建模技术的发展历史
1三维建模技术发展史

1三维建模技术发展史
三维建模技术的发展可以追溯到工业革命时期,它的最初用途是由机器代替人工手工在金属材料上进行铣削和切割。
随着科技的发展,计算机被大量应用于制造业,并取代了传统的机器制造技术,更加便捷地实现了金属材料的加工。
自19世纪末以来,随着数字技术的发展,人们发现计算机可以被用来帮助设计、制造和测试三维实物。
随着计算机分析技术的发展,计算机可以用来模拟复杂的运动系统,实现动力学分析,并开发用于制造的新科技,如计算机辅助设计(CAD)、计算机辅助制造(CAM)和动态三维计算(CAM)等。
1970年代,三维建模技术开始广泛应用于诸如机械工程等领域,可以实现快速的设计和创建正确的零件,并在加工过程中重新调整和修改。
1980年代,三维建模技术已经得到了广泛的应用,并被用于建筑和航空航天领域,模拟精确的力学分析等领域。
1990年代,随着虚拟现实技术的发展,三维建模开始被用于视觉,并可以用于模拟实际现实世界的控制、模拟、可视化和计算,从而对人们的生活产生了深远的影响。
2000年以后,三维建模技术迅速发展,带来了全新的应用。
三维建模发展史范文

三维建模发展史范文三维建模是将真实世界或虚拟世界的物体或场景通过计算机生成三维模型的过程。
它在许多领域里都有广泛的应用,如电影、游戏、建筑、工程等。
三维建模的发展史可以追溯到20世纪60年代末,当时计算机图形学刚刚起步。
下面将分为四个阶段来介绍三维建模的发展历程。
第一阶段:线框模型阶段(1968-1984)第二阶段:表面细节阶段(1985-1999)在这个阶段,三维建模技术得到了进一步的发展,能够更好地呈现物体的表面细节。
在建模技术方面,NURBS(非均匀有理B样条)成为表面建模的主要工具,它能够创建复杂的曲线和表面。
1991年,Alias公司发布了一个名为PowerAnimator的软件,它成为电影和游戏行业的标准工具,用于建模、动画和渲染。
1995年,Pixar公司推出了第一个能够渲染真实表面细节的渲染器,RenderMan Studio。
此外,1996年,Maya软件的第一个版本发布,它以其先进的建模、动画和渲染功能而受到广泛关注。
第三阶段:真实感阶段(2000-2024)在这个阶段,三维建模技术开始注重模拟真实世界物体和场景的真实感。
2000年,Pixar发布了一款名为Subdivision Surfaces的建模工具,这种新的建模技术基于网格和曲面细分,使得模型能够更好地呈现光滑的曲面。
此外,2003年,Pixar推出了名为PRMAN(Photo Realistic RenderMan)的渲染器,它能够实时渲染高质量的图像。
同时,2001年,ZBrush软件发布,该软件使用了一种名为“多边形绘图”(PolyPainting)的新技术,允许用户直接在三维模型上绘制纹理和细节。
第四阶段:物理模拟阶段(2024年至今)综上所述,三维建模技术经过了线框模型阶段、表面细节阶段、真实感阶段和物理模拟阶段的发展,从最早的简单几何形状到能够呈现真实世界物体和场景的细节和行为。
随着计算机技术的不断进步,三维建模在未来还将继续发展,并逐渐应用于更多的领域。
1.5 三维建模的历史、现状与未来

1.5三维建模的历史、现状和未来长久以来,工程设计与加工都基于二维工程图纸。
CAD 技术应用前期,首先实施“甩图板”工程,就是将传统的纸质图纸转化成计算机中的二维电子图档。
从纸质图纸到电子化的图档,是CAD 应用的一大进步,但是此时的CAD 仅仅是计算机辅助绘图(Computer Aided Drawing ),而非计算机辅助设计(Computer Aided Design ),主要原因在于三维建模技术没有完全实用化。
人类生活在三维世界中,创造性的产品设计活动首先在人脑中完成。
为了表达这些产品,必须用合适的方法加以描述,以便与其他人员沟通,使之投入加工生产。
在计算机三维建模技术没有实用化时,只能将三维产品构思按照制图法绘制图纸来表达。
用二维平面图中的点、线来描述三维世界中的实体,实在是人们不得已而为之的一种方法。
计算机三维建模技术成熟,相关建模软件实用化后,这种局面被彻底改变了。
1.5.1三维建模技术的发展史在CAD 技术发展初期,几何建模的目的仅限于计算机辅助绘图。
随着计算机软、硬件技术的飞速发展,CAD 技术也从二维平面绘图向三维产品建模发展,由此推动了三维建模技术的发展,产生了三维线框建模、曲面建模以及实体建模等三维几何建模技术,以及在实体建模基础上发展起来的特征建模、参数化建模技术(具体请参看本书“第2章 三维建模基础知识”的介绍)。
图 1显示了产品三维建模技术的发展历程。
曲面建模和实体建模的出现,使得描述单一零件的基本信息有了基础,基于统一的产品数字化模型,可进行分析和数控加工,从而实现了CAD/CAM 集成。
图 1 目前,CAx 软件系统大多支持曲面建模、实体建模、参数化建模、混合建模等建模技术。
这些软件经过四十年的发展、融合和消亡,形成了三大高端主流系统,即法国达索公司的CATIA 、德国SIEMENS 公司的Unigraphics (简称UG NX )和美国PTC 公司的Pro/Engineer (简称Pro/E )。
UML的发展历史

UML的发展历史UML(Unified Modeling Language)是一种用于软件开发的工具,它通过图形化表示来描述各种软件系统的结构和行为。
UML 在软件开发过程中具有重要的意义,因为它可以帮助人们更好地理解软件系统,提高软件开发的效率和质量。
在本文中,我们将详细了解UML的发展历史。
1. UML的起源UML的起源可以追溯到20世纪80年代末,当时软件开发行业存在一些问题,例如软件开发周期长、成本高、缺乏标准化方法和工具等。
为了解决这些问题,一些软件工程师开始研究建立一种新的建模语言和工具,以便更好地描述和管理软件系统。
1995年,UML的前身OMT(Object Modeling Technique)首次发布,OMT是一种面向对象的建模技术,被广泛用于软件开发的早期阶段。
OMT包括三个重要的建模部分:对象模型、动态模型和功能模型。
对象模型描述了系统中的对象及其关系,动态模型描述了对象的行为,功能模型描述了系统的功能。
2. UML的发展随着需求的变化和技术的发展,UML在发展过程中也经历了一些重要的变化。
2.1 UML 1.x1996年,OMG(Object Management Group)成立了UML工作组,正式开始研发UML。
1997年,UML 1.0发布,它基于OMT 和其他面向对象建模技术,兼容了各种不同的建模方法和工具。
UML 1.x包括13种建模图,如类图、对象图、用例图、活动图、状态图、序列图等,其中类图是最基础和最重要的建模图。
2.2 UML 2.x2003年,UML 2.0发布,UML 2.x相对于UML 1.x而言,增加了很多新的特性和建模图,例如组件图、部署图、时序图、通信图、交互概览图。
UML 2.x的最大特点是引入了元模型的概念,元模型可以用于描述任何模型或模型元素,包括UML自身。
元模型的引入意味着UML成为了一个更加强大和灵活的建模语言。
2.3 UML 2.52015年,UML 2.5发布,它是UML的最新版本,与UML 2.4相比,UML 2.5主要是作了一些修补和改进,以提高其质量和稳定性。
数学建模概念的发展研究

数学建模概念的发展研究一、数学建模的历史数学建模的历史可以追溯到古希腊时期,当时的数学家开始用几何图形来描述天体运动和地球形状。
随着数学的发展,人们开始将数学方法应用于实际问题的解决,比如天文学、物理学、经济学等领域的问题。
直到20世纪初,数学建模才成为一个独立的学科。
随着计算机技术的发展,数学建模得到了迅速的发展,成为一种独立的学科,并逐渐应用于更广泛的领域。
二、数学建模的应用领域数学建模的应用领域非常广泛,涉及自然科学、工程技术、社会经济等各个领域。
在自然科学方面,数学建模被广泛应用于力学、流体力学、材料科学等领域,用于描述和预测物质的力学性质、流体的流动规律等;在工程技术领域,数学建模被用于设计和优化各种系统和设备,包括航天器、汽车、电子设备等;在社会经济领域,数学建模被用于分析和预测经济走势、人口增长、资源分配等问题。
数学建模已经成为现代科学技术和社会经济发展的重要工具。
三、数学建模的发展趋势随着实际问题的复杂性和多样性不断增加,数学建模也面临着新的挑战和发展机遇。
一方面,数学建模需要不断更新和完善自身的理论和方法,以应对日益复杂的问题;数学建模还需要与其他学科进行交叉融合,结合现代信息技术、大数据分析等手段,才能更好地应用于实际问题的解决。
数学建模的发展趋势可以概括为:理论创新、方法完善、跨学科融合。
在未来,数学建模有望成为更加重要和有效的工具,为人类的科学探索和社会经济发展提供更有力的支持。
随着人工智能、大数据分析等技术的发展,数学建模将更加注重数据的挖掘和分析,以及模型的精确描述和预测能力。
数字化技术也将使数学建模更加普及和便捷,让更多的科研人员和工程技术人员能够轻松进行数学建模工作。
数学建模有望在未来发挥更加重要的作用,为人类的发展进步做出更大的贡献。
(完整版)建模技术的发展史

建模技术的发展史三维建模技术是研究在计算机上进行空间形体的表示、存贮和处理的技术。
实现这项技术的软件称为三维建模工具。
本课程主要培养运用Pro/Engineer软件表示和设计空间形体的能力。
三维建模技术是利用计算机系统描述物体形状的技术。
如何利用一组数据表示形体,如何控制与处理这些数据,是几何造型中的关键技术。
三维建模技术的研究和发展在CAD技术发展初期,CAD仅限于计算机辅助绘图,随着三维建模技术的发展,CAD技术才从二维平面绘图发展到三维产品建模,随之产生了三维线框模型、曲面模型和实体造型技术。
而如今参数化及变量化设计思想和特征模型则代表了当今CAD技术的发展方向。
三维建模技术是伴随CAD技术的发展而发展的!三维建模技术的发展史1 线框模型(Wire Frame Model) : 20世纪60年代末开始研究用线框和多边形构造三维实体,这样地模型被称为线框模型。
三维物体是由它的全部顶点及边的集合来描述,线框由此得名,线框模型就像人类的骨骼。
优点:有了物体的三维数据,可以产生任意视图,视图间能保持正确的投影关系,这为生产工程图带来了方便。
此外还能生成透视图和轴侧图,这在二维系统中是做不到的;构造模型的数据结构简单,节约计算机资源;学习简单,是人工绘图的自然延伸。
缺点:因为所以棱线全部显示,物体的真实感可出现二义解释;缺少曲线棱廓,若要表现圆柱、球体等曲面比较困难;由于数据结构中缺少边与面、面与面之间的关系的信息,因此不能构成实体,无法识别面与体,不能区别体内与体外,不能进行剖切,不能进行两个面求交,不能自动划分有限元网络等等。
2曲面模型(Surface Model)曲面模型是在线框模型的数据结构基础上,增加可形成立体面的各相关数据后构成的。
曲面模型的特点与线框模型相比,曲面模型多了一个面表,记录了边与面之间的拓扑关系。
曲面模型就像贴付在骨骼上的肌肉。
优点:能实现面与面相交、着色、表面积计算、消隐等功能,此外还擅长于构造复杂的曲面物体,如模具、汽车、飞机等表面。
1三维建模技术发展史

1三维建模技术发展史
三维建模技术是一种非常普及的计算机辅助设计(CAD)技术,用于创
建3D图像和图形的数字表示。
它旨在捕捉物体的特征,并将其呈现出来,从而使设计者能够更好地进行设计,缩短设计时间,提高设计效率。
三维建模技术的演变与计算机技术的发展密不可分。
其发展史可以大
致分为四个阶段:
第一阶段是从1970年代初期开始的,出现了第一个采用基于三角形
的三维建模技术。
当时的建模技术主要通过键盘输入三角形的三维坐标,
建立物体的三维模型。
虽然节省了很多时间,但由于键盘输入的效率太低,因此应用比较有限。
第二阶段是从上世纪八十年代后期开始的,出现了以曲线和曲面为基
础的造型技术,它可以通过对几何元素,如点、线、圆、椭圆、圆锥等进
行精确控制,快速建立模型。
同时,计算机技术及存储媒介的发展,使得
曲线、曲面等几何元素的建模更加灵活、高效、精确。
第三阶段是从1990年代后期开始的,出现了多模态建模技术,它基
于几何模型和尺寸模型,更加灵活地表示物体的几何和尺寸。
因此,设计
者可以在表示物体的多个方面进行灵活的控制,从而更好地完成整个设计
过程。
三维建模发展史范文

三维建模发展史范文
三维建模发展史可追溯到古代。
早在公元前五世纪,古希腊建筑师尼索斯(Necos)就曾利用石头和砖头建造出佛罗里达大学(University of Florida)现存的最大的古建筑,德尔波利斯运河(Delphos Canal)。
由于当时仅有简单的建筑技术,空间几何结构被混淆,建筑物表面几乎未受到影响。
17世纪,法国几何学家笛卡尔提出了空间几何学的概念,并被称为“几何结构”,这一理念成为后人在建筑设计和建筑制造领域中开发三维建模技术的基础。
19世纪,美国科学家爱德华·威尔斯(Edward W. Williams)发明
了圆规,可用来绘制三维几何形状,并将其引入建筑和制造行业。
然而,这种技术有限,因为该技术只能用于构造和分析建筑结构,无法用于具体的应用。
20世纪上半叶,受到电脑技术的发展,人们开始构想将三维建模技
术与电脑结合起来,以便更好地制造出一些复杂的物体,以及进行各种计算和分析。
1969年,美国它奇空军研究实验室(ARL)的工程师查尔斯·海斯利(Charles H. Heath)发明了“六边形网格”(Hexagonal Grid),它将三维建模技术与电脑技术相结合,开创了三维建模的新时代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模技术的发展历史
1001500217 鞠生林
在CAD软件发展初期,CAD的含义仅仅是图板的替代品,即:意指Computer Aided Drawing(or Drafting)而非现在我们经常讨论的CAD(Computer Aided Design)所包含的
全部内容。
CAD技术以二维绘图为主要目标的算法一直持续到70年代末期,以后作为CAD 技术的一个分支而相对单独、平稳地发展。
早期应用较为广泛的是CADAM软件,近十年来占据绘图市场主导地位的是Autodesk公司的AutoCAD软件。
在今天中国的CAD用户特别是初期CAD用户中,二维绘图仍然占有相当大的比重。
1.第一次CAD技术革命──贵族化的曲面造型系统
60年代出现的三维CAD系统只是极为简单的线框式系统。
这种初期的线框造型系统只能表达基本的几何信息,不能有效表达几何数据间的拓扑关系。
由于缺乏形体的表面信息,CAM及CAE均无法实现。
进入70年代,正值飞机和汽车工业的蓬勃发展时期。
此间飞机及汽车制造中遇到了大量的自由曲面问题,当时只能采用多截面视图、特征纬线的方式来近似表达所设计的自由曲面。
由于三视图方法表达的不完整性,经常发生设计完成后,制作出来的样品与设计者所想象的有很大差异甚至完全不同的情况。
设计者对自己设计的曲面形状能否满足要求也无法保证,所以还经常按比例制作油泥模型,作为设计评审或方案比较的依据。
既慢且繁的制作过程大大拖延产了产品的研发时间,要求更新设计手段的呼声越来越高。
此时法国人提出了贝赛尔算法,使得人们在用计算机处理曲线及曲面问题时变得可以操作,同时也使得法国的达索飞机制造公司的开发者们,能在二维绘图系统CADAM的基础上,开发出以表面模型为特点的自由曲面建模方法,推出了三维曲面造型系统CATIA。
它的出现,标志着计算机辅助设计技术从单纯模仿工程图纸的三视图模式中解放出来,首次实现以计算机完整描述产品零件的主要信息,同时也使得CAM技术的开发有了现实的基础。
曲面造型系统CATIA为人类带来了第一次CAD技术革命,改变了以往只能借助油泥模型来近似准确表达曲面的落后的工作方式。
2.第二次CAD技术革命──生不逢时的实体造型技术
80年代初,CAD系统价格依然令一般企业望而却步,这使得CAD技术无法拥有更广阔的市场。
为使自己的产品更具特色,在有限的市场中获得更大的市场份额,以CV、SDRC、UG为代表的系统开始朝各自的发展方向前进。
70年代末到80年代初,由于计算机技术的大跨步前进,CAE、CAM技术也开始有了较大发展。
SDRC公司在当时星球大战计划的背景下,由美国宇航局支持及合作,开发出了许多专用分析模块,用以降低巨大的太空实验费用,同时在CAD技术方面也进行了许多开拓;UG则着重在曲面技术的基础上发展CAM技术,用以满足麦道飞机零部件的加工需求;CV和CALMA则将主要精力都放在CAD市场份额的争夺上。
基于对于CAD/CAE一体化技术发展的探索,SDRC公司于1979年发布了世界上第一个完全基于实体造型技术的大型CAD/CAE软件──I-DEAS。
由于实体造型技术能够精确表达零件的全部属性,在理论上有助于统一CAD、CAE、CAM的模型表达,给设计带来了惊人的方便性。
它代表着未来CAD技术的发展方向。
基于这样的共识,各软件纷纷仿效。
一时间,实体造型技术呼声满天下。
可以说,实体造型技术的普及应用标志CAD发展史上的第二次技术革命。
但是新技术的发展往往是曲折和不平衡的。
实体造型技术既带来了算法的改进和未来发展的希望,也带来了数据计算量的极度膨胀。
在当时的硬件条件下,实体造型的计算及显示速度很慢,在实际应用中做设计显得比较勉强。
由于以实体模型为前提的CAE本来就属于较高层次技术,普及面较窄,反映还不强烈。
各公司的技术取向再度分道扬镳。
实体造型技
术也就此没能迅速在整个行业全面推广开。
推动了此次技术革命的SDRC公司与幸运之神擦肩而过,失去了一次大飞跃的机会。
在以后的10年里,随着硬件性能的提高,实体造型技术又逐渐为众多CAD系统所采用。
3.第三次CAD技术革命——一鸣惊人的参数化技术
正当CV公司业绩蒸蒸日上以及实体造型技术逐渐普及之时,CAD技术的研究又有了重大进展。
如果说在此之前的造型技术都属于无约束自由造型的话,进入80年代中期,CV 公司内部以高级副总裁为首的一批人提出了一种比无约束自由造型更新颍、更好的算法──参数化实体造型方法。
策划参数化技术的这些人在新思想无法实现时,集体离开了CV公司,另成立了一个参数技术公司(Parametric Technology Corp.),开始研制命名为Pro/E的参数化软件。
早期的Pro/E软件性能很低,只能完成简单的工作,但由于第一次实现了尺寸驱动零件设计修改,使人们看到了它今后将给设计者带来的方便性。
80年代末,计算机技术迅猛发展,硬件成本大幅度下降,CAD技术的硬件平台成本从二十几万美元一下子降到只需几万美元。
一个更加广阔的CAD市场完全展开,很多中小型企业也开始有能力使用CAD技术。
由于他们设计的工作量并不大,零件形状也不复杂,更重要的是他们无钱投资大型高档软件,因此他们很自然地把目光投向了中低档的Pro/E软件。
PTC在起家之初即以瞄准这个充满潜力的市场,迎合众多的中小企业上CAD的需求,一举进入了这块市场,获得了巨大的成功。
进入90年代,参数化技术变得比较成熟起来,充分体现出其在许多通用件、零部件设计上存在的简便易行的优势。
可以认为,参数化技术的应用主导了CAD发展史上的第三次技术革命。
4.第四次CAD技术革命─更上层楼的变量化技术
参数化技术的成功应用,使得它在90年前后几乎成为CAD业界的标准,许多软件厂商纷纷起步追赶。
但是技术理论上的认可并非意味着实践上的可行性。
由于CATIA、CV、UG、EUCLID都在原来的非参数化模型基础上开发或集成了许多其它应用,包括CAM、PIPING和CAE接口等,在CAD方面也做了许多应用模块开发。
他们采用的参数化系统基本上都是在原有模型技术的基础上进行局部、小块的修补。
考虑到这种参数化化的不完整性以及需要很长时间的过渡时期,CV、CA TIA、UG在推出自己的参数化技术以后,均宣传自己是采用复合建模技术,并强调复合建模技术的优越性。
这种把线框模型、曲面模型及实体模型叠加在一起的复合建模技术,并非完全基于实体,只是主模型技术的雏形,难以全面应用参数化技术。
由于参数化技术和非参数化技术内核本质不同,用参数化技术造型后进入非参数化系统还要进行内部转换,才能被系统接受,而大量的转换极易导致数据丢失或其它不利条件。
30年的CAD软件技术发展也给了我们这样一点启示:决定软件先进性及生命力的主要因素是软件基础技术,而并非特定的应用技术。
SDRC的开发人员发现了参数化技术尚有许多不足之处。
首先,全尺寸约束这一硬性规定就干扰和制约着设计者创造力及想象力的发挥。
在对现有各种造型技术进行了充分地分析和比较以后,一个更新颖大胆的设想产生了。
SDRC的开发人员以参数化技术为蓝本,提出了一种比参数化技术更为先进的实体造型技术──变量化技术,作为今后的开发方向。
SDRC的决策者们权衡利弊,同意了这个方案,决定在公司效益正好之时,抓住机遇,从根本上解决问题,否则日后落后无疑。
于是,从1990至1993年,历经3年时间,投资一亿多美元,将软件全部重新改写,于1993年推出全新体系结构的I-DEAS Master Series软件。
在早期出现的大型CAD软件中,这是唯一一家在90年代将软件彻底重写的厂家。
变量化技术成就了SDRC,也驱动了CAD发展的第四次技术革命。
技术发展,永无止境。
没有一种技术是常青树,愿CAD技术的发展伴随着人们对它认识及应用水平的提高,日新月异,更上层楼。