2020-2021学年沪教版(上海)八年级第二学期代数方程的应用练习含答案

合集下载

2021-2022学年最新沪教版(上海)八年级数学第二学期第二十一章代数方程专项测试试题

2021-2022学年最新沪教版(上海)八年级数学第二学期第二十一章代数方程专项测试试题

八年级数学第二学期第二十一章代数方程专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.设前一小时的行驶速度为x km/h,则可列方程()A.180218013 1.5x x-=+B.180218013 1.5x x+=+C.180218013 1.5xx x--=+D.180218013 1.5xx x++=+2、张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.1515112x x-=+B.1515112x x-=+C.1515112x x-=-D.1515112x x-=-3、下列每小题中的两个方程的解相同有()组.(1)2322xx x+=--与23x+=;(2)2422xx x+=--与24x;(3)112311x x x ++=+--与23x +=;(4)2227161x x x x x +=+--与26x = A .0 B .1 C .2 D .34、点(,)P x y 在第一象限,且10x y +=,点A 的坐标为(8,0),若OPA 的面积为16,则点P 的坐标为( )A .(5,5)B .(4,6)C .(6,4)D .(12,2)-5、要使关于x的一元二次方程210ax +-=有两个实数根,且使关于x 的分式方程2244x a x x ++=--的解为非负数的所有整数a 的个数为( )A .6个B .7个C .8个D .9个6、八年级学生去距学校15km 的博物馆参观,一部分学生骑自行车先走,过了30min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车同学的速度为x 千米/时,则所列方程时( )A .1515302x x+= B .1515302x x -= C .1511522x x += D .1511522x x -= 7、一次函数32y x =-与2y x b =+的图象的交点为()2,4P ,则二元一次方程组32,2x y x y b-=⎧⎨-=-⎩的解和b 的值分别是( )A .4,2x y =⎧⎨=⎩,6b =-B .4,2x y =⎧⎨=⎩,0b =C .2,4x y =⎧⎨=⎩,0b =D .2,4x y =⎧⎨=⎩,6b =- 8、已知关于x 的分式方程3111m x x +=--的解是正数,则m 的取值范围是( ) A .2m > B .2m ≥ C .2m ≥且3m ≠ D .2m >且3m ≠9、如图,直线l 1:y =x ﹣4与直线l 2:y =﹣43x +3相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是()A.31xy=⎧⎨=-⎩B.13xy=-⎧⎨=⎩C.13xy=-⎧⎨=-⎩D.31xy=⎧⎨=⎩10、如图,已知直线y=kx+b和y=mx+n交于点A(﹣2,3),与x轴分别交于点B(﹣1,0)、C(3,0),则方程组kx y bmx y n-=-⎧⎨-=-⎩的解为()A.23xy=-⎧⎨=⎩B.1xy=-⎧⎨=⎩C.3xy=⎧⎨=⎩D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、数形结合是解决数学问题常用的思想方法之一.如图,直线y=2x和直线y=ax+b相交于点A,则方程组20x yax b y-=⎧⎨+-=⎩的解为______.2、已知直线y =x +b 和y =ax +2交于点P (3,-1),则关于x 的方程(a -1)x =b -2的解为_______.3、如图,直线y =﹣2x +2与x 轴交于点A ,与y 轴交于点B .若点P 为x 轴上一点,且△ABP 的面积为3,则点P 的坐标为 ___.4、直线y =2x +3与坐标轴围成的三角形的面积为 ___.5、一小船由A 港到B 港顺流需6小时,由B 港到A 港逆流需8小时,小船从上午7时由A 港到B 港时,发现一救生圈在途中掉落水中,立即返航,1小时后找到救生圈,救生圈是_____时掉入水中.三、解答题(5小题,每小题10分,共计50分)1、解分式方程:(1)解方程:22111x x x -=--. (2)若关于x 的分式方程352mx x -=-与2131x x +=-的解相同,求m 的值. 2、某工厂生产A ,B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%,清扫2100m 所用的时间,A 型机器人比B 型机器人多用40分钟.求A 型号扫地机器人每小时清扫面积是多少?3、(1)先化简,再求值:2241193x x x -⎛⎫÷- ⎪-+⎝⎭,其中10123x -⎛⎫=+ ⎪⎝⎭. (2)解分式方程:121x x x x +=+- 4、解分式方程:(1)233x x =-; (2)28124x x x -=--. 5、城市因文明而美丽,市民因礼仪而优雅.在长沙市创建全国文明典范城市的过程中,太阳山社区为了巩固垃圾分类的成果,营造干净整洁的生活氛围,创建和谐文明的社区环境、准备购买A 、B 两种分类垃圾桶,通过市场调研得知:A 种垃圾桶每组的单价比B 种垃圾桶每组的单价少150元,且用18000元购买A 种垃圾桶的组数是用13500元购买B 种垃圾桶的组数的2倍.(1)求A 、B 两种垃圾桶每组的单价分别是多少元;(2)该社区计划用不超过8000元的资金购买A 、B 两种垃圾桶共20组,则最多可以购买B 种垃圾桶多少组?-参考答案-一、单选题1、C【分析】根据原计划的时间=实际所用时间+提前的时间可以列出相应的分式方程.【详解】解:设前一小时的行驶速度为x km/h , 由题意可得:180******** 1.5x x x--=+,即180218013 1.5x x x--=+, 故选:C .【点睛】本题主要是考查了列分式方程,熟练地根据题意找到等量关系,通过等量关系列出对应的分式方程,这是解题的关键.2、B【分析】 根据关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间﹣张老师所用时间=12.即可列出方程.【详解】 解:李老师所用时间为:15x ,张老师所用的时间为:151x +.所列方程为:1515112x x -=+. 故选:B .【点睛】此题主要考查列分式方程,由题意可知未知量是速度,有路程,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.3、C【分析】分别解每组方程进行判断即可.【详解】解:(1)解方程2322x x x +=--得x =1, 经检验,x =1是该方程的解;解23x +=得x=1,故两个方程同解;(2)解2422x x x +=--得x =2, 经检验,x =2不是该方程的解,该方程无解;解24x 得x =2,故两个方程不同解;(3)解112311x x x ++=+--得x =1, 经检验,x =1不是该方程的解,该方程无解;解23x +=得x =1,故两个方程不同解;(4)解2227161x x x x x +=+--得x =3, 经检验,x =3是该方程的解;解26x =得x =3,故两个方程同解,故选:C .【点睛】此题考查解分式方程及解一元一次方程,正确掌握解分式方程及一元一次方程的解法是解题的关键,注意解分式方程需检验.4、C【分析】根据题意画出图形,根据三角形的面积公式即可得出S 关于x 的函数关系式,把16S =代入函数关系即可得出x 的值,进而得出y 的值.【详解】解:已知(8,0)A 和(,)P x y ,118422OPA S OA y y y ∴=⋅=⨯⨯=△. 10x y +=,10y x ∴=-,4(10)404OPA S x x ∴=-=-△,当16OPA S =△时,40416x -=,解得6x =.10x y +=,1064y ∴=-=,即(6,4)P ;故选:C .【点睛】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.5、C【分析】根据一元二次方程的应用以及根据的判别式得到0a ≠且240b ac ∆=-≥,将分式方程整理为整式方程,得出x 的解,然后根据分式方程2244x a x x++=--的解为非负数确定a 的取值范围,然后写出此范围内的整数即可.【详解】解:∵关于x 的一元二次方程210ax +-=有两个实数根,∴0a ≠且241240b ac a ∆=-=+≥,∴3a ≥-且0a ≠, 对于分式方程2244x a x x++=--, 去分母得22(4)x a x --=-,解得:6x a =-,∵分式方程的解为非负数,∴60a -≥且64a -≠,解得6a ≤且2a ≠,∴36a -≤≤且0a ≠,2a ≠,∴整数a 的值为3-、2-、1-、1、3、4、5、6共8个,故选:C .【点睛】本题考查了根得判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.也考查了分式方程的解.6、C【分析】设骑车同学的速度为x 千米/时,汽车的速度是2x 千米/时,根据同时到达列出方程即可.【详解】解:设骑车同学的速度为x 千米/时,汽车的速度是2x 千米/时,根据题意列方程得,1511522x x+=, 故选:C .【点睛】本题考查了分式方程的应用,解题关键是找准等量关系,列出方程,注意单位转换.7、C【分析】根据两个一次函数图象的交点坐标就是两函数解析式组成方程组的解,即可得出该方程组的解;将P (2,4)代入2y x b =+,解出b 即可.【详解】∵322x y x y b -=⎧⎨-=-⎩可改写为:322y x y x b=-⎧⎨=+⎩ ∴一次函数32y x =-与2y x b =+的图象的交点坐标即为方程组的解,∴原方程组的解为24x y =⎧⎨=⎩. ∵点P (2,4)在一次函数2y x b =+的图象上,∴422b =⨯+解得:0b =.故选:C .【点睛】本题考查一次函数与二元一次方程组的关系以及函数图象上的点的坐标满足其解析式.理解两个函数图象的交点坐标就是两函数解析式组成方程组的解是解答本题的关键.8、D【分析】先求出分式方程的解,由方程的解是正数得m -2>0,由x -1≠0,得m -2-1≠0,计算可得答案.【详解】 解:3111m x x+=--, m -3=x -1,得x=m -2, ∵分式方程3111m x x+=--的解是正数, ∴x >0即m -2>0,得m >2,∵x -1≠0,∴m -2-1≠0,得m ≠3,∴2m >且3m ≠,故选:D .【点睛】此题考查了利用分式方程的解求参数的取值范围,正确求解分式方程并掌握分式的分母不等于零的性质是解题的关键.9、A【分析】关于x 、y 的二元体次方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解即为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1)的坐标.【详解】解:因为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是31x y =⎧⎨=-⎩, 故选A..【点睛】本题考查了一次函数与二元一次方程组的关系的理解和运算,主要考查学生的观察图形的能力和理解能力.10、A【分析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】解:由图象及题意得:∵直线y =kx +b 和y =mx +n 交于点A (﹣2,3),∴方程组kx y b mx y n -=-⎧⎨-=-⎩的解为23x y =-⎧⎨=⎩. 故选:A .【点睛】本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.二、填空题1、323x y ⎧=⎪⎨⎪=⎩由直线y=2x求得A的坐标,两直线的交点坐标为两直线解析式所组成的方程组的解.【详解】解:∵直线y=2x和直线y=ax+b相交于点A,A的纵坐标为3,∴3=2x,解得x=32,∴A(32,3),∴方程组20x yax b y-=⎧⎨+-=⎩的解为323xy⎧=⎪⎨⎪=⎩.故答案为:323xy⎧=⎪⎨⎪=⎩.【点睛】本题考查一次函数与二元一次方程组之间的关系,理解两直线的交点坐标即为两直线解析式所组成的方程组的解是解题关键.2、x=3【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解即可求解.【详解】解:解:∵直线y=x+b和y=ax+2交于点P(3,-1),∴当x=3时,3+b=3a+2,上述等式移项得到:3a-3=b-2,整理得到:3(a-1)=b-2,3、(4,0)或(-2,0)先求出A、B坐标,再设x轴上的点P(m,0),根据△ABP的面积为3列方程,即可得到答案.【详解】解:如图:在y=-2x+2中,令x=0得y=2,令y=0得-2x+2=0,x=1,∴A(1,0),B(0,2),设x轴上的点P(m,0),则AP=|m-1|,∵△ABP的面积为3,∴12AP•|y B|=3,即12|m-1|×2=3,∴|m-1|=3,解得m=4或m=-2,∴P(4,0)或(-2,0),故答案为:(4,0)或(-2,0).【点睛】本题考查一次函数图象上点坐标特征,涉及三角形面积,解题的关键是根据已知,列出方程12|m-1|×2=3.4、94【分析】根据坐标轴上点的坐标特征,求得直线与坐标轴的交点,然后根据三角形面积公式即可求得.【详解】解:当0y =时,023x =-+,32x =, 当0x =时,3y =,∴两坐标轴围成的三角形的面积为:1393224⨯⨯=, 故答案为:94.【点睛】本题考查的是一次函数图象上点的坐标特征,三角形的面积,主要考查函数的图象的特征,并利用函数图象解决实际问题.5、12【分析】先设小船按照水流速度由A 港漂流到B 港需要x 小时,列出方程,得出水流速度;然后设救生圈是y 时落下水中,对小船的救生圈的行程分析:小船早晨7点从港出发,顺流航行需6小时,小船在中午13点到达B 港,救生圈在y 时掉入水中,漂流时间为()13y -小时,船每小时行驶16,救生圈每小时漂流148,船与救生圈同向而行,距离拉大;船到B 港后立刻掉头去找救生圈,1小时后找到,这1小时内,船与救生圈相向而行,将原拉开的距离缩短为0,据此列出一元一次方程,求解即可得出.【详解】解:设小船按照水流速度由A 港漂流到B 港需要x 小时,根据题意可得:111168x x-=+,解得:48x =,经检验48x =符合题意,设救生圈是y 时落下水中,每小时漂流的距离等于全程的148, ∵小船早晨7点从港出发,顺流航行需6小时,∴小船在中午13点到达B 港,救生圈在y 时掉入水中,漂流时间为()13y -小时,船每小时行驶16,救生圈每小时漂流148,船与救生圈同向而行,距离拉大;船到B 港后立刻掉头去找救生圈,1小时后找到,这1小时内,船与救生圈相向而行,小船的速度为18,救生圈的速度不变,将原拉开的距离缩短为0,由此可得方程:()1111131648848y ⎛⎫⎛⎫--=⨯+ ⎪ ⎪⎝⎭⎝⎭, 解得:12y =,即救生圈在12时掉入水中,故答案为:12.【点睛】题目主要考查一元一次方程与分式方程的应用,理解题意,找出题目中的等量关系,列出方程是解题关键.三、解答题1、(1)原分式方程无解;(2)m =﹣74. 【分析】(1)先去分母化为整式方程,解方程求出x ,检验为增根;(2)先解方程2131x x +=-,求出x =4,检验,将x =4代入方程352mx x -=-,求出m 即可. 【详解】解:(1)22111x x x -=--,方程两边乘(x+1)(x﹣1),得:x(x+1)﹣(x+1)(x﹣1)=2,化简得:12x+=,解得:x=1,检验:当x=1时,(x+1)(x﹣1)=0,∴x=1是增根,原分式方程无解;(2)方程2131xx+=-,去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是方程2131xx+=-的解,把x=4代入方程352mxx-=-,得352mx-=,去分母得:3﹣4m=10,解得:m=﹣74.【点睛】本题考查分式方程的解法,掌握分式方程的解法与步骤是解题关键.2、A型号扫地机器人每小时清扫面积250m.【分析】设A型号扫地机器人每小时清扫面积2xm,则B型号扫地机器人每小时清扫面积21.5xm,根据题意列出方程求解即可得,注意对分式方程的解进行检验.【详解】解:设A型号扫地机器人每小时清扫面积2xm,则B型号扫地机器人每小时清扫面积21.5xm,40分钟23=小时,根据题意可得:10010021.53x x -=, 解得:50x =,检验:当50x =时,1.50x ≠,∴50x =为分式方程的解,∴A 型号扫地机器人每小时清扫面积250m .【点睛】题目主要考查分式方程的应用,理解题意,找准等量关系,列出方程是解题关键.3、(1)23x x --,2;(2)12x =- 【分析】(1)先根据分式的混合计算法则化简,然后根据零指数幂和负整数指数幂的计算法则求出x 的值,最后代值计算即可;(2)先把分式方程化为整式方程,然后求出x 的值,最后代值检验即可.【详解】(1)2241193x x x -⎛⎫÷- ⎪-+⎝⎭ 2)(2)2(3)(3)3x x x x x x +-+=÷+-+( 2)(2)3(3)(3)2x x x x x x +-+=⋅+-+( 23x x -=-, ∵0112()1343x -=+=+=, ∴当4x =时,原式42243-==-;(2)121x x x x +=+- 方程两边乘以(x +2)(x +1),得x (x -1)=(x +1)(x +2) ,∴2222x x x x x -=+++,即42x =-, 解得:12x =-, 检验:当12x =-时,9(2)(1)04x x +-=-≠ ∴原分式方程的解为12x =-.【点睛】本题主要考查了分式的化简求值,解分式方程,零指数幂和负整数指数幂,熟知相关计算方法是解题的关键.4、(1)9x =;(2)无解【分析】先将分式方程化为整式方程,解出整式方程,再将所求的解代入最简公分母中检验,即可求解.【详解】解:(1)233x x =- 方程两边同时乘以()3x x - ,得:()233x x =- ,解得:9x = ,检验:当9x =时,()()39930x x -=⨯-≠,所以原方程的解为9x =;(2)28124x x x -=-- 方程两边同时乘以()24x - ,得:()()2248x x x +--= ,解得:2x = ,检验:当2x =时,224240x -=-=,所以2x =是增根,原方程无解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的一般步骤,并记住要检验是解题的关键. 5、(1)A 、B 两种垃圾桶每组的单价分别是300元,450元;(2)最多可以购买B 种垃圾桶13组【分析】(1)设A 种垃圾桶每组的单价是x 元,则B 种垃圾桶每组的单价是()150x + 元,然后根据用18000元购买A 种垃圾桶的组数是用13500元购买B 种垃圾桶的组数的2倍,列出方程求解即可;(2)设购买B 种垃圾桶y 组,则购买A 种垃圾桶()20y -组,然后根据计划用不超过8000元的资金购买A 、B 两种垃圾桶共20组,列出不等式求解即可.(1)解:设A 种垃圾桶每组的单价是x 元,则B 种垃圾桶每组的单价是()150x + 元, 由题意得:18000135002150x x =⋅+, 解得300x =,经检验,300x =是原方程的解,∴150450x +=,∴A 、B 两种垃圾桶每组的单价分别是300元,450元;答:A 、B 两种垃圾桶每组的单价分别是300元,450元;(2)解:设购买B 种垃圾桶y 组,则购买A 种垃圾桶()20y -组,由题意得:()300204508000y y -+≤,∴60003004508000y y -+≤,∴1502000y ≤, ∴1133y ≤, ∵y 是整数,∴y 的最大值为13,∴最多可以购买B 种垃圾桶13组,答:最多可以购买B 种垃圾桶13组.【点睛】本题主要考查了分式方程和一元一次不等式的应用,解题的关键在于能够准确理解题意,列出方程和不等式求解.。

2022年沪教版(上海)八年级数学第二学期第二十一章代数方程综合训练练习题(含详解)

2022年沪教版(上海)八年级数学第二学期第二十一章代数方程综合训练练习题(含详解)

八年级数学第二学期第二十一章代数方程综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、八年级学生去距学校15km 的博物馆参观,一部分学生骑自行车先走,过了30min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车同学的速度为x 千米/时,则所列方程时( )A .1515302x x+= B .1515302x x -= C .1511522x x += D .1511522x x -= 2、若数a 使关于x 的不等式组3124(2)53x x x a -≤-⎧⎨-<⎩有且仅有4个整数解,且使关于y 的分式方程31222y a y y++--=1有正整数解,则满足条件的a 的个数是( ) A .0个 B .1个 C .2个 D .3个3、若关于x 的一元一次不等式组2(3)4152x x x a +-<+⎧⎨-≤⎩的解集为1x <-,且关于y 的分式方程1144y a y y++=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .-15 B .-10 C .-7 D .-44、已知关于x 的分式方程3x m x +-﹣1=1x 无解,则m 的值是( ) A .﹣2B .﹣3C .﹣2或﹣3D .0或3 5、若关于x 的方程2222x m x x ++=--有增根,则m 的取值是( ) A .0 B .2 C .-2 D .16、关于x 的不等式组2124()3(2)x x a x a x ->-⎧⎨+≥+⎩至少有2个整数解,且关于y 的分式方程22242a a y y y +-+=--的解为非负整数,则符合条件的所有整数a 的和为( )A .34B .24C .18D .147、下列方程是二项方程的是( )A .0n ax b +=B .2280x +=C .40x x +=D .220x =8、已知关于x 的分式方程22x m x +-=3的解是x =3,则m 的值为( ) A .3 B .﹣3 C .﹣1 D .19、某生产厂家更新技术后,平均每天比更新技术前多生产3万件产品,现在生产50万件产品与更新技术前生产40万件产品所需时间相同,设更新技术前每天生产产品x 万件,则可以列方程为( )A .50403x x =+B .40503x x =+C .40503x x =-D .50403x x=- 10、如图,一次函数y =2x +1的图象与y =kx +b 的图象相交于点A ,则方程组21x y kx y b-=-⎧⎨-=-⎩的解是( )A .37x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .23x y =⎧⎨=⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个分数的分子比分母少6,如果分子分母都加1,则这个分数的值等于14,则这个分数为________.2、代数式22231x x x ---的值等于0,则x =________. 3、学校用一笔钱买奖品,若以1支钢笔和2本日记本为1份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么,这笔钱全部用来买钢笔可以买________支.4、如图,函数y =mx +3与y =2x -的图象交于点A (a ,2),则方程组320y mx x y =+⎧⎨+=⎩的解为______.5、已知轮船顺水航行50千米所需的时间和逆水航行40千米所需的时间相同,水流的速度为3米/时,设轮船在静水中的速度为x 千米/时,可列方程为___________三、解答题(5小题,每小题10分,共计50分)1、某商店第一次用600元购进一款中性笔若干支,第二次又用750元购进该救中性笔,但这次每支中性笔的进价比第一次多1元,所购进的中性笔数量与第一次相同.(1)求第一次购进的每支中性笔的进价是多少元?(2)若这两次购进的中性笔按同一价格进行销售,全部销售完毕后获利不低于450元,求每支中性笔的售价至少是多少元?2、已知一次函数y 1=mx ﹣2m +4(m ≠0).(1)判断点(2,4)是否在该一次函数的图象上,并说明理由;(2)若一次函数y 2=﹣x +6,当m >0,试比较函数值y 1与y 2的大小;(3)函数y 1随x 的增大而减小,且与y 轴交于点A ,若点A 到坐标原点的距离小于6,点B ,C 的坐标分别为(0,﹣2),(2,1).求△ABC 面积的取值范围.3、已知一次函数y kx b =+的图象经过点()1,5--,且与正比例函数2y x =的图象相交于点()2,A m . 求:(1)m 的值;(2)k ,b 的值;(3)这两个函数图象与y 轴所围成的三角形的面积.4、虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.5、长春市政府计划对城区某道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造480米的道路比乙队改造同样长的道路少用2天.(1)求乙工程队每天能改造道路的长度;(2)若甲队工作一天的改造费用为8万元,乙队工作一天的改造费用为6万元,如需改造的道路全长为8000米,如果安排甲、乙两个工程队同时开工,并一起完成这项城区道路改造,求改造该段道路所需的总费用.-参考答案-一、单选题1、C【分析】设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据同时到达列出方程即可.【详解】解:设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据题意列方程得,1511522x x+=,故选:C.【点睛】本题考查了分式方程的应用,解题关键是找准等量关系,列出方程,注意单位转换.2、B【分析】不等式组变形后,根据有且仅有四个整数解确定出a的范围,再表示出分式方程的解,由分式方程有整数解,确定出满足条件a的值.【详解】解:解不等式组3124(2) 53x xx a-≤-⎧⎨-<⎩,解得:435xax≥-⎧⎪+⎨<⎪⎩,∵不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,∴﹣1<35a+≤0,∴﹣8<a≤﹣3.解分式方程31222y ay y++--=1,得y=102a+,∵y=102a+≠2为整数,∴a≠﹣6,∴所有满足条件的只有﹣4,故选:B.【点睛】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.3、B【分析】解出一元一次不等式组的解集,根据不等式组的解集为1x<-,在数轴上标出x的解集求出a的范围;根据分式方程分母不能为0的性质得出y-4≠0,再在分式方程两边同乘以y-4,解出分式方程的解,再根据a的范围求出y的取值范围,找出符合条件的y的正整数解,分别代入求出a的值,求和即可.【详解】解:2(3)4152x xx a+-<+⎧⎨-≤⎩ ① ②,解不等式①得:x<-1,解不等式②得:x≤25a+,∵不等式组的解集为1x<-,∴25a+≥-1,∴a≥-7;要想分式方程有意义,则y-4≠0,∴y≠4分式方程两边同乘以(y-4)得:y+y-4=-a-1,解得:y=32a-,∵a≥-7∴y=32a-≤5,∵方程的解是正整数且y≠4∴ y的正整数解有:1,2,3,5.把y=1,2,3,5分别代入32a-,可得整数a的值为1,-1,-3,-7.∴所有满足条件的整数a的值之和是:1+(-1)+(-3)+(-7)=-10故选:B.【点睛】解一元一次不等式组可通过数轴求解解集,注意不等式两边同乘以负号的时候不等号的方向一定要改变.解分式方程时,防止增根产生,要保证分母不为0.4、C【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【详解】解:两边都乘以x(x﹣3),得:x(x+m)﹣x(x﹣3)=x﹣3,整理,得:(m +2)x =﹣3, 解得:32x m =-+, ①当m +2=0,即m =﹣2时整数方程无解,即分式方程无解,②∵关于x 的分式方程3x m x +-﹣1=1x 无解, ∴302m -=+或332m -=+, 即无解或3(m +2)=﹣3,解得m =﹣2或﹣3.∴m 的值是﹣2或﹣3.故选C .【点睛】本题考查了解分式方程,分式方程的解,解题的关键是熟练掌握解分式方程的方法,注意分母不等于0的条件.5、A【分析】方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x 的值,然后代入进行计算即可求出m 的值.【详解】方程两边都乘以(x -2)得:-2+x +m =2(x -2),∵分式方程有增根,∴x -2=0,解得x =2,∴-2+2+m =2×(2-2),解得m =0.故答案为:A .【点睛】此题考查分式方程的增根,掌握运算法则是解题关键.6、C【分析】求出不等式组的解集,确定a 的取值范围,由分式方程的解得出不等式,求出a 的取值范围,确定a 的整数值求和即可.【详解】解不等式组2124()3(2)x x a x a x ->-⎧⎨+≥+⎩得:12x a x >⎧⎪⎨≤⎪⎩, ∴12a x <≤, ∵不等式组至少有2个整数解,∴符合条件的整数至少是2和3, ∴32a ≤ ∴6a ≤ 分式方程22242a a y y y +-+=--去分母得:22()2(24)a a y y +--=-, ∴1(10)2y a =-,∵分式方程的解为非负整数, ∴1(10)02y a =-≥且为整数,1(10)22y a =-≠,解得:10,6a a ≤≠,a 是偶数综上所述610a <≤,a 是偶数∵a 为整数,∴a 的值为8,10∴8+10=18,故选:C .【点睛】本题考查了不等式组的取值范围,分式方程的解,分式方程的增根容易忽略,仔细求解,考虑周全是解决本题的关键.7、B【分析】根据二项方程的定义逐项判断即可求解.【详解】解:A. 0n ax b +=,当a =0时,不是二项方程,不合题意;B. 2280x +=,是二项方程,符合题意;C. 40x x +=,不含常数项,不是二项方程,不合题意;D. 220x =,不含常数项,不是二项方程,不合题意.故选:B【点睛】本题考查了二项方程的定义,二项方程需满足以下条件:(1)整式方程;(2)方程共两项;(3)两项中一项含有未知数,另一项是常数项.8、B【分析】将x=3代入分式方程中进行求解即可.【详解】解:把x=3代入关于x的分式方程22x mx+-=3得:23332m⨯+=-,解得:m=﹣3,故选:B.【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解.9、A【分析】更新技术前每天生产产品x万件,可得更新技术后每天生产产品(x+3)万件.根据现在生产50万件产品与更新技术前生产40万件产品所需时间相同列出方程50403x x=+即可.【详解】解:∵更新技术前每天生产产品x万件,∴更新技术后每天生产产品(x+3)万件.依题意得50403x x=+.故选:A.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列出方程是解题关键.10、C【分析】一个一次函数解析式可以看做是一个二元一次方程,两个一次函数解析式可以组合成一个二元一次方程组,方程组的解就是两函数图象的交点.【详解】解:∵点A 的纵坐标为3,当2x +1=3时,1x =,∴一次函数y =2x +1的图象与y =kx +b 的图象相交于点A 坐标为(1,3),又∵方程组21x y kx y b -=-⎧⎨-=-⎩可变形为21y x y kx b=+⎧⎨=+⎩, ∴方程组21x y kx y b -=-⎧⎨-=-⎩的解为:13x y =⎧⎨=⎩. 故选:C .【点睛】此题主要考查了二元一次方程组和一次函数的关系,关键是掌握方程组的解就是两函数图象的交点.二、填空题1、17【分析】设这个分数的分子为x ,则分母为6x + ,根据“分子分母都加1,则这个分数的值等于14,”可列出方程,解出即可.【详解】解:设这个分数的分子为x ,则分母为6x + ,根据题意得:11614x x +=++ , 解得:1x = ,经检验:1x =是原方程的解,且符合题意,∴这个分数为116167x x ==++ . 故答案为:17.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.2、3【分析】根据题意建立分式方程,求解并检验即可.【详解】 解:由题意,222301x x x --=-, 左右同乘21x -,得:2230x x --=,()()310x x -+=,解得:3x =或1x =-,检验:当3x =时,210x -≠;当1x =-时,210x -=,则舍去;故答案为:3.【点睛】本题考查可化为一元二次方程的分式方程,理解题意,准确建立分式方程求解并检验是解题关键. 3、100【分析】设一支钢笔x 元,一本笔记本y 元,根据“若以1支钢笔和2本日记本为1份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,”可列出方程,从而得到3x y =,再用这笔钱除以一支钢笔的价钱,即可求解.【详解】解:设一支钢笔x 元,一本笔记本y 元,根据题意得:()()602503x y x y +=+ ,解得:3x y = ,∴()()60260321003x y y y x y ++==即这笔钱全部用来买钢笔可以买100支.故答案为:100.【点睛】本题主要考查了二元一次方程的应用,分式的性质,明确题意,列出方程,得到3x y =是解题的关键.4、12x y =-⎧⎨=⎩ 【分析】把(a ,2)代入y =-2x 中,求得a 值,把交点的坐标转化为方程组的解即可.【详解】∵函数y =mx +3与y =2x -的图象交于点A (a ,2),∴-2a =2,解得a =-1,∴A (-1,2),∴方程组320y mx x y =+⎧⎨+=⎩的解为12x y =-⎧⎨=⎩,故答案为:12xy=-⎧⎨=⎩.【点睛】本题考查了一次函数的交点与二元一次方程组的关系,正确理解一次函数解析式的交点坐标与由解析式构成的二元一次方程组的解的关系是解题的关键.5、504033=+-x x【分析】设轮船在静水中的速度为x千米/时,根据轮船顺水航行50千米所需的时间和逆水航行40千米所需的时间相同,列方程即可.【详解】设轮船在静水中的速度为x千米/时,由题意得,504033=+-x x,故答案为:504033=+-x x.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.三、解答题1、(1)第一次每支铅笔的进价为4元;(2)每支售价至少是6元.【分析】(1)设第一次每支铅笔进价为x元,则第二次每支铅笔的进价为x+1元,然后根据题意列出方程求解即可;(2)设售价为y元,再根据(1)得到的第一次和第二次每支铅笔的进价,然后根据题意列出不等式求解即可.【详解】解:(1)设第一次每支铅笔进价为x 元,由题意得6007501x x =+, 解得:4x =,经检验4x =是原分式方程的解.答:第一次每支铅笔的进价为4元;(2)设售价为y 元,第一次每支铅笔的进价为4元,则第二次每支铅笔的进价为5元, 由题意得:()()7506004545045y y ⨯-+-≥ 解得6y ≥.答:每支售价至少是6元.【点睛】本题主要考查了分式方程的实际应用、一元一次不等式的实际应用,读懂题意、根据题意列出分式方程和不等式成为解答本题的关键.2、(1)在,理由见解析;(2)当x >2时,y 1>y 2;当x =2时,y 1=y 2;当x <2时,y 1<y 2;(3)6<S △ABC <8【分析】(1)把点(2,4)代入解析式即可判断;(2)求得两直线的交点为(2,4),根据一次函数的性质即可比较函数值y 1与y 2的大小;(3)根据题意求得A 的纵坐标的取值,然后根据三角形面积公式即可求得.【详解】解:(1)把x =2代入y 1=mx ﹣2m +4得,y 1=2m ﹣2m +4=4,∴点(2,4)在该一次函数的图象上;(2)∵一次函数y 2=﹣x +6的图象经过点(2,4),点(2,4)在一次函数y 1=mx ﹣2m +4的图象上, ∴一次函数y 2=﹣x +6的图象与函数y 1=mx ﹣2m +4的图象的交点为(2,4),∵y 2随x 的增大而减小,y 1随x 的增大而增大,∴当x >2时,y 1>y 2;当x =2时,y 1=y 2;当x <2时,y 1<y 2;(3)由题意可知,﹣6<﹣2m +4<6且m <0,∴﹣1<m <0,∵点B ,C 的坐标分别为(0,﹣2),(2,1).∴6<AB <8,∴6<S △ABC <8.【点睛】本题考查了一次函数综合题,熟练掌握一次函数的性质是解本题的关键.3、(1)4m =;(2)3k =,2b =-;(3)2【分析】(1)把(2,m )代入正比例函数解析式即可得到m 的值;(2)把(-1,-5)、(2,4)代入y=kx+b 中可得关于k 、b 的方程组,然后解方程组求出k 、b 即可;(3)先利用描点法画出图象,再求出两直线与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)将()2,m 代入2y x =得,4m =.(2)由(1)得,交点坐标为()2,4,将()1,5--,()2,4代入y kx b =+中,得524k b k b -+=-⎧⎨+=⎩,解得32k b =⎧⎨=-⎩, ∴3k =,2b =-.(3)由(2)得,直线的表达式为32y x =-,令0x =,则2y =-,所以直线32y x =-与y 轴的交点坐标问为()0,2-,又∵两直线的交点坐标为()2,4, ∴12222s =⨯⨯=.【点睛】本题考查了一次函数的综合题:用待定系数法求一次函数的解析式,一次函数与坐标轴的交点问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解. 4、60米【分析】设原计划每天铺设管道x 米,根据题中等量关系原计划完成时间-实际完成时间=2列分式方程,然后求解即可解答.【详解】解:设原计划每天铺设管道x 米,由题意,得72072021.2x x-=,解得x=60,经检验,x=60是原方程的解.且符合题意,答:原计划每天铺设管道60米. -【点睛】本题考查分式方程的应用,理解题意,找准等量关系,正确列出方程是解答的关键.5、(1)乙工程队每天能改造道路的长度为80米;(2)甲、乙两个工程队一起完成这项城区道路改造的总费用为560万元.【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,由题意:甲队改造480米的道路比乙队改造同样长的道路少用2天.列出分式方程,解方程即可;(2)设安排甲、乙两个工程队同时开工需要m天完成,由题意:需改造的道路全长为8000米,安排甲、乙两个工程队同时开工,列出一元一次方程,解得40m=,再求出总费用即可.【详解】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:48048021.5x x-=,解得:80x=,经检验,80x=是所列分式方程的解,且符合题意,答:乙工程队每天能改造道路的长度为80米.(2)设安排甲、乙两个工程队同时开工需要m天完成,由题意得:120808000m m+=,解得:40m=,则408406560⨯+⨯=(万元),答:甲、乙两个工程队一起完成这项城区道路改造的总费用为560万元.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.。

2021-2022学年沪教版(上海)八年级数学第二学期第二十一章代数方程专项测试试题(含解析)

2021-2022学年沪教版(上海)八年级数学第二学期第二十一章代数方程专项测试试题(含解析)

八年级数学第二学期第二十一章代数方程专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,-1)则关于x 、y 的方程组kx y b mx n y=-⎧⎨+=⎩的解是( )A .-12x y =⎧⎨=⎩B .2-1x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩2、给出下列说法:①直线24y x =-+与直线1y x =+的交点坐标是()1,2;②一次函数y kx b =+,若0k >,0b <,那么它的图象过第一、二、三象限;③函数6y x =-是一次函数,且y 随x 增大而减小;④已知一次函数的图象与直线1y x =-+平行,且过点()8,2,那么此一次函数的解析式为6y x =-+;⑤直线1y kx k =+-必经过点()1,1--.其中正确的有( ).A .2个B .3个C .4个D .5个3、若关于x 的一元一次不等式组313221x x x a -⎧≤-⎪⎨⎪-<-⎩的解集为5x ≤-,且关于y 的分式方程11422ay y y -+=--有正整数解,则满足条件的所有整数a 的和为( )A .4B .5C .6D .74、若关于x 的一元一次不等式组3214x x x a+⎧>-⎪⎨⎪≤⎩的解集为x a ≤,且关于y 的分式方程52122y a y y y --+=--有正整数解,则所有满足条件的整数a 的个数为( )A .2B .3C .4D .55、方程322x x =-的解为( ) A .x =2 B .x =6 C .x =﹣6 D .x =﹣36、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,设乙队单独完成总工程共需x 个月,列方程正确的是( )A .111132x ++=B .11111332x+⨯+= C .1111()1332x ++⨯= D .11111332x ++⨯= 7、已知函数3y ax =-和y kx = 的图象交于点P (-2,-1),则关于x ,y 的二元一次方程组3y ax y kx=-⎧⎨=⎩的解是( )A .21x y =⎧⎨=-⎩B .21x y =-⎧⎨=-⎩C .21x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩ 8、若数a 既使得关于x 的不等式组12326x a x a x a -+⎧+≤⎪⎨⎪->⎩无解,又使得关于y 的分式方程122y a a y y +-=+-的解不大于4,则满足条件的所有整数a 的个数为( )A .3B .4C .5D .69、一艘轮船顺水航行100km 后返回,返回时用同样的时间只航行了80km ,若列方程100802525x x =+-表示题中的等量关系,则关于方程中x 和25这两个量的描述正确的是( )A .x 表示轮船在静水中的速度为x km/hB .x 表示水流速度为x km/hC .25 表示轮船在静水中的速度为25 km/hD .25 表示轮船顺水航行速度为25km/h10、一次函数3y x p =+和y x q =+的图象都经过点A (-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是( )A .2B .4C .6D .8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车先走40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆,已知汽车的速度是自行车速度的3倍,求汽车的速度,设汽车的速度是x 千米/小时,根据题意列方程________________.2、一个分数的分子比分母少6,如果分子分母都加1,则这个分数的值等于14,则这个分数为________.3、代数式22231x x x ---的值等于0,则x =________. 4、已知实数x 满足方程222322x x x x +-=+,则22x x+=____________. 5、一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,则汽车先后行驶的速度分别是________.三、解答题(5小题,每小题10分,共计50分)1、列分式方程解应用题:某种型号的LED 显示屏为长方形,其长与宽的比为4:3;若将该显示屏的长、宽各减少2cm ,则其长与宽的比值将会变为3:2.求该型号LED 显示屏的长度与宽度.2、解分式方程:2111x x x -=-+. 3、解方程:212111x x x --=+-. 4、(1)解方程:252744x x x x -=++; (2)23441222a a a a a a a +-⎛⎫+÷- ⎪++-⎝⎭. 5、某工厂生产A ,B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%,清扫2100m 所用的时间,A 型机器人比B 型机器人多用40分钟.求A 型号扫地机器人每小时清扫面积是多少?-参考答案-一、单选题1、B【分析】根据题意直接利用方程组的解就是两个相应的一次函数图象的交点坐标进行分析解决问题.【详解】解:∵一次函数y kx b =+和y mx n =+相交于点(2,-1),∴关于x 、y 的方程组kx y b mx n y =-⎧⎨+=⎩的解为21x y =⎧⎨=-⎩. 故选:B .【点睛】本题考查一次函数交点问题与二元一次方程(组)解得关系,理清二者的联系是解题关键.2、B【分析】联立241y x y x =-+⎧⎨=+⎩,求出交点坐标即可判断①;根据一次函数图像与系数的关系即可判断②③;可设一次函数的解析式为y x b =-+,然后求出解析式即可判断④;根据一次函数解析式可化为()11y k x =+-,即可判断⑤.【详解】解:联立241y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴直线24y x =-+与直线1y x =+的交点坐标是()1,2,故①正确;∵一次函数y kx b =+,若0k >,0b <,∴它的图象过第一、三、四象限,故②错误;∵函数6y x =-是一次函数,且y 随x 增大而减小,∴③正确;∵一次函数的图象与直线1y x =-+平行,∴可设一次函数的解析式为y x b =-+,∵一次函数经过点()8,2,∴28b =-+,∴10b =,∴一次函数解析式为10y x =-+,故④错误;∵直线的解析式为1y kx k =+-,即()11y k x =+-∴直线1y kx k =+-必经过点()1,1--,故⑤正确;故选B .【点睛】本题主要考查了一次函数图像的性质,求一次函数图像,求两直线的交点等等,解题的关键在于能够熟练掌握相关知识进行求解.3、B【分析】解关于x 的不等式组,然后根据不等式组的解集确定a 的取值范围,解分式方程并根据分式方程解的情况结合a 为整数,取所有符合题意的整数a ,即可得到答案.【详解】 解:313221x x x a -⎧≤-⎪⎨⎪-<-⎩①②,解不等式①得:5x ≤-,解不等式②得:21x a <-,∵该不等式组的解集为5x ≤-,∴215a ->-,∴2a >-,分式方程去分母得:14(2)1ay y -+-=-, 解得:64y a=-, ∵分式方程有正整数解,且2y ≠,∴满足条件的整数a 可以取:2、3,∴235+=,故选:B.【点睛】本题考查了解分式方程和一元一次不等式组的整数解,正确掌握解分式方程的步骤和解一元一次不等式组的方法是解本题的关键.4、B【分析】解关于x的不等式组,然后根据不等式组的解集确定a的取值范围,解分式方程并根据分式方程解的情况,结合a为整数,取所有符合题意的整数a,即可得到答案.【详解】解:3214xxx a+⎧>-⎪⎨⎪≤⎩①②,解不等式①,得:x<6,解不等式②,得:x≤a,∵该不等式解集为x≤a,∴a<6;由521 22y a yy y--+= --分式方程去分母,得:y-a-(5-2y)=y-2,解得:y=32a+,∵分式方程有正整数解,且y≠2,∴满足条件的整数a可以取5;3;-1;共3个;故选:B.【点睛】本题考查了解分式方程和一元一次不等式组的整数解,正确掌握解分式方程的步骤和解一元一次不等式组的方法是解题的关键.5、B【分析】方程两边同乘以x(x-2),将分式方程化为整式方程,解整式方程,最后验根.【详解】解:方程两边同乘以x(x-2),得3(x-2)=2x,去括号,得3x-6=2x,移项,得x=6,检验:当x=6时,x(x-2)=24≠0,∴x=6是原方程的解,故选:B【点睛】本题考查了解分式方程,熟练掌握分式方程的方法以及最后要验根是解题的关键.6、C【分析】设乙队单独施1个月能完成总工程的1x,根据甲队完成的任务量+乙队完成的任务量=总工程量(单位1),即可得出关于x的分式方程,此题得解.【详解】解:设乙队单独施1个月能完成总工程的1x,根据题意得:即1111()1 332x++⨯=.故选:C .【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7、B【分析】由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解.【详解】解:∵函数y =ax -3和y =kx 的图象交于点P 的坐标为(-2,﹣1),∴关于x ,y 的二元一次方程组3y ax y kx =-⎧⎨=⎩的解是21x y =-⎧⎨=-⎩. 故选B .【点睛】本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.8、B【分析】先解不等式组中的两个不等式,由不等式组的解集可得4a ≤,再解分式方程,由分式方程的解为负数可得:1a ≥-,且a ≠0,2,结合a 为整数,从而可得答案.【详解】 解:12326x a x a x a -+⎧+≤⎪⎨⎪->⎩①②解不等式①得56x a ≤-,解不等式②得26x a +>,∵不等式组无解,5626a a ∴-≤+解得,4a ≤,解关于y 的分式方程122y a a y y +-=+-得22y a =-+, ∵关于y 的分式方程122y a a y y +-=+-的解不大于4, 224a ∴-+≤,解得,1a ≥-,∵y +2≠0,y -2≠0∴y ≠2±,222a ∴-+≠±,解得,0a ≠,214a ∴-≤≤且0a ≠,2,∵a 为整数,∴a =-1或1或3或4,故选:B .【点睛】本题主要考查分式方程的解及解分式方程,一元一次不等式组的解及解一元一次不等式组,通过解不等式组及分式方程求解a 的取值范围是解题的关键.9、A【分析】根据题意,这是一个顺(逆)水行船问题,根据基本关系:顺水速度=水速+船速,逆水速度=水速-船速即可判断.根据题意,等量关系是往返时间相同,∴x表示轮船在静水中的速度为x km/h,25表示水流速度为25 km/h.故选:A.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意:顺水速度=水速+船速,逆水速度=水速-船速.10、B【分析】首先把(-2,0)分别代入一次函数y=3x+p和y=x+q中,可求出p,q的值,则求出两个函数的解析式;然后求出B、C两点的坐标;最后根据三角形的面积公式求出△ABC的面积.【详解】解:一次函数y=3x+p和y=x+q的图象都经过点A(-2,0),把(-2,0)代入解析式得-6+p=0,-2+q=0,解得p=6,q=2,则函数的解析式是y=3x+6,y=x+2,这两个函数与y轴的交点是B(0,6),C(0,2).因而CB=4,×2×4=4.因而△ABC的面积是12故选:B.【点睛】本题考查了函数解析式与图象的关系.函数的图象上的点满足函数解析式,反之,满足解析式的点一定在函数的图象上.1、1540151603x x -= 【分析】根据汽车的速度是x 千米/小时,则自行车的速度是13x ,根据题意,自行车比汽车多走40分钟列方程即可.【详解】 解:根据题意得:1540151603x x -=, 故答案为:1540151603x x -=. 【点睛】本题考查了分式方程得应用,读懂题意,找准等量关系是解本题的关键.2、17【分析】设这个分数的分子为x ,则分母为6x + ,根据“分子分母都加1,则这个分数的值等于14,”可列出方程,解出即可.【详解】解:设这个分数的分子为x ,则分母为6x + ,根据题意得:11614x x +=++ , 解得:1x = ,经检验:1x =是原方程的解,且符合题意,∴这个分数为116167x x ==++ . 故答案为:17.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.3、3【分析】根据题意建立分式方程,求解并检验即可.【详解】 解:由题意,222301x x x --=-, 左右同乘21x -,得:2230x x --=,()()310x x -+=,解得:3x =或1x =-,检验:当3x =时,210x -≠;当1x =-时,210x -=,则舍去;故答案为:3.【点睛】本题考查可化为一元二次方程的分式方程,理解题意,准确建立分式方程求解并检验是解题关键. 4、3【分析】 设22x x+=m ,将原式整理为含m 的方程即可得出答案【详解】 解:设22x x+=m , 则原方程为:32m m-=, 则:2230m m --=,解得:123,1m m ==-,当1m =-时,221x x+=-无实数解,故舍去, 经检验13,m =是32m m-=的解, 故答案为:3.【点睛】 本题考查了换元法解方程,解一元二次方程,熟练掌握解方程的一般步骤是解本题的关键. 5、km/h,4045km/h【分析】 设汽车先行驶的速度是x km h ,则汽车后行驶的速度是()5x km h +,根据“行驶这两段路程所用时间相等”可列出方程,解出即可.【详解】 解:设汽车先行驶的速度是x km h ,则汽车后行驶的速度是()5x km h +,根据题意得: 1201355x x =+ , 解得:40x = ,经检验:40x =是原分式方程的解且符合题意, ∴汽车后行驶的速度是545x km +=.故答案为:40/,45/km h km h .【点睛】本题主要考查了分式方程的实际应用,明确题意,准确得到等量关系是解题的关键.三、解答题1、长度为8cm ,宽度为6cm【分析】设LED 显示屏的长为4x cm ,则宽为3x cm ,根据题意列出方程,解方程即可解决问题,注意分式方程应检验【详解】解:设LED 显示屏的长为4x cm ,则宽为3x cm.根据题意列方程得423322x x -=- 解得:2x =.经检验,2x =是原方程的解则48x =,36x =答:该LED 显示屏的长度为8cm ,宽度为6cm.【点睛】本题考查了分式方程的应用,根据题意列出分式方程是解题的关键.2、3x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:()()()()12111x x x x x +--=+-去括号得:22221x x x x +-+=-,解得:3x =,检验:当3x =时,最简公分母()()110x x +-≠,∴原方程的解是3x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3、0x =【分析】先给方程两边乘以(x +1)(x -1),将分式方程化为整式方程,然后解方程即可解答.【详解】解:给方程两边乘以(x +1)(x -1),得:22(1)21x x --=-,222121x x x -+-=-,20x -=,解得:0x =,经检验,0x =是原方程的解.【点睛】本题考查解分式方程,熟练掌握解分式方程的解法步骤是解答的关键,注意结果要检验.4、(1)5x =;(2)42a a +-【分析】(1)根据分式方程的解法将分式方程化为整式方程求解即可;(2)根据分式混合运算法则、平方差公式、完全平方公式进行运算即可.【详解】(1)解:()5247x x -+=,5287x x --=,315x =,5x =,检验:当5x =时,(4)0x x +≠∴原分式方程的解为5x =;(2)解:原式234(2)(2)12(1)2a a a a a a a a a ++++-=÷-++- 2(2)2(1)1(2)(2)2a a a a a a a ++=⋅-++-- 2(2)22a a a a +=--- 242a a a +-=- 42a a +=-. 【点睛】本题考查解分式方程、分式的混合运算,熟记完全平方公式、平方差公式,掌握解分式方程的步骤和分式混合运算法则是解答的关键5、A 型号扫地机器人每小时清扫面积250m .【分析】设A 型号扫地机器人每小时清扫面积2xm ,则B 型号扫地机器人每小时清扫面积21.5xm ,根据题意列出方程求解即可得,注意对分式方程的解进行检验.【详解】解:设A 型号扫地机器人每小时清扫面积2xm ,则B 型号扫地机器人每小时清扫面积21.5xm , 40分钟23=小时,根据题意可得: 10010021.53x x -=, 解得:50x =,检验:当50x =时,1.50x ≠,∴50x =为分式方程的解,∴A 型号扫地机器人每小时清扫面积250m .【点睛】题目主要考查分式方程的应用,理解题意,找准等量关系,列出方程是解题关键.。

最新沪教版(上海)八年级数学第二学期第二十一章代数方程专项训练试题(含答案解析)

最新沪教版(上海)八年级数学第二学期第二十一章代数方程专项训练试题(含答案解析)

八年级数学第二学期第二十一章代数方程专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx=+⎧⎨=⎩的解是( ).A .31x y =⎧⎨=-⎩B .31x y =-⎧⎨=-⎩C .31x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩2、若分式方程1244x a x x +=---无解,则a 的值是( ) A .-5 B .4 C .3 D .03、设甲、乙、丙为三个连续的正偶数,已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍,设乙为x ,所列方程正确的是( )A .12311x x x+=-+ B .12322x x x +=+- C .12322x x x +=-+ D .12311x x x +=+- 4、某文具店购进A ,B 两种款式的书包,其中A 种书包的单价比B 种书包的单价低10%.已知店主购进A 种书包用了810元,购进B 种书包用了600元,且所购进的A 种书包的数量比B 种书包多20个.设文具店购进B 种款式的书包x 个,则所列方程正确的是( )A .81060010%20x x =⨯+B .()810600110%20x x=-+ C .60081010%20x x =⨯+ D .()()81060020110%x x x=⨯+- 5、自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x 元,则列出方程正确的是( )A .72054015x x =-B .72054015x x =+ C .72054015x x =- D .72054015x x =+ 6、直线2y x =--与直线3y x 的交点为( ) A .71,22⎛⎫ ⎪⎝⎭ B .51,22⎛⎫- ⎪⎝⎭ C .(0,2)- D .(0,3)7、方程322x x =-的解为( ) A .x =2 B .x =6 C .x =﹣6 D .x =﹣38、如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)和y =mx +n (m ≠0)相交于点(2,﹣1),则关于x ,y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩ 9、在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是( )A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .22x y ==⎧⎨⎩10、某单位向一所希生小学赠送1080件文具,现用A ,B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个,设B 型包装箱每个可以装x 件文具,根据题意列方程为( )A .108010801215x x =+-B .108010801215x x =-- C .108010801215x x =-+ D .108010801512x x =+- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了营造绿色环境,小区决定进行绿化美化工程.甲、乙两队合作6天可以完成,乙、丙两队合作10天可以完成,甲、丙两队合作5天可以完成全工程的23,问三个队分别单独做该工程,各需几天完成?设甲、乙、丙单独做各需x 、y 、z 天,由题意可得方程组________________,又设111,,a b c x y z ===,原方程组变形为________________,解这个关于a 、b 、c 的三元方程组,得a =______,b =______,c =______,所以x =______,y =______,z =______.2、如图,直线:4AB y x =+与直线:22BC y x =--相交于点B ,直线AB 与y 轴交于点A ,直线BC 与x 轴交于点D 与y 轴交于点C ,AE BC ∥交x 轴于点E .直线AB 上有一点P (P 在x 轴上方)且DEP ABC S S =,则点P 的坐标为_______.3、已知1x 、2x 是方程()22210x m x m -++-=的两个实数根且满足12111x x +=,则m 的值为__________.4、若直线2y x b =+经过直线2y x =-与4y x =-+的交点,则b 的值为____________.5、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _____只青蛙.三、解答题(5小题,每小题10分,共计50分)1、一粥一饭当思来之不易,半丝半缕恒念物力维艰.开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚. 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份.近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%.求苹果每千克的价格.2、解分式方程:(1)216111x x x +-=-- (2)13244x x x -=+-- 3、2020年3月,象群共计16头从西双版纳州进入普洱市,一路“象”北.当地政府组成大象护卫队,全程跟踪象群迁移轨迹,全景式记录大象“出走”经过.护卫队分成甲、乙两组,甲组行程120km 和乙组行程80km 所用时间相等,已知甲组的速度比乙组速度每小时快3km ,求甲、乙两组的速度.4、2020年7月24号,四川省人民政府正式批复成立南充临江新区,新区某绿化工程由甲、乙两个工程队共同参加.已知甲,乙工程队在单独完成面积为600m 2绿化时,乙队比甲队多用3天,且甲队每天完成绿化的面积是乙队每天完成面积的2倍.(1)求甲,乙两队每天各完成的绿化面积;(2)因工程进度要求在30天内完成7200m 2绿化,甲、乙两个工程队至少有多少天必须共同参加施工?5、为落实党中央“绿水青山就是金山银山”发展理念,某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前8天完成了这一任务,求原计划工作时每天绿化的面积为多少万平方米.-参考答案-一、单选题1、C【分析】由图可知:两个一次函数的交点坐标为(3,1)-;那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:根据函数图可知,函数y ax b =+和y kx =的图象交于点P 的坐标是(3,1)-,故y ax b y kx =+⎧⎨=⎩的解是31x y =-⎧⎨=⎩, 故选:C .【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数解析式,因此方程组的解就是两个相应的一次函数图象的交点坐标.2、A【分析】按解分式方程的步骤化为关于x 的一元一次方程,可知x =4是一元一次方程的解,把解代入即可求得a 的值.【详解】 方程1244x a x x +=---两边同乘(x -4),得:12(4)x x a +=-- 即9x a -=由题意知,x=4是原分式方程的增根,则它是9x a -=的解∴49a -=解得5a =-故选:A【点睛】本题是分式方程无解问题,考查了分式方程的解法,一元一次方程的解的概念,关键是理解分式方程无解,则它在一般情况下是有增根,也即使分式方程的分母为零的未知数的值.3、C【分析】因为甲、乙、丙为三个连续的正偶数,设乙为x ,则甲为2x -,丙为2x +,然后根据已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍列出方程即可.【详解】解:∵甲、乙、丙为三个连续的正偶数,∴设乙为x ,则甲为2x -,丙为2x +, 根据题意得:12322x x x+=-+, 故选:C .【点睛】本题考查了分式方程的应用,读懂题意,找准等量关系是解决本题的关键.4、B【分析】设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个,根据单价=总价÷数量结合A 种笔袋的单价比B 种袋的单价低10%,即可得出关于x 的分式方程.【详解】解:设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个, 依题意,得:()810600110%20x x =-+, 故选:B .【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.5、A【分析】设甲种水杯的单价为x元,则乙种水杯的单价为(x-15)元,根据720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同列方程即可得解.【详解】解:设甲种水杯的单价为x元,则乙种水杯的单价为(x-15)元根据题意列出方程得:720540-15x x=.故选项A.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列方程是解题关键.6、B【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【详解】解:联立两个函数解析式得23y xy x=--⎧⎨=+⎩,解得5212xy⎧=-⎪⎪⎨⎪=⎪⎩,则两个函数图象的交点为(52-,12),故选:B.本题主要考查了两函数交点问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.7、B【分析】方程两边同乘以x(x-2),将分式方程化为整式方程,解整式方程,最后验根.【详解】解:方程两边同乘以x(x-2),得3(x-2)=2x,去括号,得3x-6=2x,移项,得x=6,检验:当x=6时,x(x-2)=24≠0,∴x=6是原方程的解,故选:B【点睛】本题考查了解分式方程,熟练掌握分式方程的方法以及最后要验根是解题的关键.8、B【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:∵一次函数y=kx+b和y=mx+n相交于点(2,-1),∴关于x、y的方程组kx y bmx n y=-⎧⎨+=⎩的解是21xy=⎧⎨=-⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.9、C【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y ⎧⎨⎩==. 故选:C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.10、B【分析】根据题意可以列出相应的方程,本题得以解决.【详解】 解:由题意可得,108010801215x x =--, 故选:B .【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.二、填空题1、11611125311101⎧⎛⎫+=⎪ ⎪⎝⎭⎪⎪⎪⎛⎫+=⎨ ⎪⎝⎭⎪⎪⎛⎫⎪+= ⎪⎪⎝⎭⎩x y x z z y 6()125()310()1+=⎧⎪⎪+=⎨⎪+=⎪⎩a b a c c b 110 115 130 10 15 30 【分析】设甲、乙、丙单独做各需x 、y 、z 天,由题意可得关于x 、y 、z 的方程组,再设111,,a b c x y z===,可得到关于,,a b c 的方程组,可求出110115130⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩a b c ,从而求出10,15,30x y z === ,即可求解.【详解】解:设甲、乙、丙单独做各需x 、y 、z 天,由题意可得:11611125311101⎧⎛⎫+=⎪ ⎪⎝⎭⎪⎪⎪⎛⎫+=⎨ ⎪⎝⎭⎪⎪⎛⎫⎪+= ⎪⎪⎝⎭⎩x y x z z y 又设111,,a b c x y z===, 则原方程组变形为6()125()310()1+=⎧⎪⎪+=⎨⎪+=⎪⎩a b a c c b ,解得:110115130⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩a b c , ∴111111,,101530===x y z , 解得:10,15,30x y z === .故答案为: 11611125311101⎧⎛⎫+=⎪ ⎪⎝⎭⎪⎪⎪⎛⎫+=⎨ ⎪⎝⎭⎪⎪⎛⎫⎪+= ⎪⎪⎝⎭⎩x y x z z y ;6()125()310()1+=⎧⎪⎪+=⎨⎪+=⎪⎩a b a c c b ;110;115;130;10;15;30. 【点睛】本题主要考查了分式方程组的应用,明确题意,准确得到等量关系是解题的关键.2、(-3,4)【分析】先求出A (0,4),D (-1,0),C (0,-2),得到AC =6,再求出B 点坐标,从而求出△ABC 的面积;然后求出直线AE 的解析式得到E 点坐标即可求出DE 的长,再由162DEP P ABC SDE y S △进行求解即可.【详解】解:∵A 是直线4y x =+与y 轴的交点,C 、D 是直线22y x =--与y 轴、x 轴的交点,∴A (0,4),D (-1,0),C (0,-2),∴AC =6;联立422y x y x =+⎧⎨=--⎩ ,解得22x y =-⎧⎨=⎩, ∴点B 的坐标为(-2,2), ∴()1==62ABC B S AC x ⋅-△, ∵AE BC ∥,∴可设直线AE 的解析式为2y x b =-+,∴4b =,∴直线AE 的解析式为24y x =-+,∵E 是直线AE 与x 轴的交点,∴点E 坐标为(2,0),∴DE =3, ∴162DEPP ABC S DE y S △, ∴=4P y ,∴=3P x ,∴点P 的坐标为(-3,4),故答案为:(-3,4).【点睛】本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.3、3【分析】 将12111x x +=变形为21121x x x x +=,然后根据根与系数的关系代入求解即可. 【详解】解:∵1x 、2x 是方程()22210x m x m -++-=的两个实数根, ∴122b x x m a +=-=+,1221c x x m a ==-, 将12111x x +=通分整理为21121x x x x +=, ∴2121m m +=-, 解得:3m =,经检验,3m =是方程2121m m +=-的根, 故答案为:3.【点睛】本题考查了一元二次方程根与系数的关系,以及解分式方程,分式的加法等知识点,熟练掌握一元二次方程根与系数的关系是解本题的关键.4、-5【分析】先求出直线y =x -2与直线y =-x +4的交点坐标,再代入直线y =2x +b ,求出b 的值.【详解】解:解方程组24y x y x -⎧⎨-+⎩==, 得31x y ⎧⎨⎩==. ∴直线2y x =-与4y x =-+的交点为(3,1)把(3,1)代入y =2x +b ,得:1=2×3+b ,解得:b =-5.故答案为-5.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.5、300【分析】设池塘大约有x 只,根据题意,得到30440x =,计算即可. 【详解】设池塘大约有x 只,根据题意,得到30440x =, 解得 x =300,经检验,x=300是原方程的根,故答案为:300.【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键.三、解答题1、14元【分析】设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元.根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解.【详解】解:设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元. 根据题意,得1500180050(140%)x x-=- 解得14x =经检验:14x =是原分式方程的解,且符合题意,∴苹果每千克的价格为14元. 【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.2、(1)2x =;(2)4x =是方程的增根.【分析】(1)方程两边同时乘以21x -,得到22(1)61x x +-=-的形式,解得2x =,将2x =代入21x -中检验4130-=≠,从而得到分式方程的解.(2)方程两边同时乘以4x -,得到132(4)x x -=+⨯-的形式,解得4x =,将4x =代入4x -中检验440-=,从而得到4x =为分式方程的增根.【详解】解:(1)方程两边同时乘以21x -得22(1)61x x +-=-解方程得2x =经检验得2x =是分式方程的解.(2)方程两边同时乘以4x -得132(4)x x -=+⨯-解方程得4x =经检验得4x =是分式方程的增根.【点睛】本题考查了分式方程的求解、增根.解题的关键和难点在于找最简公分母.易错点是是否对整式方程的解进行验证.3、甲组的速度为9km/h ,乙组的速度为6km/h .【分析】设乙组的速度为x km/h ,则甲组的速度为(x +3)km/h ,根据题意可列出关于x 的分式方程,解出方程并检验,即可得出结果.【详解】解:设乙组的速度为x km/h ,则甲组的速度为(x +3)km/h , 依题意列方程得:120803x x=+ 解得x =6经检验,x=6是方程的解∴x+3=6+3=9(km/h)答:甲组的速度为9km/h,乙组的速度为6km/h.【点睛】本题考查分式方程的实际应用.根据题意找出数量关系列出方程是解答本题的关键.4、(1)甲队每天完成的绿化面积为200m2,乙队每天完成的绿化面积为100m2;(2)12天【分析】(1)设乙队每天完成的绿化面积为x m2,则甲队每天完成的绿化面积为2x m2,利用工作时间=工作总量÷工作效率,结合甲,乙工程队在单独完成面积为600m2绿化时乙队比甲队多用3天,即可得出关于x的分式方程,解之经检验后即可得出乙队每天完成的绿化面积,再将其代入2x中即可求出甲队每天完成的绿化面积;(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,利用工作总量=工作效率×工作时间,结合30天内至少完成7200m2绿化,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙队每天完成的绿化面积为x m2,则甲队每天完成的绿化面积为2x m2,依题意得:600x﹣6002x=3,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴2x=2×100=200.答:甲队每天完成的绿化面积为200m2,乙队每天完成的绿化面积为100m2.(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,依题意得:(200+100)m+200(30﹣m)≥7200,解得:m≥12.答:甲、乙两个工程队至少有12天必须共同参加施工.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.5、原计划每天绿化的面积为1.5万平方米.【分析】设原计划每天绿化的面积为x万平方米,则实际工作每天绿化的面积为(1+25%)x万平方米,由题意:某工程队承接了60万平方米的荒山绿化任务,结果提前8天完成了这一任务,列出分式方程,解方程即可.【详解】解:设原计划每天绿化的面积为x万平方米,则实际工作每天绿化的面积为(1+25%)x万平方米,依题意得:60x﹣60(125%)x=8,解得:x=1.5,经检验,x=1.5是原方程的解,且符合题意.答:原计划每天绿化的面积为1.5万平方米.【点睛】本题考查了分式方程的应用.找准等量关系,列出分式方程是解决问题的关键.。

沪教版(上海)八年级数学第二学期第二十一章代数方程达标测试试题(精选)

沪教版(上海)八年级数学第二学期第二十一章代数方程达标测试试题(精选)

八年级数学第二学期第二十一章代数方程达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用换元法解分式方程2211x x x x+-++1=0时,如果设21x x +=y ,那么原方程可以变形为整式方程( )A .y 2﹣3y ﹣1=0B .y 2+3y ﹣1=0C .y 2﹣y ﹣1=0D .y 2+y ﹣1=02、若整数a 使关于x 的不等式组2062x a x x->⎧⎨->⎩有解,且最多有2个整数解,且使关于y 的分式方程2ay y +-412y=-的解为整数,则符合条件的所有整数a 的和为( ) A .4- B .4 C .2- D .23、斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A —B —C 横穿双向行驶车道,其中AB =BC =12米,在绿灯亮时,小敏共用22秒通过AC 路段,其中通过BC 路段的速度是通过AB 路段速度的1.2倍,则小敏通过AB 路段时的速度是( )A .0.5米/秒B .1米/秒C .1.5米/秒D .2米/秒4、体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y )恰好是两条直线的交点坐标,则这两条直线的解析式是( )A .222933y x y x =+=+, B .222933y x y x =-+=+, C .222933y x y x =-+=-+, D .222933y x y x =+=-+, 5、下列方程中:(1)410x +=;(2)0n ax b +=;(3)40x x +=;(4)51x x +=;是二项方程的有( )个.A .1B .2C .3D .46、如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx =+⎧⎨=⎩的解是( ).A .31x y =⎧⎨=-⎩B .31x y =-⎧⎨=-⎩C .31x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩ 7、如图,已知直线y =kx +b 和y =mx +n 交于点A (﹣2,3),与x 轴分别交于点B (﹣1,0)、C (3,0),则方程组kx y b mx y n -=-⎧⎨-=-⎩的解为( )A .23x y =-⎧⎨=⎩B .10x y =-⎧⎨=⎩C .30x y =⎧⎨=⎩D .无法确定8、某人往返于A ,B 两地,去时先步行2公里再乘汽车10公里;回来时骑自行车,来去所用时间恰好一样,已知汽车每小时比步行多走16公里,汽车比骑自行车每小时多走8公里,若步行速度为x 公里/小时,则可列出方程( )A .21210816x x x +=++ B .10122168x x x -=++ C .21012168x x x +=++ D .10122168x x x +=++ 9、若直线y x m =-+与直线24y x =+的交点在第一象限,则m 的取值范围是( ).A .4m ≥B .1m ≥-C .4m >D .1m >-10、若关于x 的一元一次不等式组313221x x x a -⎧≤-⎪⎨⎪-<-⎩的解集为5x ≤-,且关于y 的分式方程11422ay y y -+=--有正整数解,则满足条件的所有整数a 的和为( )A .4B .5C .6D .7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,一次函数1y x =-+与反比例函数2y x=-的图象交于点A 、B ,在x 轴上存在点P (n ,0),使△ABP 为直角三角形,则P 点的坐标是______.2、若m 、n 为全体实数,那么任意给定m 、n ,两个一次函数1y mx n =+和2y nx m =+(m ≠n )的图象的交点组成的图象方程是_________.3、若关于x 的分式方程211x a x +=-的解为正数,则a 的取值范围为________.4、如图,直线:4AB y x =+与直线:22BC y x =--相交于点B ,直线AB 与y 轴交于点A ,直线BC 与x 轴交于点D 与y 轴交于点C ,AE BC ∥交x 轴于点E .直线AB 上有一点P (P 在x 轴上方)且DEP ABC S S =,则点P 的坐标为_______.5、某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,需缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x 米,则所列方程是____________________.三、解答题(5小题,每小题10分,共计50分)1、虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.2、观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.解答下面的问题: (1)猜想并写()11n n =+ . (2)求111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯的值. (3)探究并解方程:()()()()()211133366918x x x x x x x ++=++++++. 3、2020年7月24号,四川省人民政府正式批复成立南充临江新区,新区某绿化工程由甲、乙两个工程队共同参加.已知甲,乙工程队在单独完成面积为600m 2绿化时,乙队比甲队多用3天,且甲队每天完成绿化的面积是乙队每天完成面积的2倍.(1)求甲,乙两队每天各完成的绿化面积;(2)因工程进度要求在30天内完成7200m 2绿化,甲、乙两个工程队至少有多少天必须共同参加施工?4、一粥一饭当思来之不易,半丝半缕恒念物力维艰.开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚. 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份.近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%.求苹果每千克的价格.5、解分式方程:2111x x x -=-+.-参考答案-一、单选题1、D【分析】 根据换元法,把21x x +换成y ,然后整理即可得解. 【详解】解:∵21x x +=y , ∴原方程化为110y y -+=. 整理得:y 2+y ﹣1=0.故选D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、D【分析】根据题意先解不等式,确定a 的范围,进而根据分式方程的解为整数,确定a 的值,再求其和即可.【详解】解:2062x a x x ->⎧⎨->⎩①② 解不等式①得:2ax >解不等式②得:2x < 不等式组有解,则22a x <<且最多有2个整数解,则122a -≤< 解得24a -≤<2,1,0,1,2,3a ∴=--分式方程去分母得:42ay y -=-解得21y a =- 分式方程2ay y +-412y =-的解为整数, 21a ∴-是整数,且2,10y a ≠-≠ 2,1,2a ∴≠-1,0,3a ∴=-1032∴-++=即符合条件的所有整数a 的和为2,故选D【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.3、B【分析】设通过AB 的速度是x m/s ,则根据题意可列分式方程,解出x 即可.【详解】设通过AB 的速度是x m/s , 根据题意可列方程:1212221.2x x+= , 解得x =1,经检验:x =1是原方程的解且符合题意.所以通过AB 时的速度是1m/s .故选B .【点睛】本题考查分式方程的实际应用,根据题意找出等量关系并列出分式方程是解答本题的关键.4、C【分析】根据根据进球总数为49个,总共20人,分别列出,x y 的关系式即可.【详解】根据进球总数为49个得:23495342522x y +=⨯⨯=﹣﹣﹣, 整理得:22233y x =-+, ∵20人一组进行足球比赛,∴153220x y +++++=,整理得:9y x =-+. ∴222933y x y x =-+=-+,. 故选C .【点睛】本题考查了两直线交点与二元一次方程组,理解题意列出关系式是解题的关键.5、A【分析】根据两项方程的定义直接判断得结论.【详解】解:(1)410x +=,符合二项方程的定义;(2)0n ax b +=,当a =0时,不符合二项方程的定义;(3)40x x +=,两项都含有未知数,不符合二项方程的定义;(4)51x x +=,有三项,不具备二项方程的定义,综上,只有(1)符合二项方程的条件,共1个.故选:A .【点睛】本题考查了二项方程的定义,二项方程需满足以下几个基本条件:(1)整式方程,(2)方程共两项,(3)两项中一项含有未知数,一项是常数项.6、C【分析】由图可知:两个一次函数的交点坐标为(3,1)-;那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:根据函数图可知,函数y ax b =+和y kx =的图象交于点P 的坐标是(3,1)-,故y ax b y kx =+⎧⎨=⎩的解是31x y =-⎧⎨=⎩, 故选:C .【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数解析式,因此方程组的解就是两个相应的一次函数图象的交点坐标.7、A【分析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】解:由图象及题意得:∵直线y=kx+b和y=mx+n交于点A(﹣2,3),∴方程组kx y bmx y n-=-⎧⎨-=-⎩的解为23xy=-⎧⎨=⎩.故选:A.【点睛】本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.8、C【分析】本题未知量是速度,已知路程,一定是根据时间来列等量关系的.关键描述语是:“来去所用时间恰好一样”;等量关系为:步行时间+乘车时间=骑自行车时间.【详解】解:步行所用时间为:2x,乘汽车所用时间为:1016x+,骑自行车所用时间为:128x+.所列方程为:21012168x x x+=++.故选C.【点睛】找到关键描述语,等量关系是解决问题的关键.9、C【分析】联立两直线解析式求出交点坐标,再根据交点在第一象限列出不等式组求解即可.【详解】解:根据题意,联立方程组24y x m y x =-+⎧⎨=+⎩, 解得:43243m x m y -⎧=⎪⎪⎨+⎪=⎪⎩, 则两直线交点坐标为4(3m -,24)3m +, 两直线交点在第一象限, ∴4032403m m -⎧>⎪⎪⎨+⎪>⎪⎩, 解得:4m >,故选:C .【点睛】本题考查了两直线相交的问题,解二元一次方程组和一元一次不等式组,联立两函数解析式求交点坐标是常用的方法.10、B【分析】解关于x 的不等式组,然后根据不等式组的解集确定a 的取值范围,解分式方程并根据分式方程解的情况结合a 为整数,取所有符合题意的整数a ,即可得到答案.【详解】 解:313221x x x a -⎧≤-⎪⎨⎪-<-⎩①②, 解不等式①得:5x ≤-,解不等式②得:21x a <-,∵该不等式组的解集为5x ≤-,∴215a ->-,∴2a >-,分式方程去分母得:14(2)1ay y -+-=-, 解得:64y a=-, ∵分式方程有正整数解,且2y ≠,∴满足条件的整数a 可以取:2、3,∴235+=,故选:B .【点睛】本题考查了解分式方程和一元一次不等式组的整数解,正确掌握解分式方程的步骤和解一元一次不等式组的方法是解本题的关键.二、填空题1、(3,0)或(-3,0)或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭ 【分析】先根据函数的性质,求出A 、B 的坐标,再分三种情况分析,利用勾股定理的逆定理建立方程即可得出结论.【详解】解:∵一次函数y =−x +1与反比例函数y =2-x的图象交于点A 、B , ∴1y x y x =-+⎧⎪⎨=-⎪⎩2的解是点A 、B 的坐标,解这个方程组得:111 2x y =-⎧⎨=⎩,2221xy=⎧⎨=-⎩,∴A(-1,2),B(2,-1),设P(n,0),∵A(-1,2),B(2,-1),P(n,0),∴AB2=(2+1)2+(1+2)2=18,BP2=(n-2)2+1,AP2=(n+1)2+4,∵△ABP为直角三角形,∴①当∠ABP=90°AB2+BP2=AP2∴18+(n-2)2+1=(n+1)2 +4,∴n= 3,∴ P(3, 0),②当∠BAP= 90°时,AB2+ AP2= BP2,∴18+(n+1)2 +4=(n-2)2+1,∴n= -3,∴P(-3,0),③当∠APB= 90°时,AP2+ BP2= AB2,∴(n+1)2+4+(n-2)2+1= 18,∴n=∴P0)或P0),故答案为:P点的坐标(3,0)、 (-3,0)、,0)或0).【点睛】此题是反比例函数综合题,主要考查了分式方程的解法,勾股定理的逆定理,利用方程的思想解决问题是解本题的关键.2、x=1【分析】根据两个一次函数的图象的交点求法,得到y1=y2,求出交点,即可得出两函数图象的交点组成的图象方程.【详解】解:∵当两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的有交点时,∴y1=y2,∴mx+n=nx+m,mx-nx=m-n,(m-n)x=m-n,∵m≠n,∴x=1,故答案为:x=1.【点睛】本题考查了一次函数与二元一次方程组,利用方程组的解就是两个一次函数相应的交点坐标得到y1=y2,进而求出x是解决问题的关键.3、1a <-且【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:去分母得:21x a x +=- ,解得:1x a =-- ,由分式方程的解为正数,得到10a --> ,且11a --≠ ,解得:a <-1且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4、(-3,4)【分析】先求出A (0,4),D (-1,0),C (0,-2),得到AC =6,再求出B 点坐标,从而求出△ABC 的面积;然后求出直线AE 的解析式得到E 点坐标即可求出DE 的长,再由162DEP P ABC SDE y S △进行求解即可.【详解】解:∵A 是直线4y x =+与y 轴的交点,C 、D 是直线22y x =--与y 轴、x 轴的交点,∴A (0,4),D (-1,0),C (0,-2),∴AC =6;联立422y x y x =+⎧⎨=--⎩ ,解得22x y =-⎧⎨=⎩, ∴点B 的坐标为(-2,2), ∴()1==62ABC B S AC x ⋅-△, ∵AE BC ∥,∴可设直线AE 的解析式为2y x b =-+,∴4b =,∴直线AE 的解析式为24y x =-+,∵E 是直线AE 与x 轴的交点,∴点E 坐标为(2,0),∴DE =3, ∴162DEPP ABC S DE y S △, ∴=4P y ,∴=3P x ,∴点P 的坐标为(-3,4),故答案为:(-3,4).【点睛】本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.5、7207202(120%)x x-=+【详解】略三、解答题1、60米【分析】设原计划每天铺设管道x米,根据题中等量关系原计划完成时间-实际完成时间=2列分式方程,然后求解即可解答.【详解】解:设原计划每天铺设管道x米,由题意,得72072021.2x x-=,解得x=60,经检验,x=60是原方程的解.且符合题意,答:原计划每天铺设管道60米. -【点睛】本题考查分式方程的应用,理解题意,找准等量关系,正确列出方程是解答的关键.2、(1)111n n ⎛⎫-⎪+⎝⎭;(2)20202021;(3)2x = 【分析】(1)根据材料可直接得出答案;(2)根据(1)的规律,将算式写出差的形式,计算即可;(3)先按照(1)的结论进行化简,再解分式方程,即可得到答案.【详解】解:(1)根据题意,可知:()11111n n n n =-++; 故答案为:111n n ⎛⎫-⎪+⎝⎭; (2)由(1)可知,111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯ =1111111(1)()()()2233420202021-+-+-+⋅⋅⋅⋅⋅⋅+- =111111112233420202021-+-+-+⋅⋅⋅⋅⋅⋅+- =112021-=20202021; (3)由(1)可知,()()()()()211133366918x x x x x x x ++=++++++, ∴211111113()33366918x x x x x x x -+-+-=++++++, ∴21113()3918xx x -=++, ∴2119918x x x -=++, ∴299(9)18x x x =++, ∴22918x x x +=+,∴2x =;经检验,2x =是原分式方程的解.∴2x =.【点睛】本题考查了解分式方程以及有理数的混合运算,掌握分式方程的解法是解题的关键.3、(1)甲队每天完成的绿化面积为200m 2,乙队每天完成的绿化面积为100m 2;(2)12天【分析】(1)设乙队每天完成的绿化面积为x m 2,则甲队每天完成的绿化面积为2x m 2,利用工作时间=工作总量÷工作效率,结合甲,乙工程队在单独完成面积为600m 2绿化时乙队比甲队多用3天,即可得出关于x 的分式方程,解之经检验后即可得出乙队每天完成的绿化面积,再将其代入2x 中即可求出甲队每天完成的绿化面积;(2)设甲、乙两个工程队有m 天共同参加施工,则甲工程队单独施工(30﹣m )天,利用工作总量=工作效率×工作时间,结合30天内至少完成7200m 2绿化,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙队每天完成的绿化面积为x m 2,则甲队每天完成的绿化面积为2x m 2,依题意得:600x﹣6002x=3,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴2x=2×100=200.答:甲队每天完成的绿化面积为200m2,乙队每天完成的绿化面积为100m2.(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,依题意得:(200+100)m+200(30﹣m)≥7200,解得:m≥12.答:甲、乙两个工程队至少有12天必须共同参加施工.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.4、14元【分析】设苹果每千克的价格为x元,则砂糖橘每千克的价格为(140%)x-元.根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解.【详解】解:设苹果每千克的价格为x元,则砂糖橘每千克的价格为(140%)x-元.根据题意,得1500180050 (140%)x x-=-解得14x=经检验:14x=是原分式方程的解,且符合题意,∴苹果每千克的价格为14元.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.5、3x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:()()()()12111x x x x x +--=+-去括号得:22221x x x x +-+=-,解得:3x =,检验:当3x =时,最简公分母()()110x x +-≠,∴原方程的解是3x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。

2022年沪教版(上海)八年级数学第二学期第二十一章代数方程综合练习试卷(含答案解析)

2022年沪教版(上海)八年级数学第二学期第二十一章代数方程综合练习试卷(含答案解析)

八年级数学第二学期第二十一章代数方程综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x 的分式方程3111m x x +=--的解是正数,则m 的取值范围是( ) A .2m > B .2m ≥ C .2m ≥且3m ≠ D .2m >且3m ≠2、一次函数3y x p =+和y x q =+的图象都经过点A (-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是( )A .2B .4C .6D .83、八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了15min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是自行车速度的2倍,设汽车到博物馆所需的时间为x h ,则下列方程正确的是( )A .101020.25x x=⨯+ B .101020.25x x =⨯- C .101020.25x x =⨯+ D .101020.25x x =⨯- 4、以二元一次方程21x y -=的解为坐标的点组成的图象画在坐标系中可能是( )A .B .C .D .5、斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A —B —C 横穿双向行驶车道,其中AB =BC =12米,在绿灯亮时,小敏共用22秒通过AC 路段,其中通过BC 路段的速度是通过AB 路段速度的1.2倍,则小敏通过AB 路段时的速度是( )A .0.5米/秒B .1米/秒C .1.5米/秒D .2米/秒 6、若关于x 的方程11ax x =+的解大于0,则a 的取值范围是( ) A .1a > B .1a < C .1a >- D .1a <-7、如图,在平面直角坐标系中,点A ,B 分别在x 轴和y 轴上,2OB OA =,AOB ∠的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数k y x=的图象过点C ,当ACD △面积为1时,k 的值为( )A .1B .2C .3D .48、若关于x 的不等式组11123x a x x ≤⎧⎪-+⎨+>⎪⎩至少有4个整数解,且关于y 的分式方程4122a y y -+--=1的解是非负数,则符合条件的所有整数a 的和是( )A .17B .20C .22D .259、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.设前一小时的行驶速度为x km/h ,则可列方程( )A .180218013 1.5x x-=+ B .180218013 1.5x x +=+ C .180218013 1.5x x x --=+ D .180218013 1.5x x x ++=+ 10、如果关于x 的方程3111a x x =---无解,则a =( ) A .1 B .3 C .-1 D .1或3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直线2y x =--与直线2y x b =-的交点在第二象限,那么b 的取值范围是______.2、某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,需缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x 米,则所列方程是____________________.3、已知,一次函数1y x =-+与反比例函数2y x=-的图象交于点A 、B ,在x 轴上存在点P (n ,0),使△ABP 为直角三角形,则P 点的坐标是______.4、代数式22231x x x ---的值等于0,则x =________.5、关于x 的分式方程7311+=--m x x 无解,则m 的值为 _____. 三、解答题(5小题,每小题10分,共计50分)1、解方程:48233x x-=-- 2、(1)解方程:23111x x x -=++ (2)化简:223(2)()(2)()a b a b a b ab ab +-+-÷-3、解方程:()23133x x x -=--. 4、解方程:22110x x x x+++=. 5、解答下列各题.(1)分解因式:223242ab a b a -+.(2)解方程:2122a a a +=--.-参考答案-一、单选题1、D【分析】先求出分式方程的解,由方程的解是正数得m -2>0,由x -1≠0,得m -2-1≠0,计算可得答案.【详解】 解:3111m x x+=--, m -3=x -1,得x=m -2, ∵分式方程3111m x x+=--的解是正数, ∴x >0即m -2>0,得m >2,∵x -1≠0,∴m -2-1≠0,得m ≠3,∴2m >且3m ≠,故选:D .【点睛】此题考查了利用分式方程的解求参数的取值范围,正确求解分式方程并掌握分式的分母不等于零的性质是解题的关键.2、B【分析】首先把(-2,0)分别代入一次函数y =3x +p 和y =x +q 中,可求出p ,q 的值,则求出两个函数的解析式;然后求出B 、C 两点的坐标;最后根据三角形的面积公式求出△ABC 的面积.【详解】解:一次函数y =3x +p 和y =x +q 的图象都经过点A (-2,0),把(-2,0)代入解析式得-6+p =0,-2+q =0,解得p =6,q =2,则函数的解析式是y =3x +6,y =x +2,这两个函数与y 轴的交点是B (0,6),C (0,2).因而CB =4,因而△ABC 的面积是12×2×4=4.故选:B .【点睛】本题考查了函数解析式与图象的关系.函数的图象上的点满足函数解析式,反之,满足解析式的点一定在函数的图象上.3、C【分析】设汽车到博物馆所需的时间为x h ,根据时间=路程÷速度,汽车的速度是自行车速度的2倍,即可得出关于x 的分式方程,此题得解.【详解】解:设汽车到博物馆所需的时间为x h ,根据题意列方程得,101020.25x x =⨯+; 故选:C【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.4、B【分析】先解出方程2x −y =1的二个解,再在平面直角坐标系中利用描点法解答.【详解】解:二元一次方程2x −y =1的解可以为:01x y =⎧⎨=-⎩或120x y ⎧=⎪⎨⎪=⎩. 所以,以方程2x −y =1的解为坐标的点分别为:(12,0)、(0,-1),它们在平面直角坐标系中的图象如下图所示: ,故选:B .【点睛】本题主要考查的是二元一次方程的解及其直线方程的图象,表示出方程的解是解题的关键.5、B【分析】设通过AB 的速度是x m/s ,则根据题意可列分式方程,解出x 即可.【详解】设通过AB 的速度是x m/s , 根据题意可列方程:1212221.2x x+= , 解得x =1,经检验:x =1是原方程的解且符合题意.所以通过AB 时的速度是1m/s .故选B .【点睛】本题考查分式方程的实际应用,根据题意找出等量关系并列出分式方程是解答本题的关键.6、A【分析】先去分母,求出分式方程的解,进而得到关于a 的不等式组,即可求解.【详解】 解:由11ax x =+,解得:11x a =-, ∴101a >-且a -1≠0, ∴1a >,故选A .【点睛】本题主要考查解分式方程以及不等式,掌握去分母,把分式方程化为整式方程,是解题的关键.7、C【分析】 根据2OB OA= ,得到OB =2OA ,设OA =a ,则OB =2a ,设直线AB 的解析式是y =kx +b ,利用待定系数法求出直线AB 的解析式是y =﹣2x +2a ,根据题意可得OD 的解析式是y =x ,由此求出D 的坐标,再根据ACD AOD AOC S S S =-△△△求解即可.【详解】 解:∵2OB OA= , ∴OB =2OA ,设OA =a ,则OB =2a ,设直线AB 的解析式是y =kx +b ,根据题意得:02ak b b a+=⎧⎨=⎩ , 解得:22k b a=-⎧⎨=⎩ , 则直线AB 的解析式是y =﹣2x +2a ,∵∠AOB =90°,OC 平分∠AOB ,∴∠BOC =∠AOC =45°,CE =OE =11=22OA a ,∴OD 的解析式是y =x ,根据题意得:22y x y x a =⎧⎨=-+⎩, 解得:2323x a y a ⎧=⎪⎪⎨⎪=⎪⎩ , 则D 的坐标是(23a ,23a ),∴CE =OE =12OA , ∴C 的坐标是(12a ,12a ), ∴22111244AOC S AO CE OA a ===△,2121233AOD S AO a a ==△ ∴22211113412ACD AOD AOC S S S a a a =-=-==△△△, ∴212a =,∴21113224k a a a ===, 故选C .【点睛】本题主要考查了待定系数法求一次函数解析式,求两直线的交点,反比例函数比例系数的几何意义,三角形面积公式等等,解题的关键在于能够熟练掌握相关知识进行求解. 8、B【分析】分别求出符合不等式组和分式方程解的条件的整数a ,再计算出所有整数a 的和.【详解】11123x a x x ≤⎧⎪⎨-++>⎪⎩①② 由②得:3(1)62(1)x x -+>+解得:1x >-∵不等式组11123x a x x ≤⎧⎪-+⎨+>⎪⎩至少有4个整数解,如图所示:解该分式方程得:7y a =-,∵70a -≥且72a -≠,解得:7a ≤且5a ≠,∴a 取37a ≤≤且5a ≠的整数,即a 取3,4,6,7,∴346720+++=.故选:B .【点睛】本题考查解不等式组与分式方程,掌握它们的解法是解题的关键.9、C【分析】根据原计划的时间=实际所用时间+提前的时间可以列出相应的分式方程.【详解】解:设前一小时的行驶速度为x km/h , 由题意可得:180******** 1.5x x x--=+, 即180218013 1.5x x x--=+, 故选:C .【点睛】本题主要是考查了列分式方程,熟练地根据题意找到等量关系,通过等量关系列出对应的分式方程,这是解题的关键.10、B先去分母,化成整式方程,令x-1=0,确定x的值,回代x=4-a,得a值.【详解】∵3111ax x=---,∴去分母,得3=x-1+a,整理,得x=4-a,令x-1=0,得x=1,∴4-a=1,∴a=3.故选B.【点睛】本题考查了分式方程无解问题,正确理解分式方程无解的意义是解题的关键.二、填空题1、b<4-【分析】联立两直线解析式求出交点坐标,再根据交点在第二象限列出不等式组求解即可.【详解】解:联立22y xy x b--⎧⎨-⎩==,解得2343bxby-⎧=⎪⎪⎨--⎪=⎪⎩,∵交点在第二象限,∴2343bb-⎧<⎪⎪⎨--⎪>⎪⎩①②,解不等式①得:2b<,解不等式②得:4b<-,∴b的取值范围是4b<-.故答案为:4b<-.【点睛】本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.2、7207202(120%)x x-=+【详解】略3、(3,0)或(-3,0)或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】先根据函数的性质,求出A、B的坐标,再分三种情况分析,利用勾股定理的逆定理建立方程即可得出结论.【详解】解:∵一次函数y=−x+1与反比例函数y=2-x的图象交于点A、B,∴1y xyx=-+⎧⎪⎨=-⎪⎩2的解是点A、B的坐标,解这个方程组得:111 2x y =-⎧⎨=⎩,2221xy=⎧⎨=-⎩,∴A(-1,2),B(2,-1),设P(n,0),∵A(-1,2),B(2,-1),P(n,0),∴AB2=(2+1)2+(1+2)2=18,BP2=(n-2)2+1,AP2=(n+1)2+4,∵△ABP为直角三角形,∴①当∠ABP=90°AB2+BP2=AP2∴18+(n-2)2+1=(n+1)2 +4,∴n= 3,∴ P(3, 0),②当∠BAP= 90°时,AB2+ AP2= BP2,∴18+(n+1)2 +4=(n-2)2+1,∴n= -3,∴P(-3,0),③当∠APB= 90°时,AP2+ BP2= AB2,∴(n+1)2+4+(n-2)2+1= 18,∴n =∴P 0)或P 0),故答案为:P 点的坐标(3,0)、 (-3,0)、,0)或0). 【点睛】此题是反比例函数综合题,主要考查了分式方程的解法,勾股定理的逆定理,利用方程的思想解决问题是解本题的关键.4、3【分析】根据题意建立分式方程,求解并检验即可.【详解】 解:由题意,222301x x x --=-, 左右同乘21x -,得:2230x x --=,()()310x x -+=,解得:3x =或1x =-,检验:当3x =时,210x -≠;当1x =-时,210x -=,则舍去;故答案为:3.【点睛】本题考查可化为一元二次方程的分式方程,理解题意,准确建立分式方程求解并检验是解题关键. 5、7【分析】根据分式的性质去分母,再把增根x =1代入即可求出m 的值.【详解】 解7311+=--m x x ∴7+3(x -1)=m∵关于x 的分式方程7311+=--m x x 无解, ∴x =1是方程的增根,∴把增根x =1代入得m =7.故答案为:7.【点睛】此题主要考查分式方程的解法,解题的关键是根据分式方程无解得到关于m 的方程.三、解答题1、9x =【分析】方程两边同乘(x -3)把分式方程化简为整式方程,解整式方程,最后验根即可.【详解】解:42(3)8x --=-4268x -+=-9x =经检验:9x =是原方程的解.所以原方程的解为9x =.【点睛】本题考查了解分式方程,熟练解分式方程的步骤是解答此题的关键.注意:单独数字也要乘以最简公因式.2、(1)4x =;(2)2a【分析】(1)通过去分母,化为整式方程,进而即可求解;(2)先去括号,再合并同类项,即可求解.【详解】解:(1)23111x x x -=++, 去分母得:213x x -+=(), 解得:4x =,检验:当4x =时,150x +=≠.∴原方程的解为4x =;(2)原式=2222(2)a ab b ab b +-+-+=22222a ab b ab b +--+=2a .【点睛】本题主要考查解分式方程以及整式得混合运算,掌握分式方程的解题步骤以及合并同类项法则,是解题的关键.3、4x =【分析】方程两边同时乘以()23x -去掉分母,把分式方程化为整式方程,求出方程的解并检验后即得结果.【详解】解:()()()()22223331333x x x x x x ---=⋅---, ()()2333x x x --=-,223369x x x x --=-+,312x =,4x =.检验:当4x =时,()230x -≠∴4x =是原方程的解.∴ 原方程的解是4x =.【点睛】本题考查了分式方程的解法,属于基础题目,熟练掌握求解的方法是解题的关键.4、1x =-【分析】 设1 y x x=+,用完全平方公式将方程化为关于y 的一元二次方程,求出方程的解得到y 的值,即为1x x +的值,进而求出x 的值,将x 的值代入原方程进行检验,即可得到原分式方程的解. 【详解】 解:设1 y x x=+, 则222211()22x y x x x+=+-=-, 原方程化成220y y +-=,解这个方程,得11y =,22y =-,当y =1时,1x x +=1,即210x x -+=.由30=-<,此方程无实根,当y =-2时,12x x +=-,即2210x x ++=, 解得:121x x ==-,经检验,x =-1是原分式方程的解,∴原方程的解为x =-1.【点睛】 题目主要考查了换元法解分式方程,关键是利用22211()2x x x x +=+-进行转化,进而设1 y x x=+,将原方程转化为一元二次方程.5、(1)()22a a b -;(2)原方程无解【分析】(1)先提取公因式2a ,后采用差的完全平方公式分解.(2)两边同时乘以a -2,去分母,转化为整式方程求解,注意验根.【详解】(1)()()222322242222ab a b a a b ab a a a b -+=-+=-. (2)∵2122a a a +=-- 去公母得:22a a -=-,24a =,2a =,经检验2a =是原方程增根,原方程无解.【点睛】本题考查了因式分解,分式方程的解法,掌握先提后用公式进行因式分解,熟练进行分式方程的解法是解题的关键.。

2022年沪教版(上海)八年级数学第二学期第二十一章代数方程综合训练试题(含解析)

2022年沪教版(上海)八年级数学第二学期第二十一章代数方程综合训练试题(含解析)

八年级数学第二学期第二十一章代数方程综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)和y=mx+n(m≠0)相交于点(2,﹣1),则关于x,y的方程组kx y bmx n y=-⎧⎨+=⎩的解是()A.12xy=-⎧⎨=⎩B.21xy=⎧⎨=-⎩C.12xy=⎧⎨=⎩D.21xy=⎧⎨=⎩2、方程322x x=-的解为()A.x=2 B.x=6 C.x=﹣6 D.x=﹣33、中国高铁目前是世界高铁的领跑者,无论里程和速度都是世界最高的.郑州、北京两地相距约700km ,乘高铁列车从郑州到北京比乘特快列车少用3.6h ,已知高铁列车的平均行驶速度是特快列车的2.8倍,设特快列车的平均行驶速度为km/h x ,则下面所列方程中正确( )A .700700 3.62.8x x-= B .700700 3.62.8x x -= C .700 2.8700 3.6x x ⨯-= D .7007003.62.8x x =- 4、2020年初,湖北武汉出现了“新型冠状病毒感染肺炎”疫情,面对突如其来的疫情,全国人民众志成城,携手抗疫.甲、乙两单位为“新冠疫情”分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元,若设甲单位有x 人捐款,则所列方程是( )A .48006000150x x =++ B .48006000150x x =+- C .48006000150x x =-+ D .48006000150x x =-- 5、下列方程中:(1)410x +=;(2)0n ax b +=;(3)40x x +=;(4)51x x +=;是二项方程的有( )个.A .1B .2C .3D .46、要使关于x 的一元二次方程210ax +-=有两个实数根,且使关于x 的分式方程2244x a x x ++=--的解为非负数的所有整数a 的个数为( )A .6个B .7个C .8个D .9个7、斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A —B —C 横穿双向行驶车道,其中AB =BC =12米,在绿灯亮时,小敏共用22秒通过AC 路段,其中通过BC 路段的速度是通过AB 路段速度的1.2倍,则小敏通过AB 路段时的速度是( )A .0.5米/秒B .1米/秒C .1.5米/秒D .2米/秒8、如图,在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,-1)则关于x 、y 的方程组kx y b mx n y=-⎧⎨+=⎩的解是( )A .-12x y =⎧⎨=⎩B .2-1x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩9、下列无理方程有解的是( )A 50=B 4x -C x =-D 010、某生产厂家更新技术后,平均每天比更新技术前多生产3万件产品,现在生产50万件产品与更新技术前生产40万件产品所需时间相同,设更新技术前每天生产产品x 万件,则可以列方程为( )A .50403x x =+B .40503x x =+C .40503x x =-D .50403x x=- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一次函数26y x =+与y kx =图象的交点纵坐标为4,则k 的值为_________.2、如果直线2y x =--与直线2y x b =-的交点在第二象限,那么b 的取值范围是______.3、如果关于x 的方程4233k x x x -+=--无解,则k 的值为_____. 4、在去分母解关于x 的分式方程244x a x x =---的过程中产生增根,则=a __. 5、若数a 使关于x 的不等式组11(1)3223(1)x x x a x ⎧⎪⎨⎪-≤-≤-⎩-有且仅有三个整数解,且使关于y 的分式方程31222y a y y-+-- =1 有整数解,则满足条件的所有a 的值之和是____________ 三、解答题(5小题,每小题10分,共计50分)1、解分式方程:(1)21133x x x x =+++. (2)11222x x x -+=--. 2、某一工程,在工程招标时,接到甲乙两个工程队的投标书.施工一天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.工程领导们根据甲乙两队的投标书测算,可有三种施工方案: 方案A :甲队单独完成这项工程刚好如期完成;方案B :乙队单独完成这项工程比规定日期多用5天;方案C :若甲乙两队合作4天后,余下的工程由乙队单独做也正好如期完成.在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?3、(1)先化简,再求值:2241193x x x -⎛⎫÷- ⎪-+⎝⎭,其中10123x -⎛⎫=+ ⎪⎝⎭. (2)解分式方程:121x x x x +=+- 4、(1)计算:2221a a a a -÷-+(11a +-1); (2)解方程:32112x x x+=--1.5、某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元.某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍.(1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?-参考答案-一、单选题1、B【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:∵一次函数y=kx+b和y=mx+n相交于点(2,-1),∴关于x、y的方程组kx y bmx n y=-⎧⎨+=⎩的解是21xy=⎧⎨=-⎩.故选:B.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.2、B【分析】方程两边同乘以x(x-2),将分式方程化为整式方程,解整式方程,最后验根.【详解】解:方程两边同乘以x (x -2),得3(x -2)=2x ,去括号,得3x -6=2x ,移项,得x =6,检验:当x =6时,x (x -2)=24≠0,∴x =6是原方程的解,故选:B【点睛】本题考查了解分式方程,熟练掌握分式方程的方法以及最后要验根是解题的关键.3、A【分析】设特快列车的平均行驶速度为km/h x ,则高铁列车的平均行驶速度是2.8km/h x ,根据“郑州、北京两地相距约700km ,乘高铁列车从郑州到北京比乘特快列车少用3.6h ”,即可求解.【详解】解:设特快列车的平均行驶速度为km/h x ,则高铁列车的平均行驶速度是2.8km/h x ,根据题意得: 700700 3.62.8x x-=. 故选:A【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.4、A【分析】设甲单位有x人捐款,则乙单位有(x+50)人捐款.根据甲单位人均捐款数比乙单位多1元,列方程即可.【详解】解:设甲单位有x人捐款,则乙单位有(x+50)人捐款.依题意得:48006000150x x=++.故选:A.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住甲单位人均捐款数比乙单位多1元列方程是解题关键.5、A【分析】根据两项方程的定义直接判断得结论.【详解】解:(1)410x+=,符合二项方程的定义;(2)0nax b+=,当a=0时,不符合二项方程的定义;(3)40x x+=,两项都含有未知数,不符合二项方程的定义;(4)51x x+=,有三项,不具备二项方程的定义,综上,只有(1)符合二项方程的条件,共1个.故选:A.【点睛】本题考查了二项方程的定义,二项方程需满足以下几个基本条件:(1)整式方程,(2)方程共两项,(3)两项中一项含有未知数,一项是常数项.6、C【分析】根据一元二次方程的应用以及根据的判别式得到0a ≠且240b ac ∆=-≥,将分式方程整理为整式方程,得出x 的解,然后根据分式方程2244x a x x++=--的解为非负数确定a 的取值范围,然后写出此范围内的整数即可.【详解】解:∵关于x 的一元二次方程210ax +-=有两个实数根,∴0a ≠且241240b ac a ∆=-=+≥,∴3a ≥-且0a ≠, 对于分式方程2244x a x x ++=--, 去分母得22(4)x a x --=-,解得:6x a =-,∵分式方程的解为非负数,∴60a -≥且64a -≠,解得6a ≤且2a ≠,∴36a -≤≤且0a ≠,2a ≠,∴整数a 的值为3-、2-、1-、1、3、4、5、6共8个,故选:C .【点睛】本题考查了根得判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.也考查了分式方程的解.7、B【分析】设通过AB 的速度是x m/s ,则根据题意可列分式方程,解出x 即可.【详解】设通过AB 的速度是x m/s , 根据题意可列方程:1212221.2x x+= , 解得x =1,经检验:x =1是原方程的解且符合题意.所以通过AB 时的速度是1m/s .故选B .【点睛】本题考查分式方程的实际应用,根据题意找出等量关系并列出分式方程是解答本题的关键.8、B【分析】根据题意直接利用方程组的解就是两个相应的一次函数图象的交点坐标进行分析解决问题.【详解】解:∵一次函数y kx b =+和y mx n =+相交于点(2,-1),∴关于x 、y 的方程组kx y b mx n y =-⎧⎨+=⎩的解为21x y =⎧⎨=-⎩. 故选:B .【点睛】本题考查一次函数交点问题与二元一次方程(组)解得关系,理清二者的联系是解题关键.9、C【分析】根据二次根式双重非负性逐一判断即可得.【详解】解:A5=-知,此方程无实数解;B、由题意得3040xx-≥⎧⎨-≥⎩,解得34xx≤⎧⎨≥⎩无解知,此方程无实数根;C、由题意得30xx-≥⎧⎨+≥⎩,解得30x-≤≤知,此方程有实数根;D、由题意得5030xx-=⎧⎨-=⎩,解得53xx=⎧⎨=⎩无解知,此方程无实数根;故选:C.【点睛】本题主要考查了无理方程,解题的关键是熟练掌握二次根式有意义的条件.10、A【分析】更新技术前每天生产产品x万件,可得更新技术后每天生产产品(x+3)万件.根据现在生产50万件产品与更新技术前生产40万件产品所需时间相同列出方程50403x x=+即可.【详解】解:∵更新技术前每天生产产品x万件,∴更新技术后每天生产产品(x+3)万件.依题意得50403x x=+.故选:A.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列出方程是解题关键.二、填空题1、4-【分析】首先根据一次函数26y x =+与y kx =图象的交点纵坐标为4,代入一次函数26y x =+求得交点坐标为(1,4)-,然后代入y kx =求得k 值即可.【详解】 解:一次函数26y x =+与y kx =图象的交点纵坐标为4,426x ∴=+解得:1x =-,∴交点坐标为(1,4)-,代入y kx =,4k =-,解得4k =-.故答案为:4-.【点睛】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合26y x =+与y kx =两个解析式.2、b <4-【分析】联立两直线解析式求出交点坐标,再根据交点在第二象限列出不等式组求解即可.【详解】解:联立22y x y x b--⎧⎨-⎩==, 解得2343b x b y -⎧=⎪⎪⎨--⎪=⎪⎩, ∵交点在第二象限, ∴203403b b -⎧<⎪⎪⎨--⎪>⎪⎩①②, 解不等式①得:2b <,解不等式②得:4b <-,∴b 的取值范围是4b <-.故答案为:4b <-.【点睛】本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.3、1【分析】首先将分式方程化为整式方程,表示出整式方程的解,再根据分式方程无解确定x 的值,然后再求k 的值即可.【详解】解:方程去分母得:2(3)4k x x +-=-, 解得:103k x , 由分式方程无解可得:30x -=即3x =,∴1033k,解得:1k =,故答案为:1.【点睛】本题考查了分式方程无解问题,分两种情况:一种是把分式方程化成整式方程后,整式方程无解;一种是把分式方程化成整式方程后,整式方程有解,但这个解使分式方程的分母为0,是增根,熟练掌握理解这两种情况是解题关键.4、4【分析】先将分式方程化为整式方程,再由分式方程有增根,可得4x =,再代入整式方程,即可求解.【详解】解:方程两边同乘()4x -得:2(4)x x a =-+,关于x 的分式方程244x a x x =---有增根, 40x ∴-=,解得:4x =,将4x =代入方程2(4)x x a =-+,得:42(44)a =-+,解得:4a =.故答案为:4【点睛】本题考查了分式方程的增根,熟练掌握增根问题可按如下步骤进行:①化分式方程为整式方程;②让最简公分母为0确定增根;③把增根代入整式方程即可求得相关字母的值是解题的关键. .5、-18【分析】根据不等式的解集,可得a 的范围,根据方程的的整数解,可得a 的值,根据有理数的加法,可得答案.【详解】 解:()()11132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩①②,解①得x ≥-3,解②得x ≤35a +, 不等式组的解集是-3≤x ≤35a +. ∵仅有三个整数解-3,-2,-1,∴-1≤35a +<0 ∴-8≤a <-3,31222y a y y-+-- =1 3y -a +12=y -2.∴y =142a -, ∵y ≠2,∴a ≠18>-3,又y =142a -有整数解, ∴a =-8,-6,-4,所有满足条件的整数a的值之和是-8-6-4=-18,故答案为-18.【点睛】本题考查了分式方程的解,有理数的解法,解不等式组,解分式方程,利用不等式的解集及方程的解得出a的值是解题关键.三、解答题1、(1)x=32-;(2)原方程无解.【分析】(1)方程两边同时乘以最简公分母3(x+1),化为整式方程,解此方程后检验即可得答案;(2)方程两边同时乘以最简公分母(x-2),化为整式方程,解此方程后检验即可得答案.【详解】解:(1)21133x xx x=+++,方程两边同时乘以3(x+1)得:3x=2x+3x+3,解得:x=32 -,检验:把x=32-,代入3(x+1)=32-≠0,∴原方程的解为:x=32 -.(2)11222xx x-+=--,方程两边同时乘以(x-2)得:1+2(x-2)=x-1,解得:x=2,检验:把x=2代入x-2=0,∴原方程无解;【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.2、选择C 方案,理由见解析【分析】设甲单独完成这一工程需x 天,则乙单独完成这一工程需()5+x 天.根据方案C ,可列方程得444155x x x x -++=++,解方程即可解决问题. 【详解】解:设甲单独完成这一工程需x 天,则乙单独完成这一工程需()5+x 天.根据方案C ,可列方程得444155x x x x -++=++, 解这个方程得20x ,经检验:20x 是所列方程的根.即甲单独完成这一工程需20天,乙单独完成这项工程需25天.所以A 方案的工程款为1.52030⨯=(万元),B 方案的工程款为1.12527.5⨯=(万元),但乙单独做超过了日期,因此不能选.C 方案的工程款为1.54 1.14 1.11628⨯+⨯+⨯=(万元),所以选择C 方案.【点睛】本题考查分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.解题的关键是熟练掌握路程=速度×时间的关系,正确寻找等量关系构建方程解决问题.3、(1)23x x --,2;(2)12x =- 【分析】(1)先根据分式的混合计算法则化简,然后根据零指数幂和负整数指数幂的计算法则求出x 的值,最后代值计算即可;(2)先把分式方程化为整式方程,然后求出x 的值,最后代值检验即可.【详解】(1)2241193x x x -⎛⎫÷- ⎪-+⎝⎭ 2)(2)2(3)(3)3x x x x x x +-+=÷+-+( 2)(2)3(3)(3)2x x x x x x +-+=⋅+-+( 23x x -=-, ∵0112()1343x -=+=+=, ∴当4x =时,原式42243-==-; (2)121x x x x +=+- 方程两边乘以(x +2)(x +1),得x (x -1)=(x +1)(x +2) ,∴2222x x x x x -=+++,即42x =-, 解得:12x =-, 检验:当12x =-时,9(2)(1)04x x +-=-≠ ∴原分式方程的解为12x =-.【点睛】本题主要考查了分式的化简求值,解分式方程,零指数幂和负整数指数幂,熟知相关计算方法是解题的关键.4、(1)1;(2)2x =-【分析】(1)先根据完全平方公式,提公因式法进行化简,然后进行原式求解即可得;(2)先将方程化简为3121x x -=-,再将方程两边同时乘以(21)x -,解得2x =-,进行检验即可得. 【详解】解:(1)原式=2(1)11()(1)11a a a a a a --÷+--- =11a a a a ÷-- =11a a a a -⨯- =1;(2)312112x x x+=-- 312121x x x -=-- 3121x x -=- 方程两边同时乘以(21)x -得:321x x -=-解得:2x =-,检验:当2x =-时,210x -≠,所以,原分式方程的解为2x =-.【点睛】本题考查了分式的混合运算,因式分解,分式方程,解题的关键是灵活运用这些知识点.5、(1)苹果每箱60元,粑粑柑每箱90元(2)最多可购买11箱粑粑柑【分析】(1)设苹果每箱x元,则粑粑柑每箱(x+30)元,然后根据某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍,列出方程求解即可;(2)设可以购买m箱粑粑柑,则购买(30﹣m)箱苹果,然后根据某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,列出不等式求解即可.(1)解:设苹果每箱x元,则粑粑柑每箱(x+30)元,依题意得:36001800330x x=⋅+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+30=60+30=90.答:苹果每箱60元,粑粑柑每箱90元.(2)解:设可以购买m箱粑粑柑,则购买(30﹣m)箱苹果,依题意得:90×0.9m+60×(1+5%)(30﹣m)≤2100,解得:m≤1123,又∵m为正整数,∴m的最大值为11.答:最多可购买11箱粑粑柑.【点睛】本题主要考查了分式方程和一元一次不等式的实际应用,解题的关键在于能够正确理解题意列出方程和不等式求解.。

沪教版 (上海)数学八年级第二学期 第21章 代数方程 单元测试卷 (含详细答案)

沪教版 (上海)数学八年级第二学期  第21章 代数方程 单元测试卷 (含详细答案)

第21章 代数方程 单元测试卷一.选择题(共6小题)1ABCD2ABCD3ABCD4AB CD5.一项工程由甲、乙两队合做共需4天完成,如果甲队单独做共需6天完成,那么由乙单ABCD6.为满足市场需求,产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新ABCD 二.填空题(共12小题)7的根是.8在实数范围内的解是.9的值为.1011的取值范围是.1213的解是.14的值是.15分解为两个一次方程的结果为.1617240多行驶20千米,结果甲车比乙车早到30意可列方程为.18.一辆货车与一辆客车都从甲地开往乙地,甲乙两地相距600千米,货车比客车早出发4小时,客车比货车早到1,则可列出方程.三.解答题(共7小题)1920212223.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次又用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?24.阅读与理解:检验所得到的两个根,只有是原无理方程的根.25.小丽、小明练习打字,已知小丽比小明每分钟多打80个字,小丽打3500个字的时间与小明打2500个字的时间相同.(1)小丽、小明每分钟分别可打多少字?(2)由小明继续完成,则小明还需要工作多少小时?参考答案一.选择题(共6小题)1ABCD2ABCD3ABCD4A BC D5.一项工程由甲、乙两队合做共需4天完成,如果甲队单独做共需6天完成,那么由乙单A B C D解:6.为满足市场需求,产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新A B C D解:二.填空题(共12小题)7解:8解:9解:由题意,得故答案为:0.10解:11∴107x k +=-,由关于x 的方程107x k ++=没有实根知70k -<, 则7k >,故答案为:7k >.12.已知12x y =-⎧⎨=⎩ 不是 (填“是”或“不是” )方程22220x xy y x y ++---=的解. 解:把12x y =-⎧⎨=⎩代入方程22220x xy y x y ++---=中得: 左边12(1)24(1)222=+⨯-⨯+----=-,右边0=,∴左边≠右边,∴12x y =-⎧⎨=⎩不是方程22220x xy y x y ++---=的解, 故答案为:不是.13.方程组2214x y x y -=⎧⎨+=⎩的解是 31x y =⎧⎨=⎩或53x y =-⎧⎨=-⎩. 解:2214x y x y -=⎧⎨+=⎩①②, 由①得:12x y =+③,把③代入②得:2124y y ++=,2(1)4y +=,12y +=±,当12y +=时,1y =,3x =,当12y +=-时,3y =-,5x =-,∴原方程组的解为:31x y =⎧⎨=⎩或53x y =-⎧⎨=-⎩.14的值是9.故答案为:9.15.二元二次方解为两个一次方程的结果16解:故答案为:1117240多行驶20千米,结果甲车比乙车早到30解:18.一辆货车与一辆客车都从甲地开往乙地,甲乙两地相距600千米,货车比客车早出发4小时,客车比货车早到1解:三.解答题(共7小题)19+2x2021解:由(2另解:由(1(3)把(3)代入(2)分别代入(3)(1分)1分) 22由①由②23.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次又用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?解:答:第一次买了10本资料.24.阅读与理解:解:阅读材料:25.小丽、小明练习打字,已知小丽比小明每分钟多打80个字,小丽打3500个字的时间与小明打2500个字的时间相同.(1)小丽、小明每分钟分别可打多少字?(2)由小明继续完成,则小明还需要工作多少小时?解:(1答:小丽每分钟打280个字,小明每分钟打200个字;(2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数方程的应用
解题步骤:
①审题,分析题意,找到题中未知数和题给条件的相等关系;
②设元,选择适当的未知数.
③找出相等关系,并用它列出方程;
④解方程求出题中未知数的值;
⑤检验所求的答案是否符合题意,并做答.
练习:
1. 有一个数,它的正的平方根比它的倒数的正的平方根的1 0倍多3,这个数是_________.
2. 某年哈尔滨市政府为了申办冬奥会,决定改善城市容貌,绿化环境,计划过两年时间使绿地面积增加44%,设这两年平均每年绿地面积的增长率为x,则可列出方程_________.
3. 某玩具店采购人员第一次用去100元去采购“企鹅牌”玩具,很快售完.第二次去采购时发现批发价上涨了0 . 5元,用去了150元,所购玩具数量比第一次多了10件.设第二次采购x件,则可列方程_________.
4. 社区艺术节需要用红纸花3 0 0 0朵,某班全体同学自愿承担制作红花任务,但在实际制作时,有10名同学因排列节目而没有参加,这样参加劳动的同学平均每人制花的数量比原定全班同学平均每人要完成的数量多1 5朵,这个班级共有多少名同学?
5. (古印度群峰问题)有一群蜜蜂,一部分飞进来枸杞叶里,其个数等于全体总数的一半
的平方根,还有全体的8
9
遗留在后面.此外,蜂群里还有一只小蜜蜂在莲花旁徘徊,它被
一只坠入香花陷阱的同伴的声音所吸引试问这群蜜蜂共有多少只?
6. 某商场计划销售一批运动衣,能获得利润1 2 0 0 0元,经过市场调查后,进行促销活动,由于降低售价,每套运动衣少获利1 0元,但可多销售4 0 0套,结果总利润比计划多4 0 0 0元,求实际销售运动衣多少套?
7. 一项工程,若甲、乙两队单独完成,甲队比乙队多用5天,若甲、乙两队合作,6天可以完成,
(1)求两队单独完成此项工程各需多少天?
(2)若这项工程由甲、乙两队合作完成后,厂家付给他们50000报酬,两队商定按各自完成的工作量分配这笔钱,问甲、乙两队各得多少元?
8. 甲、乙二人分别从A、B两地同时同向出发,甲经过B地后再走3小时12分钟在C地追上乙,这时二人共走了72千米,而C、A两地的距离等于乙走5小时的路程,求甲、乙二人的速度和A、B两地的距离.
9. 某车间一月份生产甲型冰箱8 0台,以后每月的增长率相同,而生产的乙型冰箱每月比上月增产50台,二月份甲、乙两种型号的冰箱产量之比为2 : 3,三月份两种型号的冰箱总产量为325台,求二月份甲型冰箱的增长率和一月份乙型冰箱的产量.
10. 甲杯中装有含盐20%的盐水40千克,乙杯中装有含盐4%的盐水60千克,现在从甲杯中取出一些盐水放入丙杯,再从乙杯中取出一些盐水放入丁杯,然后将丁杯盐水全部倒入甲杯,把丙杯盐水全部倒入乙杯,结果甲、乙两杯成为含盐浓度相同的两杯盐水,若已知从乙杯取出并倒入丁杯的盐水重量是从甲杯取出并倒入丙杯盐水重量的6倍,试确定从甲杯取出并倒入丙杯的盐水为多少千克.
11. 某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%,现在种植新品种花生后,每亩收获的花生可加工成花生油1 3 2千克,其中花生出油率的增长率是亩产量的增长率的一半,求新品种花生亩产量的增长率.
12. 某商店在“端午节”到来之际,准备购进礼品装和普通家庭装两种类型的盒装粽子,礼品装的进价是家庭装的进价的2倍少4,若1000元购进礼品装粽子的盒数与550元购进的普通家庭装的盒数相同,求礼品装粽子的进价是多少元?
13. 某人计划按一定的速度,在规定时间内从A地出发,步行1 5千米到B地,走了5千米后,他加快速度,每小时比原计划多走1千米,因此提前2 0分钟到达B地。

求这个人原计划的速度?
14. 已知点 (12,2),(3,1)A B -,在平面直角坐标系的坐标轴上找一点 P ,使得 2PA PB =.
15. 有一市政建设工程,若由甲、乙两工程队合作,要 12 个月完成;若甲队先做 5 个月,余下部分再由甲、乙两队合作,还要 9 个月才能完成,已知甲队每月的施工费用 5 万元,乙队每月的施工费用 3 万元,要使该工程总费用不超过 95 万元,则甲工程队至多施工多少个月?
参考答案
1. 1.25
2. 2(1)144%x +=+
3.
1501000.510x x -=-
4. 解:设该班共有 x 名同学,那么参加制作的有 (10)x - 名同学 由已知得:300030001510x x
=+- 解得:1250,40x x ==-(不合题意,舍去)
经检验:50x = 是原方程的根且符合题意
5. 解:设这群蜜蜂共有 x 只,

829
x x += 解得:12972,2
x x ==(不合题意,舍去) 经检验:72x = 是原方程的根且符合题意
6. 解:设实际销售运动衣 x 套,每套运动衣的实际利润为 y 元.
由题意得:(400)(10)1200016000x y xy -+=⎧⎨=⎩
解得:1212800800,2020x x y y ==-⎧⎧⎨
⎨==-⎩⎩(不合题意,舍去)
7.设甲队单独 x 天完成,则乙队 (5)x - 天完成,
(1)根据题意可得:11156
x x +=- 解得:12x =(不合题意,舍去),215x =
经检验:15x = 是原方程的根且符合题意
(2)由(1)得:甲队应得:
6500002000015
⨯= 元 乙队应得:500002000030000-= 元
8. 解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时
16572
51655x y x y x
y ⎧+=⎪⎪⎨⎪=⎪⎩ 解得 108x y =⎧⎨=⎩ 经检验:108
x y =⎧⎨=⎩ 是原方程的解且符合题意 ∴ 原方程得解为 108x y =⎧⎨
=⎩ 16585
AB y x =-=
9. 解:设二月份甲型冰箱的增长率为 x ,一月份乙型冰箱的产量为 y 台. 则 280(1):(5)2:380(1)(502)325 x y x y ++=⎧⎨+++⨯=⎩
①② 由 ① 得:12070y x =+ ③
将 ③ 代入 ② 得:2
1656150x x +-=
解得 1225%, 3.75x x ==-(不合题意,舍去)
当 25%x = 时,100y = 经检验:25%100
x y =⎧⎨=⎩ 是所列方程组的解且符合题意
10. 解:设从甲杯倒入丙杯 x 千克盐水,那么从乙杯倒入丁杯的盐水为 6 x 千克, 由题意得:
20%(40)4%64%(606)20%406606x x x x x x x x
⋅-+⋅⋅-+⋅=-+-+ 解得:8x =
11. 解:设新品种花生亩产量的增长率为 x ,则出油率的增长为
2x , 由题意得:200(1)50%11322x x ⎛
⎫⋅+⋅⋅+= ⎪⎝⎭
解得:120.2, 3.2x x ==-(不合题意,舍去)
12. 解:设普通家庭装的进价为 x 元,
则有
100055024x x
=- 解得:22x =
经检验,22x = 是所列方程的解且符合题意
∴ 礼品装进价:2440x -=
13. 解:设这个人原计划的速度是 v 千米/时,则加快后的速度为 (1)v + 千米/时. 由已知得:155155113
v v v -=+++ 解得:125,
6v v ==-(不合题意,舍去) 经检验:5v = 为原方程得解且符合题意
14. 1234P (6,0);P (6,0);P 2);P (0,2)--
15. 解:设甲工程队单独完成这项工程需要用 x 个月,乙工程队需要用 y 个月, 则由题意得:111121491x y x y
⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:2030x y =⎧⎨=⎩ 再设甲工程队施工 m 个月,乙工程队施工 n 个月,总费用不超过95万元. 则由题意得:120305395m n m n ⎧+=⎪⎨⎪+≤⎩ 解得:10m ≤。

相关文档
最新文档