理1.懂得切比雪夫不等式.2.懂得切比雪夫大数定律和伯努利大数定律.3.懂得棣莫弗—拉普拉斯定理(二项散布以正态散布为极限散布).列维—林德伯格定理(自力同散布随机变量序列的中间极限制理).六.数理统计的根本概念总体个别简略随机样本统计量样本均值样本方差和样本矩散布散布散布分位数正态总体的经常应用抽样散布1.懂得总体.简略随机样本.统计量.样本均值.样本方差及样本矩的概念,个中样本方差界说为2.懂得散布.散布和散布的概念及性质,懂得分位数的概念并会查表盘算.3.懂得正态总体的经常应用抽样散布.。

(整理)考研数学(农)大纲

(整理)考研数学(农)大纲

数学(农)大纲高等数学:一、函数、极限、连续函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限: 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

2. 了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

5.了解数列极限和函数极限(包括左极限和右极限)的概念。

6。

了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。

7理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。

8.理解函数连续性的概念(含左连续与右连续),会判断函数间断点的类型。

9. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

二、一元函数微分学导数和微分的概念导数的几何意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数和隐函数的微分法高阶导数微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数的最大值与最小值1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程。

2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求隐函数的导数。

3. 了解高阶导数的概念,掌握二阶导数的求法。

2009年考研农学门类联考测试大纲解析(一)

2009年考研农学门类联考测试大纲解析(一)

2009年考研农学门类联考测试大纲解析(一)2009年全国硕士研究生入学农学门类联考考试大纲解析(一)09年农学考试大纲重点:(一)化学:A.无机化学:总体情况是:以基础公式,理论的掌握为主,重点考察热力学化学反应方向的判断、物质的结构特点、空间构型、化学反应速率、电极反应及其应用、分析化学三大平衡;大题主要以计算题方式出现。

细化到具体知识点:溶液和胶体(稀溶液通性及其计算,胶体溶液分散系特点等);热化学及化学反应热的计算,反应方向判断等(重点,每年必考);化学反应速率基本概念及其计算,速率方程,浓度温度催化剂对化学反应速率的影响,化学平衡及移动,化学等温方程式和平衡常数的计算;核外电子排布规律,元素周期律及元素周期性质的变化,离子键共价键理论、杂化轨道理论(各种化学键的特点,不同杂化轨道的空间构型),键的极性和分子间力;误差理论,有效数字及运算规则;酸碱质子理论,酸碱平衡及其计算,缓冲溶液的配制和计算,一元多元弱酸弱碱被准确滴定的条件;沉淀溶解平衡,用溶度积原理判断沉淀的生成和溶解,沉淀滴定法的原理和应用;氧化还原反应,电极电势及其应用(判断氧化剂还原剂的强弱,确定氧化还原反应进行的方向),元素标准电势图及其应用,原电池电极电势的计算,能斯特方程的运用,氧化还原滴定反应;配合物及其化学键理论,螯合物的概念和特点,配位平衡与其他平衡的关系,单一金属离子被准确滴定的条件,配位滴定的方式和应用;分光光度法基本原理及应用,吸收定律,显色反应,分光光度法的应用和测量条件的选择等。

B.有机化学:总体特点:有机化学注重原理性知识的掌握,知识点的考察比较灵活,新大纲跟原来考察的知识点范围相差不大,其中,合成题仍是难度较大的一个题型。

对于有机化学的复习,章节之间以及各个知识点之间的联系应作为重点方向来把握,对于考生来讲,比较不容易理解和掌握的是排序题和合成题,相对于此,反应式的完成,鉴别题等一些题型的难度不大。

2010年与2009年农学门类联考考试大纲变化对比——数农

2010年与2009年农学门类联考考试大纲变化对比——数农

2010年与2009年农学门类联考考试大纲变化对比——数农章节2009年农学门类联考数学考查范围2010年农学门类联考数学考查范围变化对比高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:sinlim1xxx→=,1lim1xxex→∞+=⎛⎫⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题中的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 了解数列极限和函数极限(包括左极限和右极限)的概考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:sinlim1xxx→=,1lim1xxex→∞+=⎛⎫⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题中的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 了解数列极限和函数极限(包括左极限和右极限)的概对比:无变化念.6. 了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7. 理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系.8. 理解函数连续性的概念(含左连续与右连续),会判断函数间断点的类型.9. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.念.6. 了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7. 理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系.8. 理解函数连续性的概念(含左连续与右连续),会判断函数间断点的类型.9. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数和隐函数的微分法高阶导数微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求隐函数的导数.3.了解高阶导数的概念,掌握二阶导数的求法.4.了解微分的概念以及导数与微分之间的关系,会求函数的微分.5.理解罗尔(Rolle)定理和拉格朗日(Lagrange)中值定考试内容导数和微分的概念导数的几何意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数和隐函数的微分法高阶导数微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求隐函数的导数.3.了解高阶导数的概念,掌握二阶导数的求法.4.了解微分的概念以及导数与微分之间的关系,会求函数的微分.5.理解罗尔(Rolle)定理和拉格朗日(Lagrange)中值定对比:无变化理,掌握这两个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及应用.8.会用导数判断函数图形的凹凸性(注:在区间(),a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线(水平、铅直渐近线).理,掌握这两个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及应用.8.会用导数判断函数图形的凹凸性(注:在区间(),a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线(水平、铅直渐近线).三、一元函数积分学 考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数与其导数 牛顿-莱布尼茨(Newton-Leibniz )公式 不定积分和定积分的换元积分方法与分部积分法 反常(广义)积分 定积分的应用考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质与基本积分公式,掌握不定积分的换元积分法和分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法与分部积分法.3.会利用定积分计算平面图形的面积和旋转体的体积. 4.了解无穷区间上的反常积分的概念,会计算无穷区间上的反常积分.考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数与其导数 牛顿-莱布尼茨(Newton-Leibniz )公式 不定积分和定积分的换元积分方法与分部积分法 反常(广义)积分 定积分的应用考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质与基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法与分部积分法.3.会利用定积分计算平面图形的面积和旋转体的体积. 4.了解无穷区间上的反常积分的概念,会计算无穷区间上的反常积分.对比:无变化四、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义2.了解二元函数的极限与连续的概念.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义2.了解二元函数的极限与连续的概念.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).对比:无变化五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程一阶线性微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程和一阶线性微分方程的求解方法.考试内容常微分方程的基本概念变量可分离的微分方程一阶线性微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程和一阶线性微分方程的求解方法.对比:无变化线性一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.对比:无变化代数二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价考试要求1.理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价考试要求1.理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.对比:无变化三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系.考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系.对比:无变化四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.了解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.了解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.对比:无变化五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.了解实对称矩阵的特征值和特征向量的性质.考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.了解实对称矩阵的特征值和特征向量的性质.对比:无变化概率论与数一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算概率的基本性质古典型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.考试内容随机事件与样本空间事件的关系与运算概率的基本性质古典型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.对比:无变化理统计二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念.理解分布函数(){}()F x P X x x=≤ -∞<<∞的概念及性质.会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p、泊松(Poisson)分布()Pλ及其应用.3.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b、正态分布2(,)Nμσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()Eλ的概率密度为()xe xf xxλλ- >=≤⎧⎨⎩,若0,若4.会求随机变量函数的分布.考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念.理解分布函数(){}()F x P X x x=≤ -∞<<∞的概念及性质.会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p、泊松(Poisson)分布()Pλ及其应用.3.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b、正态分布2(,)Nμσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()Eλ的概率密度为()xe xf xxλλ- >=≤⎧⎨⎩,若0,若4.会求随机变量函数的分布.对比:无变化三、二维随机变量的分布考试内容二维随机变量及其分布二维离散型随机变量的概率分布和边缘分布二维连续型随机变量的概率密度和边缘概率密度随机变量的独立性和不相关性常用二维随机变量的分布两个随机变量简单函数的分布考试要求1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布和边缘分布,理解二维连续型随机变量的概率密度和边缘密度,会求与二维离散型变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,了解随机变量相互独立的条件.3.了解二维均匀分布,了解二维正态分布221212(,;,;)N u uσσρ的概率密度,了解其中参数的概率意义.4、会求两个独立随机变量的和的分布.考试内容二维随机变量及其分布二维离散型随机变量的概率分布和边缘分布二维连续型随机变量的概率密度和边缘概率密度随机变量的独立性和不相关性常用二维随机变量的分布两个随机变量简单函数的分布考试要求1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布和边缘分布,理解二维连续型随机变量的概率密度和边缘密度,会求与二维离散型变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,了解随机变量相互独立的条件.3.了解二维均匀分布,了解二维正态分布221212(,;,;)N u uσσρ的概率密度,了解其中参数的概率意义.4、会求两个独立随机变量的和的分布.对比:无变化四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量简单函数的数学期望矩、协方差和相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量简单函数的数学期望.考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量简单函数的数学期望矩、协方差和相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量简单函数的数学期望.对比:无变化五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律棣莫弗一拉普拉斯(De Moivre-Laplace)定理列维一林德伯格(Levy-Lindberg)定理.考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律和伯努利大数定律.3.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布随机变量序列的中心极限定理).考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律棣莫弗一拉普拉斯(De Moivre-Laplace)定理列维一林德伯格(Levy-Lindberg)定理.考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律和伯努利大数定律.3.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布随机变量序列的中心极限定理).对比:无变化六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩2χ分布t分布F分布分位数正态总体的常用抽样分布.考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1niiS X Xn==--∑2.了解2χ分布、t分布和F分布的概念和性质,了解分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩2χ分布t分布F分布分位数正态总体的常用抽样分布.考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1niiS X Xn==--∑2.了解2χ分布、t分布和F分布的概念和性质,了解分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.对比:无变化。

2009考研数学(农)考试大纲

2009考研数学(农)考试大纲

微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、隐函数分段函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,会建立应用问题中的函数关系。

2、了解函数的有界性、单调性、周期性和奇偶性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形,了解初等函数的概念5、了解数列极限和函数极限(包括坐极限和右极限)的概念。

6、了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,掌握利用两个重要极限求极限的方法。

7、理解无穷小的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。

8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

9、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)并会应用这些性质。

二、一元函数微分学考试内容导数和微积分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。

2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数”。

2009年硕士研究生入学考试初试考试大纲

2009年硕士研究生入学考试初试考试大纲

2012年硕士研究生入学考试初试考试大纲科目代码:814科目名称:数学分析适用专业:数学类各专业参考书目:《数学分析》(第四版)华东师范大学高等教育出版社考试时间:3小时考试方式:笔试总分:150分考试范围:一、函数、极限与连续1.深入理解函数的概念,理解基本初等函数的图像,理解几个特殊的函数性质,如有界、单调、奇偶与周期,熟练掌握复合函数、反函数与初等函数的运算。

2.深入理解数列极限的概念;熟练掌握收敛数列的性质,如唯一性、有界性、保号性、保不等式性及数列极限的存在条件(单调有界数列必有极限、柯西收敛准则、夹逼定理)。

3.深入理解函数极限的概念,包括函数极限的若干种情形;熟练掌握函数极限的性质,包括唯一性、局部有界性、局部保号性、保不等式性、迫敛性、四则运算法则;掌握函数极限的存在条件;熟练掌握两个重要极限,会用无穷大与无穷小处理极限问题。

4.深入理解无穷小与无穷大的概念,熟练掌握无穷小比较的定义与求解。

5.深入理解连续函数的概念,掌握闭区间上连续函数的性质;理解一致连续的概念;了解复合函数与反函数连续的充分条件,以及初等函数的连续性。

二、一元函数微分学1.深入理解导数的概念、物理和几何背景;熟练掌握各种求导的运算;理解微分的概念,会进行近似计算。

理解高阶导数的概念,了解莱布尼兹公式。

2.掌握三个微分中值定理;熟练掌握罗必达法则;掌握带有各种余项的泰勒公式,熟练掌握常用的几个函数的展开式;掌握运用导数来判断函数的单调、凹凸等性质;掌握函数极值的判别和函数最大(小)值的求法。

三、一元函数积分学1.理解不定积分的概念,熟练掌握基本初等函数的不定积分;掌握常用的换元积分法与分部积分法;掌握有理函数、简单的无理函数与三角有理函数的不定积分。

2.深入理解定积分的概念;理解可积准则;了解常用的可积函数类;了解定积分的性质;理解变限定积分的概念与原函数存在定理。

熟练掌握计算定积分的牛顿—莱布尼兹公式、换元公式和分部公式。

【免费下载】考研数学农考试大纲

【免费下载】考研数学农考试大纲

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2009考研数农真题及解析

2009考研数农真题及解析

2009年全国硕士研究生入学统一考试农学门类联考数学试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1) 在(,)ππ-内,函数tan xy x=的可去间断点的个数为 ( ) (A) 0.(B) 1. (C) 2.(D) 3.(2) 函数2ln(1)y x =+单调增加且其图形为凹的区间是 ( )(A) (,1)-∞-. (B) (1,0)-. (C) (0,1).(D) (1,)+∞.(3) 函数22()x x t f x e dt --=⎰的极值点为x = ( )(A)12.(B)14. (C) 14-.(D) 12-. (4) 设区域{}22(,)2,0D x y x x y x y =≤+≤≥,则在极坐标下二重积分Dxydxdy =⎰⎰( )(A) 2cos 220cos cos sin d r dr πθθθθθ⎰⎰.(B) 2cos 320cos cos sin d r dr πθθθθθ⎰⎰.(C)2cos 20cos cos sin d r dr πθθθθθ⎰⎰.(D)2cos 30cos cos sin d r dr πθθθθθ⎰⎰.(5) 设矩阵121242242A ab a ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭的秩为2,则 ( ) (A) 0,0a b ==. (B) 0,0a b =≠. (C) 0,0a b ≠=. (D) 0,0a b ≠≠.(6) 设A 为3阶矩阵,*A 为A 的伴随矩阵,A 的行列式2A =,则*2A -= ( )(A) 52- .(B) 32-. (C) 32. (D) 52.(7) 设事件A 与事件B 互不相容,则 ( )(A) ()0P AB =.(B) ()()()P AB P A P B =. (C) ()1()P A P B =-.(D) ()1P AB =.(8) 设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ⎪⎝⎭,其中()x Φ为标准正态分布的分布函数,则EX = ( ) (A) 0. (B) 0.3. (C) 0.7. (D) 1.二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上. (9) 20lim 1sin3xx x →⎛⎫+= ⎪⎝⎭. (10) 设2()ln(4cos 2)f x x x =+,则()8f π'= .(11) 设2()xf x e =,()ln x x ϕ=,则[]1(())(())f x f x dx ϕϕ+=⎰ .(12) 设(,)f u v 为二元可微函数,(sin(),)xyz f x y e =+,则zx∂=∂_______________. (13) 设向量组(1,0,1)T α=,(2,,1)T k β=-,(1,1,4)T γ=--线性相关,则k =__________. (14) 设总体X 的概率密度||1(;),,2x f x e x σσσ-=-∞<<+∞其中参数(0)σσ>未知.若12,,,n X X X 是来自总体X 的简单随机样本,11ˆ1ni i X n σ==-∑是σ的估计量,则ˆ()E σ=_____________.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限[]24ln(1tan )limsin x x x x x→-+.(16)(本题满分10分)计算不定积分.(17)(本题满分10分)曲线L 过点(1,1),L 上任一点(,)(0)M x y x >处法线的斜率等于2yx,求L 方程. (18)(本题满分11分)讨论方程440x x k -+=实根的个数,其中k 为参数.11X -1122P1Y1344P(19)(本题满分11分)计算二重积分1Dx dxdy -⎰⎰,其中D 是第一象限内由直线0,y y x ==及圆222x y +=所围成的区域.(20)(本题满分10分)设1211211223A a a a a ⎛⎫ ⎪=++ ⎪ ⎪---⎝⎭,若存在3阶非零矩阵B ,使得AB O =.(Ⅰ) 求a 的值;(Ⅱ) 求方程组0Ax =的通解. (21)(本题满分11分)设3阶矩阵A 的特征值为1,1,2-,对应的特征向量依次为1010α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3101α⎛⎫⎪= ⎪ ⎪-⎝⎭.(Ⅰ) 求矩阵A ; (Ⅱ) 求2009A.(22)(本题满分11 分)设随机变量X 的概率密度为2,,()0,x a x b f x <<⎧=⎨⎩其他, 且21EX =.(Ⅰ) 求,a b 的值; (Ⅱ) 求{}1P X <.(23)(本题满分10 分)已知随机变量X 与Y 的概率分布分别为且{}14P X Y ==. (Ⅰ) 求二维随机变量(,)X Y 的概率分布; (Ⅱ) 求X 与Y 的相关系数XY ρ.2009年全国硕士研究生入学统一考试农学门类联考数学试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)【答案】(D) 【解析】函数tan x y x =在点0x =,2x π=±没有定义,而 0lim1tan x xx→=,所以0x =为可去间断点; 2lim0tan x xxπ→±=,所以2x π=±也为可去间断点.因此,在(,)ππ-内,函数tan xy x=的可去间断点的个数为3个,故选(D). (2)【答案】(C)【解析】由2222222200,122(1)(12)011,(1)(1)x y x x x y x x x x x x ⎧'=>⇒>⎪+⎪⎨-⎪''=⋅+-⋅=>⇒-<<⎪++⎩取交集可得()0,1x ∈,故应选(C). (3)【答案】(A)【解析】因 2222()2()()()(12)x x x x f x e x x x e ----''=⋅-=-,令()0f x '=,得12x =,又 222222()()2222()()2(12)()22(12)(),x xx xx x f x e x e x x x x x e ------'''⎡⎤=-+-⋅⋅--⎣⎦⎡⎤=-+-⋅-⎣⎦所以102f ⎛⎫''≠ ⎪⎝⎭,故12x =为极值点,应选(A). (4)【答案】(B)【解析】区域D 见右图所示.2cos 20cos 2cos 320cos cos sin cos sin .Dxydxdy d r r rdr d r dr πθθπθθθθθθθθ=⋅⋅=⎰⎰⎰⎰⎰⎰(5)【答案】(C)【解析】对矩阵A 进行初等变换:1211212420024200A ab ab a a ⎛⎫⎛⎫ ⎪ ⎪=+→ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭,因为0a =时,()1r A =,所以0a ≠,1000000A ab a ⎛⎫⎪→ ⎪ ⎪⎝⎭.因为()2r A =,所以0b =,综上0,0a b ≠=. (6)【答案】(A)【解析】因为2A =,1312*22n A AAA --====,所以*3*3252(2)(2)22A A -=-⋅=-⋅=-.(7)【答案】(D)【解析】因为,A B 互不相容,所以()0P AB =. (A)()()1()P AB P AB P A B ==-,因为()P A B 不一定等于1,所以(A)不正确;(B)当(),()P A P B 不为0时,()B 不成立,故排除; (C)只有当,A B 互为对立事件的时候才成立,故排除; (D)()()1()1P AB P AB P AB ==-=,故()D 正确.(8)【答案】(C)【解析】因为()()10.30.72x F x x -⎛⎫=Φ+Φ⎪⎝⎭,所以 ()()0.710.322x F x x -⎛⎫'''=Φ+Φ ⎪⎝⎭, 因此, ()()10.30.352x EX xF x dx x x dx +∞+∞-∞-∞⎡-⎤⎛⎫'''==Φ+Φ ⎪⎢⎥⎝⎭⎣⎦⎰⎰()10.30.352x x x dx x dx +∞+∞-∞-∞-⎛⎫''=Φ+Φ ⎪⎝⎭⎰⎰.由于()x Φ为标准正态分布的分布函数,所以()0x x dx +∞-∞'Φ=⎰,()()()()11221222222,x x x dx u u u du u u du u du +∞+∞-∞-∞+∞+∞-∞-∞--⎛⎫''Φ=+Φ ⎪⎝⎭''=Φ+Φ=⎰⎰⎰⎰()10.30.3500.3520.72x EX x x dx x dx +∞+∞-∞-∞-⎛⎫''=Φ+Φ=+⨯= ⎪⎝⎭⎰⎰.二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上. (9)【答案】23e【解析】 0002sin2222233ln(1sin )lim ln(1sin )limlim 33300lim(1sin )lim 3x x x xx x xx x x xxx x xeeeee →→→⋅++→→+=====.(10)【答案】41π+【解析】2()ln(4cos 2)f x x x =+,[]22144sin 2cos 2()42cos 2(sin 2)24cos 24cos 2x xf x x x x x x x-'=+⋅-⋅=++, 44422()18122f πππ-'==++. (11)【答案】43【解析】2ln 22(()),(())ln 2xx f x ex f x e x ϕϕ====,所以[]13112200014(())(())(2)1333x f x f x dx x x dx x ϕϕ⎛⎫+=+=+=+=⎪⎝⎭⎰⎰.(12)【答案】12cos()xyf x y e yf ''++【解析】根据复合函数求导法,得12cos()xy zf x y yf e x∂''=++∂. (13)【答案】1【解析】令121(,,)01114A kαβγ-⎛⎫ ⎪== ⎪ ⎪--⎝⎭,由于,,αβγ线性相关,所以0A =,即3301k k -+=⇒=. (14)【答案】1nn σ- 【解析】11ˆ()11n i i i n E E X E X n n σ===--∑ 0001212121.11xt xxtt n n x n x e dx e dx te dt n n n n n te dt n n σσσσσσσ=--+∞+∞+∞--∞+∞-=⋅=⋅=---==--⎰⎰⎰⎰三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分) 【解析】 []2242200ln(1tan )ln(1tan )limlim sin sin sin x x x x x x x x xx x→→-+-+= 2200200ln(1tan )ln(1tan )limlimsin 11sec 1tan lim 2cos sin 1lim .2cos (sin cos )2x x x x x x x x x x xxxx x x x x →→→→-+-+==-+=-==⋅+(16)(本题满分10分)【解析】令2,2t x t dx tdt ===,则222ln(2)22ln(2)22ln(2)ln(2)2ln (2)ln (2.t tdtt t t dt t d t t t C C +=⋅++==+++=++=++⎰⎰⎰(17)(本题满分10分)【解析】设L 的方程为()y y x =,由题意得2dx y dy x-=. 分离变量得 2ydy xdx =-,两边积分得 222x y C =-+, 故 2222x y C +=. 又由已知条件3(1)12y C =⇒=, 所以L 的方程为2223,(0)x y x +=>.(18)(本题满分11分)【解析】设4()4f x x x k =-+,()f x 在(,)-∞+∞内连续.令3()440f x x '=-=得唯一驻点1x =.当1x <时,()0f x '<,()f x 单调减少;当1x >时,()0f x '>,()f x 单调增加, 故(1)3f k =-为最小值.则当3k =时,(1)0f =,方程4430x x -+=有唯一实根1x =;当3k >时,()(1)0f x f ≥>,方程无实根; 当3k <时,(1)0f <,而44lim ()lim (4),lim ()lim (4),x x x x f x x x k f x x x k →-∞→-∞→+∞→+∞=-+=+∞=-+=+∞根据零点定理可得,方程有两个实根.(19)(本题满分11分) 【解析】解法11211010111232221222441(1)(1)1)(1)(1)1)(2)2231111(22cos sin 23632DD D xx dxdy x dxdy x dxdyx dy dx x dyx x dx x x x x d x x tdt t t πππ-=-+-=-+-=-+-⎛⎫=----+- ⎪⎝⎭⎛⎫=---+=-+ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰211.64ππ+=-解法2121(1)(1)DD D x dxdy x dxdy x dxdy -=-+-⎰⎰⎰⎰⎰⎰111011221101212400041)(1)22(222cos 2112sin 21.224yy dy x dx dy x dxx x x dy x dyy y dy y tdt t t πππ=-+-⎛⎛⎫=-+- ⎪⎝⎝⎭⎛⎫=-=-- ⎪⎝⎭⎛⎫=--+=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰(20)(本题满分10分)【解析】(I)由题设知方程组0Ax =有非零解,所以1211211210(2)01223022A a a a a a a a a a a =++==-=----,于是2a =或0a =.(II) 当2a =时,对A 施以初等行变换,121121022101143022022011101101101000A -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦,取自由未知量31x =,得[]11,1,1Tξ=-,即0Ax =的通解为[]1111,1,1Tx k k ξ==-,(1k 为任意常数).当0a =时, 对A 施以初等行变换,121121120121000001123002000A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦,取自由未知量21x =,得[]22,1,0Tξ=-,即0Ax =的通解为[]2222,1,0Tx k k ξ==-,(2k 为任意常数).(21)(本题满分11分)【解析】(I)由题设知123123100(,,)(,,)010002A αααααα⎛⎫ ⎪= ⎪ ⎪-⎝⎭,即011011100100100010011011002A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭. 由于0111020011=≠-,所以101110001110001010001100201101110002010311100010101020.22011002101301A -⎛⎫⎛⎫⎛⎫ ⎪⎪⎪= ⎪⎪⎪⎪⎪⎪---⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪== ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭(II) 12009200901110001110001010001100(2)011A-⎛⎫⎛⎫⎛⎫ ⎪⎪⎪= ⎪⎪⎪ ⎪⎪⎪---⎝⎭⎝⎭⎝⎭200920092009200920090111000201100010101201100(2)101120121020.212012⎛⎫⎛⎫⎛⎫ ⎪⎪⎪= ⎪⎪⎪ ⎪⎪⎪---⎝⎭⎝⎭⎝⎭⎛⎫-+ ⎪= ⎪ ⎪+-⎝⎭(22)(本题满分11 分) 【解析】(Ⅰ)由()1f x dx +∞-∞=⎰得2221baxdx b a =-=⎰, ①由21EX =得223441()2()12baEX x f x dx x dx b a +∞-∞===-=⎰⎰, ② 联立①、②得2224421,1232.2a b a b a b ⎧=⎪⎧-=⎪⇒⎨⎨-=⎩⎪=⎪⎩Born to win第 11 页 共 11 页 Y X 110211144- 01 由概率密度函数的非负性,知0,0a b >>,则,2a b ⎧=⎪⎪⎨⎪=⎪⎩(Ⅱ)X 的概率密度为 2,,()0,x a x b f x <<⎧=⎨⎩其他, 所求概率为1111(1)()22P X f x dx xdx -<===⎰.(23)(本题满分10 分)【解析】(Ⅰ)由题设知()()11,14P X Y P X Y =====, 所以 ()()()11,011,14P X Y P X P X Y ====-===, 同理可得 ()()()1,001,00P X Y P Y P X Y =-===-===, ()()()11,111,12P X Y P Y P X Y =-===-===. 所以(,)X Y 的概率分布为(2)由(,)X Y 的概率分布可得 ()2222111,0,1,4243333,().44416E XY EX DX EX EY DY EY EY =-=-===⎛⎫==-=-= ⎪⎝⎭所以X 与Y 的相关系数为,3XY Cov X Y ρ===-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、隐函数分段函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,会建立应用问题中的函数关系。

2、了解函数的有界性、单调性、周期性和奇偶性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形,了解初等函数的概念5、了解数列极限和函数极限(包括坐极限和右极限)的概念。

6、了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,掌握利用两个重要极限求极限的方法。

7、理解无穷小的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。

8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

9、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)并会应用这些性质。

二、一元函数微分学考试内容导数和微积分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。

2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数”。

3、了解高阶导数的概念,会求简单函数的高阶导数,掌握二阶导数的求法。

4、了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。

5、理解罗尔(Rolle)定理和拉格郎日(Lagrange)中值定理,了解柯西(Cauchy)中值定理,掌握这三(两)个定理的简单应用。

6、会用洛必达法则求极限。

7、掌握函数单调性的判别方法,了解函数极限的概念,掌握函数极值、最大值和最小值的求法及其应用.8、会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线。

9、会描绘简单函数图形。

三、一元函数的积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用。

考试要求1、理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。

2、了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法。

3、会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题。

4、了解无穷区间上的反常积分的概念,会计算无穷区间上的反常积分四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分。

考试要求1、了解多元函数的概念,了解二元函数的几何意义。

2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。

3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数。

4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题。

5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算。

五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程考试要求1、了解微分方程及其解、阶、通解、初始条件和特解等概念。

2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。

线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1、了解行列式的概念,掌握行列式的性质。

2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。

二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵,反对称矩阵及正交矩阵等的定义和性质。

2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。

3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解(了解)伴随矩阵的概念,会用伴随矩阵求逆矩阵。

4、了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。

5、了解分块矩阵的概念,掌握分块矩阵的运算法则。

三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法。

考试要求1、了解向量的概念,掌握向量的加法和数乘运算法则。

2、理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。

3、理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩。

4、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。

5、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。

四、线性方程组考试内容线性方程组的克莱母(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解。

考试要求1、会用克莱母法则解线性方程组。

2、掌握非齐次线性方程组有解和无解的判定方法。

3、理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。

4、理解(了解)非齐次线性方程组的结构及通解的概念。

5、掌握用初等行变换求解线性方程组的方法。

五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵、实对称矩阵的特征值、特征向量及其相似对角矩阵。

考试要求1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。

2、理解(了解)矩阵相似的概念和掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握(会)将矩阵化为相似对角矩阵的方法。

3、掌握(了解)实对称矩阵的特征值和特征向量的性质。

六、二次型(红)考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准型和规范性用正交变换和配方法化二次型为标准型二次型及其矩阵的正定性考试要求1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念2、了解二次型的秩的概念,了解二次型的标准型、规范型等概念,了解惯性定理,会用正交变换和配方法化二次型为标准型.3、理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完全事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1. 了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。

2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握计算概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式等。

3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。

二、随机变量及其概率分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1、理解随机变量的概念,理解分布函数F(x)=P{X≤x} (-∞<x<+∞) 的概念及性质,会计算与随机变量相联系的事件的概率。

2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。

3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

3、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2) 、指数分布及其应用其中参数为λ(λ>0)的指数分布的密度函数为4、会求随机变量函数的分布。

三、随机变量的联合概率分布考试内容多维随机变量及其分布函数二维随机变量及其分布二维离散型随机变量的概率分布和边缘分布和条件分布二维连续型随机变量的概率密度和边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布。

考试要求1、理解多维随机变量的分布函数的概念和基本性质。

1、理解二维随机变量的概念理解二维随机变量的分布的概念和性质理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握两个随机变量的边缘分布和条件分布,理解二维连续型随机变量的概率密度和边缘密度,会求与二维离散型随机变量相关事件的概率。

2、理解随机变量的独立性和不相关性的概念,掌握(了解)随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系。

3、掌握(了解)二维均匀分布和,了解二维正态分布的概率密度,理解(了解)其中参数的概率意义。

4、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。

相关文档
最新文档