第六章-、一次方程(组)和一次不等式(组)测试题
(完整版)一次方程组和一次不等式组练习题

一次方程/组和一次不等式/组练习题一、填空/选择1、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A 、a <12B 、a <0C 、a >0D 、a <-122、如果不等式组x a x b >⎧⎨<⎩无解,那么不等式组的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解3、已知 ()03222=--+-a y x x ,y 是正数,则a 的取值范围是__________。
4、已知三角形的两边8=b ,10=c ,则这个三角形的第三边a 的取值范围是__________。
二、解方程组或者不等式组1、⎩⎨⎧=--+=++-20)5(8)7.0(527)7.0(5)5(20x y y x 2、 1:14:3)4(:)(:)6(=+-+-y x y x x3、 4、三、问答题1、已知m是整数,方程组⎩⎨⎧=+=-266634my x y x 有整数解,求m的值。
2、已知关于x ,y 的方程组⎩⎨⎧=+=+-b y x y x a 5)1(当a ,b 满足什么条件时,方程组有唯一解,无解,有无数解?3、(1)对于有理数x、y,定义一种新运算“*”,x*y=a x+b y+c ,其中a 、b 、c 为常数,等式右边是常用的加法与乘法运算,又已知3*5=15,4*7=28,求1*1的值。
(2)对于有理数x 、y 定义新运算:x *y =ax +by +5,其中a ,b 为常数.已知1*2=9,(-3)*3=2,求a ,b 的值.四、应用题1、甲、乙两件服装的成本共500元,商店老板为获得利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,在实际出售时,顾客要求,两件衣服均9折出售,这样商店共获利157元。
求服装的成本各是多少元?2、把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
沪教版(上海)六年级数学第二学期第六章一次方程(组)和一次不等式(组)章节练习试卷(含答案详解)

第六章一次方程(组)和一次不等式(组)章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、方程组839845x y x y -=⎧⎨+=-⎩消去x 得到的方程是( ) A .y =4 B .y =-14 C .7y =14 D .-7y =142、若x <y 成立,则下列不等式成立的是( )A .﹣x +2<﹣y +2B .4x >4yC .﹣3x <﹣3yD .x ﹣2<y ﹣23、已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a b --的值为( ) A .4- B .4 C .2- D .24、若a b >,那么下列各式中正确的是( )A .11+<+a bB .a b ->-C .33a b -<-D .222a b <+ 5、下列利用等式的基本性质变形错误的是( )A .如果37x -=,那么73x =+B .由210x =得5x =C .如果14x y +=-,那么41x y -=--D .如果142-=x ,那么2x =- 6、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有x 人,该物品价值y 元,则根据题意可列方程组为( )A .8374x yx y -=⎧⎨+=⎩ B .8374x yx y +=⎧⎨+=⎩ C .8374x y x y +=⎧⎨-=⎩ D .8374x yx y -=⎧⎨-=⎩7、已知关于x 的方程()120m m x --=是一元一次方程,则m 的值是( ).A .2B .0C .1D .0或28、把某个关于x 的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A .x ≥﹣2B .x >﹣2C .x <﹣2D .x ≤﹣29、已知x y =,则下列式子不一定成立的是( )A .+=+x a y aB .x b y b -=-C .x c y c ⋅=⋅D .xyd d =10、不等式820x ->的解集在数轴上表示正确的是 ( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x >y ,试比较大小:﹣3x +5 ______﹣3y +5.(填“>”、“<”或“=”)2、若1x =是关于x 的一元一次方程31x a -=的解,则a 的值为______.3、不等式353x x -<+的非负整数解有______.4、关于x 的方程2ax =的解是2x =,则a 的值是______.5、若3x =是关于x 的方程25x a +=的解,则a 的值是________.三、解答题(5小题,每小题10分,共计50分)1、解方程组346323x y x y -=⎧⎪⎨+=⎪⎩ 2、解不等式组()45321023x x x x ⎧->-⎪⎨+>⎪⎩3、如图,在大长方形ABCD 中,放入8个小长方形,(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分面积为多少平方厘米?4、解方程组:(1)33?15?x y x y -=⎧⎨+=⎩; (2)3241123x y x y +=⎧⎪+⎨-=⎪⎩. 5、解关于x 的方程:631524x x -=+-参考答案-一、单选题1、D【分析】直接利用两式相减进而得出消去x后得到的方程.【详解】解:{8x−3x=9①8x+4x=−5②①-②得:-7y=14.故答案为:-7y=14,故选:D.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.2、D【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A、不等式x<y的两边都乘﹣1,不等号的方向改变,即﹣x>﹣y,不等式﹣x>﹣y的两边都加上2,不等号的方向不变,即﹣x+2>﹣y+2,原变形错误,故此选项不符合题意;B、不等式x<y的两边都乘4,不等号的方向不变,即4x<4y,原变形错误,故此选项不符合题意;C、不等式x<y的两边都乘﹣3,不等号的方向改变,即﹣3x>﹣3y,原变形错误,故此选项不符合题意;D、不等式x<y的两边都减去2,不等号的方向不变,即x﹣2<y﹣2,原变形正确,故此选项符合题意;故选:D.【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.3、A【分析】求出方程组的解得到a与b的值,即可确定出-a-b的值.【详解】解:51234a ba b+=⎧⎨-=⎩①②,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则-a-b=-4,故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、C【分析】根据不等式的性质判断.【详解】解:∵a b >,∴a +1>b +1,故选项A 错误;∵a b >,∴-a <-b ,故选项B 错误;∵a b >,∴33a b -<-,故选项C 正确;∵a b >,∴22a b >,故选项D 错误; 故选:C .【点睛】此题考查了不等式的性质,熟记不等式的性质是解题的关键.5、D【分析】等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】解:如果x -3=7,那么x =7+3,故A 选项正确;如果210x =,那么x =5,故B 选项正确;如果14x y +=-,那么41x y -=--,故C 选项正确; 如果142-=x ,那么8x =-,故D 选项错误. 故选D【点睛】本题主要考查了等式的性质,解题时注意:等式两边乘同一个数或除以一个不为零的数,结果仍得等式.6、A【分析】根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.【详解】解:设有x 人,物品价值y 元,由题意得:8374x y x y-=⎧⎨+=⎩ 故选:A .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7、B【分析】根据一元一次方程的定义,得到关于m -1的绝对值的方程,利用绝对值的定义,解之,把m 的值代入m -2,根据是否为0,即可得到答案.【详解】解:∵关于x 的方程()120m m x--=是一元一次方程,∴|m -1|=1,整理得:m -1=1或m -1=-1,解得:m =2或0,把m =2代入m -2得:2-2=0(不合题意,舍去),把m =0代入m -2得:0-2=-2(符合题意),即m 的值是0,故选B .【点睛】本题考查了一元一次方程的定义,绝对值,正确掌握一元一次方程的定义,绝对值的定义是解题的关8、B【分析】观察数轴上x 的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x >-,故选B .【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、D【分析】根据等式的性质逐项分析即可.【详解】解:A . ∵x y =,由等式的性质1可知+=+x a y a ,故成立;B . ∵x y =,由等式的性质1可知x b y b -=-,故成立;C . ∵x y =,由等式的性质2可知x c y c ⋅=⋅,故成立;D . ∵x y =,由等式的性质2可知,当d =0时,x y d d=不成立; 故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.【详解】解:820x ->,移项得:28,x解得:4,x <所以原不等式得解集:4x <.把解集在数轴上表示如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.二、填空题1、<【分析】利用不等式的性质进行判断.【详解】解:∵x >y ,∴﹣3x <﹣3y ,∴﹣3x +5<﹣3y +5.故答案为:<.【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.2、2【分析】把x=1代入方程3x-a=1,再求出关于a的方程的解即可.【详解】解:把x=1代入方程3x-a=1得:3-a=1,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.3、0,1,2,3【分析】先求出不等式的解集,再根据非负整数的定义得到答案.【详解】解:353-<+,x x2x<8,x<4,∴不等式353-<+的非负整数解有0,1,2,3,x x故答案为:0,1,2,3.【点睛】此题考查了解不等式,求不等式的非负整数解,正确解不等式是解题的关键.4、1【分析】根据关于x 的方程2ax =的解是2x =,可得22a = ,解出即可求解.【详解】解:∵关于x 的方程2ax =的解是2x =,∴22a = ,解得:1a =.故答案为:1【点睛】本题主要考查了一元一次方程解的定义,解一元一次方程,熟练掌握使方程左右两边同时成立的未知数的值是方程的解是解题的关键.5、-1【分析】把x =3代入方程计算即可求出a 的值.【详解】把x =3代入方程得:6+a =5,解得:a =-1,故答案为:-1.【点睛】本题考查了一元一次方程的解和解一元一次方程,方程的解即为能使方程左右两边相等的未知数的值.三、解答题1、1432 xy⎧=⎪⎨⎪=⎩【分析】把方程组整理后,利用加减消元法求解即可.【详解】解:原方程组可化为346 3218x yx y-=⎧⎨+=⎩①②,②-①得:6y=12,解得:y=2,代入①中,解得:x=143,∴方程组的解为1432xy⎧=⎪⎨⎪=⎩.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.2、﹣1 < x < 2【分析】分别求出各不等式的解集,再求出其公共解集即可;【详解】解:() 45321023x xxx⎧->-⎪⎨+>⎪⎩①②解不等式①,得x>﹣1,解不等式②,得x< 2,所以,此不等式组的解集为﹣1 < x < 2【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、(1)7厘米和2厘米(2)53平方厘米【分析】(1)设小长方形宽为x厘米,长为y厘米,由图象列二元一次方程组,代入消元法求解即可.(2)阴影面积为大长方形ABCD面积减去8个小长方形面积.(1)设小长方形宽为x厘米,长为y厘米,则有BC=4x+y=15,CD=2x+y,AB=9+x∵AB=CD∴2x+y =9+x即x+y=9故有二元一次方程组4159 x yx y+=⎧⎨+=⎩将y=9-x代入4x+y=15有4x+9-x =15解得x=2将x=2代入y=9-x解得y =7故小长方形的长和宽分别是7厘米和2厘米.(2)由(1)问可知大长方形长ABCD 为15cm ,宽为11cm ,则长方形面积为15×11=165cm 2小长方形的面积为2×7=14cm 2由题干知长方形中有8个小长方形故=-8ABCD S S S ⨯阴影小长方形大长方形即=165-814=165-112=53S ⨯阴影【点睛】本题考查了列二元一次方程组,列二元一次方程组解应用题的一般步骤,审:审题,明确各数量之间的关系,设:设未知数(一般求什么,就设什么),找:找出应用题中的相等关系,列:根据相等关系列出两个方程,组成方程组,解:解方程组,求出未知数的值,答:检验方程组的解是否符合题意,写出答案.4、(1)123x y =⎧⎨=⎩(2)21x y =⎧⎨=-⎩【分析】(1)②﹣①得出4y =12,求出y ,再把y =3代入②求出x 即可;(2)整理后①+②得出6x =12,求出x ,再把x =2代入①求出y 即可.(1)3315x y x y -=⎧⎨+=⎩①②, ②﹣①,得4y =12,解得:y =3,把y =3代入②,得x +3=15,解得:x =12,所以方程组的解是123x y =⎧⎨=⎩; (2)3241123x y x y +=⎧⎪+⎨-=⎪⎩, 原方程组化为:324328x y x y +=⎧⎨-=⎩①②, ①+②,得6x =12,解得:x =2,把x =2代入①,得6+2y =4,解得:y =﹣1,所以方程组的解是21x y =⎧⎨=-⎩. 【点睛】本题考查解二元一次方程组,解题的关键是消元,常用消元的方法有代入消元法和加减消元法.5、x =-3【分析】根据题意先移项和合并同类项,进而化系数为1即可得解.【详解】解:631524-=+x x移项:6x-15x=24+3合并同类项:-9x=27化系数为1:x=-3【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.。
6.11 一次方程组的应用(1)&(2)

练习
3. 六年级(1)班、(2)班各有44人,两个班都
有一些同学参加课外天文小组,(1)班参加天文
小组的人数恰好是(2)班没有参加天文小组的人
数的
(1)班没有参加天文小组的人数的
1 ,(2)班参加天文小组的人数恰好是 3 1
4
,问六年
级(1)班、(2)班没有参加天文小组的各多少
人?
ቤተ መጻሕፍቲ ባይዱ 练习
4. 某车间有28名工人,生产特种螺栓和螺帽, 一个螺栓的两头各套上一个螺帽配成一套,每 人每天平均生产螺栓12个或螺帽18个。问要有 多少工人生产螺栓,其余的工人生产螺帽,才 能使一天所生产的螺栓和螺帽刚好配套。
能力提高
若玩青蛙跳5元每人,玩极速风车15元 每人。其中玩这两项游乐项目共花了40元 。求各有多少人玩青蛙跳和极速风车.
设玩青蛙跳的有a人,玩极速风车的有b人.
可列出方程为?
第六章 一次方程(组) 和一次不等式(组)
6.11 一次方程组的应用(2)
例题
甲、乙、丙三数之和为26,甲数比乙数 大1,甲数的2倍与丙数的和比乙数大18, 求甲、乙、丙三个数.
方案二:6角的邮票 1 张,8角的邮票 4 张。
能力提高
某游乐园的门票规定成人90元/人,儿 童45元/人.现有大人带着孩子(都为 儿童)去游玩,买门票共花了720元.问成 人和孩子各去了多少人?
(1)这个问题中,有几个未知数? (2)能列一元一次方程求解吗? (3)如果设成人有x人,儿童有y人, 你能列出方程吗?
450x + 150(600-x) =210000
等量关系: 低价票的张数
+ 草地票的张数 =600
购买低价票的总价 + 购买草地票的总价 =210000
沪教版 六年级数学下册 第六章 一元一次方程组及不等式组单元题有测试卷

沪教版六年级下册数学第五章一元一次方程组及不等式组提优测试卷第Ⅰ卷(选择题共18分)一、选择题(每题3分,共18分)在下列方程中,是二元一次方程的是()A. x²+x=2B. xy=﹣1C. 3x=1D. x-3=y2.如果a<b,那么下列不等式正确的是()A.1-a>1-b B. 2a >2b C. a+2>b-2 D a ²>b²3.下列方程中,解是-2的是()A. 3x-1=2+xB. 2-y=0C. x+3=﹣1D. =﹣14.下列方程变形正确的是()A.由8-x=11,得x=11-8 B.由﹣2x=3x-5,得﹣5x=﹣5C.由x=1,得x=D.由5x+1=3x,得5x-3x=15.长方形的周长为14厘米,长比宽的3倍少1厘米,设宽为x cm,依题意列方程,下列正确的是()A. x+(3x+1)=14B. x+(-)=14C.2x+2(3x-1)=14 D.2x+2(3x+1)=146.已知方程4x-3y=7,用含x的式子表示y正确的是()A. x=+B. x=4(7+3y)C. y=-D.y=-第Ⅱ卷(非选择题共82分)ニ、填空题(每题3分,共36分)7.列不等式:x的倒数减去1的差不小于它的2倍。
8.方程﹣2x-1=0的解是。
9.不等式﹣<1的解集是10.不等式组>﹣>的解集是1.﹣<x≤1的正整数解有个。
12.方程组+=--=的解是。
13.如果=-=是方程ax+y=-1的一个解那么a=14.二元一次方程x+3y=8的正整数解是15.如果方程5--++=0是二元一次方程,那么m+n =16.一双皮鞋售价x元,现降价四成出售,现在售价为元(列代数式)17.写出一个解集为ー1<x<2的不等式组:。
18.当x=时,代数式“-与-互为相反数。
三、解答题(第19~22题,每题6分,第23~24题每题7分,第25题8分,共46分)19.解方程:2--=20.解不等式:2(1-x)<﹣(2x+1)-x,并将解集在数轴上表示出来。
沪教版数学六年级(下)一课一练及单元测试卷和参考答案

数学六年级(下)一课一练及单元测试卷目录第五章有理数3 5.1有理数的意义(1) 3 5.2 数轴(1) 7 5.3 绝对值(1) 11 5.4有理数的加法(1) 15 5.5有理数的减法(1) 19 5.6 有理数的乘法(1) 23 5.7 有理数的除法(1) 27 5.8 有理数的乘方(1) 31 5.9 有理数的混合运算(1) 35 5.10 科学记数法(1) 39六年级(下)数学第五章有理数单元测试卷一43第六章一次方程(组)和一次不等式(组)6.1 列方程(1) 47 6.2 方程的解(1) 51 6.3 一元一次方程及其解法(1) 55 6.4 一元一次方程的应用(1) 59 6.5 不等式及其性质(1) 63 6.6 一元一次不等式的解法(1) 67 6.7 一元一次不等式组(1) 716.8 二元一次方程(1) 75 6.9 二元一次方程组及其解法(1) 79 6.10 三元一次方程组及其解法(1) 83 6.11一次方程组的应用(1) 87 第六章一次方程(组)和一次不等式(组)单元测试卷一93第七章线段与角的画法7.1 线段的大小的比较(1) 97 7.2 画线段的和、差、倍(1) 101 7.3 角的概念与表示(1) 105 7.4 角的大小的比较画相等的角(1) 109 7.5 画角的和、差、倍(1) 113 7.6 余角、补角(1) 117 六年级(下)数学第七章线段和角的画法单元测试卷一121第八章长方体的再认识8.1 长方体的元素(1) 125 8.2 长方体直观图的画法(1) 127 8.3 长方体中棱与棱位置关系的认识(1) 129 8.4 长方体中棱与平面位置关系的认识(1) 131 8.5 长方体中平面与平面位置关系的认识(1) 133 六年级(下)数学第八章长方体的再认识单元测试卷一137 参考答案 141数学六年级(下)第五章有理数5.1有理数的意义(1)一、填空题1、在1、﹣1.2、﹣2.5、0、、、3.14中,负数有个。
【备战2021-专项突破】专题3_2_一次方程(组)和一元一次不等式(组)(2)(原卷版)

专题3.2 一次方程(组)和一元一次不等式(组) 备战2021年中考数学精选考点专项突破卷(2)一、单选题(共30分)1.(本题3分)(2020·广东揭阳·初二期末)对于实数,,a b c 中,给出下列命题:①若a b <,则a c b c -<-;②若ab c >,则ca b>;③若32a a ->,则0a <;④若a b >,则22ac bc >.其中真命题有( ) A .①②B .①③C .②④D .③④2.(本题3分)(2020·河南省洛阳市东升第二中学初三一模)不等式组271532x x +>⎧⎨-≥⎩的解集在数轴上表示正确的是( ) A .B .C .D .3.(本题3分)(2019·河北南宫·初一期末)关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥4.(本题3分)(2020·河南郑州外国语中学初一期中)我们定义a c ⎛ ⎝ b ad bc d ⎫=-⎪⎭,例如:24⎛ ⎝ 3253425⎫=⨯-⨯=-⎪⎭,若x 满足423⎛-≤ ⎝ 22x ⎫<⎪⎭,则x 的整数解有( )A .0个B .1个C .2个D .3个5.(本题3分)(2020·山东长清·初二期中)若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a ≥1 B .a >1 C .a ≤,1D .a <,16.(本题3分)(2019·廊坊市第四中学初一期中)下列结论中错误的是( ) A .若ax bx =,则a b = B .若1x =,则1122x = C .若a b =,则11ac bc -=-D .若a b =,则2211a bc c =++ 7.(本题3分)(2020·哈尔滨市松雷中学校初一月考)按下面的程序计算,若开始输入的值x 为正整数,最后输出的结果为62,则满足条件的x的不同值最多有()A.2B.3C.4D.58.(本题3分)(2020·重庆九龙坡·期末)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x人,鸡的价钱是y钱,则可列方程组为()A.8374x yy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=⎩C.8374x yx y-=⎧⎨-=⎩D.8374y xx y+=⎧⎨-=⎩9.(本题3分)(2020·山东岱岳·初一期末)已知方程组233411x y kx y k+=⎧⎨-=+⎩中的x,y满足5x﹣y=3,则k=()A.﹣5B.﹣3C.﹣6D.﹣410.(本题3分)(2020·河北其他)解方程组①3759y xx y=-⎧⎨+=-⎩,②35123156x yx y+=⎧⎨-=-⎩,比较简便的方法是()A.都用代入法B.都用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法二、填空题(共24分)11.(本题3分)(2020·孟津县双语实验学校初一月考)2150a--=,则a=________.12.(本题3分)(2020·孟津县双语实验学校初一月考)某书上有一道解方程的题:113xx++=,□处在印刷时被油墨盖住了﹐查后面的答案知这个方程的解是2x=-,那么□处应该是数字________.13.(本题3分)(2020·广东初三一模)已知a,b互为相反数,并且3a,2b,5,则a2,b2,________,14.(本题3分)(2020·湖南初一期末)已知二元一次方程组2326x yx y+=⎧⎨+=⎩,则x+y=__________.15.(本题3分)(2020·河南其他)不等式组11230 xx+⎧⎪⎨⎪--<⎩的最大整数解是_____.16.(本题3分)(2020·四川省射洪县射洪中学外国语实验学校初一期中)如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则小长方形的面积为_______.17.(本题3分)(2020·河南遂平·初一期中)若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是_________.18.(本题3分)(2019·黑龙江勃利·初一期末)已知关于x 的不等式组423(){23(2)5x x a x x +>+>-+仅有三个整数解,则a 的取值范围是__________. 三、解答题(共66分)19.(本题4分)(2020·河北南宫·初一期末)下面是林林同学的解题过程:解方程212136x x ++-=. 解:去分母,得:2(21)26x x +-+= 第①步 去括号,得:4226x x +-+= 第②步 移项合并,得:32x = 第③步 系数化1,得:23x =第④步 (1)上述林林的解题过程从第________步开始出现错误; (2)请你帮林林写出正确的解题过程.20.(本题4分)(2020·河南洛宁·初一期中)解下列不等式,并把解集在数轴上表示出来:2(1)3x +<5(1)6x -﹣1.21.(本题4分)(2020·长沙市长郡外国语实验中学月考)解不等式组2142311323x xxx-<+⎧⎪+⎨-≤⎪⎩,并把解集在数轴上表示出来.22.(本题4分)(2020·河北阜平·初一期末)解方程组:896 27170 x yx y-=⎧⎨++=⎩23.(本题7分)(2020·夏津县第二实验中学初一月考)张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:例如:若购买的商品原价为15000 元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000 元.(1)若这种品牌电脑的原价为8000 元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700 元.求该品牌电脑的原价是多少元/台?24.(本题8分)(2020·广东阳山·初二期末)欣欣服装厂加工A、B两种款式的运动服共100件,加工A种运动服的成本为每件80元,加工B种运动服的成本为每件100元,加工两种运动服的成本共用去9200元.(1)A、B两种运动服各加工多少件?(2)A种运动服的标价为200元,B种运动服的标价为220元,若两种运动服均打八折出售,则该服装厂售完这100件运动服共盈利多少元?25.(本题8分)(2020·山东垦利·初一期末)列方程组(或不等式组)解应用题:垦利区为打好创城攻坚战,在城市创卫工作中“保护好环境,拒绝冒黑烟”,公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车3辆,B型公交车2辆,共需180万元;若购买A型公交车2辆,B型公交车3辆,共需195万元.(1)求购买A型和B型公交车每辆各需多少万元;(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次,若该公司购买A 型和B型公交车的总费用不超过360万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案,哪种购车方案总费用最少?最少总费用是多少?26.(本题8分)(2019·四川南充·初三一模)某水果经销商看准商机,第一次用800元购进某种水果进行销售,销售良好,于是第二次用了2400元购进同种水果,但此次进价比第一次提高了20%,所购数量比第一次购进数量的2倍还多200千克.(1)求第一次所购水果的进货价是每千克多少元?(2)在实际销售中,两次售价开始均相同,但第一次购进的水果在销售过程中,消费者挑选后,由于水果品相下降,最后50千克八折售出;第二次购进的水果由于同样的原因,最后100千克九折售出,若售完这两批水果的毛利不低于940元,则每千克开始售价至少为多少元?27.(本题9分)(2020·四川省射洪县射洪中学外国语实验学校初一期中)为了加强建设“经济强、环境美、后劲足、群众富”的实力城镇,聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶计划.现决定将A、B两种类型鱼苗共320箱运到某村养殖,其中A种鱼苗比B种鱼苗多80箱.(1)求A种鱼苗和B种鱼苗各多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批鱼苗全部运往同一目的地.已知甲种货车最多可装A种鱼苗40箱和B种鱼苗10箱,乙种货车最多可装A种鱼苗和B种鱼苗各20箱.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,则安排甲、乙两种货车有哪几种不同的方案?并说明选择哪种方案可使运输费最少?最少运输费是多少元?28.(本题10分)(2020·江苏徐州·初一期末)已知56xy=⎧⎨=⎩与310xy=-⎧⎨=-⎩都是方程y kx b=+的解.(1)求k、b的值;(2)若y的值不小于0,求x的取值范围;(3)若21x,求y的取值范围.。
6.7 一元一次不等式组

-3 -2 -1 0
1
2
3
4
5
-6
-5 -4 -3 -2 -1
0
1
例题
x 3, (9) x 7.
大小小大中间 找
0 1 2 3 4 5 6 7 8 9
x 2, (10) x 5. x 1, (11) x 4. x 0, (12) x 4.
设需要 x 分钟才能将污水抽完, 总抽水量:30 x 吨 根据题意,得:
30 x 1200 30 x 1500
① ②
概念
一元一次不等式组:
(1)“一元”指的是什么? 指不等式组中只含有一个未知数。 (2)“一次”指的是什么? 指不等式中未知数的次数为1. (3) 概念
由几个含有同一个未知数的一元一次不等式
练习
x 2 0, 4.试求不等式组 x 3 0, 的解集。 x 6 0
5.关于x的一元一次方程2x+3=6(x+m) 的解是ቤተ መጻሕፍቲ ባይዱ数,求m的取值范围。
练习
1 2x 1 x 1. 4 3 x 3( x 2) 4
4 1 x 1 4 x 2. 3 3 x 1 3( x 1)
-7 -6 -5 -4 -3 -2 -1 0
-3 -2 -1 0
1
2
3
4
5
-6
-5 -4 -3 -2 -1
0
1
例题
x 3, (13) x 7. x 2, (14) x 5.
x 1, (15) x 4.
0
大大小小解不了
1 2 3 4 5 6 7 8 9
竞赛辅导:一次方程和一次不等式

竞赛辅导:一次方程和一次不等式一、选择题(共 4 小题,每小题 3 分,满分 12 分)1.如果 a-|a|<0,那么不等式|a|x<a 的解是( )A. x< 1显示解析B. x> 1C . x > -1D . x < -12.适合关系式|3x-4|+|3x+2|=6 的整数 x 的值有()个.A. 0 C. 2显示解析 3.B. 1 D. 大 于 2 的 自 然 数x1+x2+x3=a1(1) x2+x3+x4=a2(2) x3+x4+x5=a3(3) x4+x5+x1=a4(4) x5+x1+x2=a5(5),其中 a1,a2,a3,a4,a5 是常数,且 a1>a2>a3>a4>a5,则 x1,x2,x3,x4,x5 的大小顺序是( )A. x1> x2> x3> x4> x5 C. x3> x1> x4> x2> x5B. x4> x2> x1> x3> x5 D. x5> x3> x1> x4> x2显示解析 4.已知方程|x|=ax+1 有一个负根而且没有正根,那么 a 的取值范围是( )A . a > -1显示解析B . a=1C. a≥ 1D. 非 上 述 答 案二、填空题(共 11 小题,每小题 4 分,满分 44 分)5.方程x1×2+x2×3+…+x1995×1996=1995 的解是. 显示解析 6.如果不论 k 为何值,x=-1 总是关于 x 的方程kx+a2-2x−bk 3=-1 的解,则 a=,b=. 显示解析 7.已知 2x+5y+4z=15,7x+y+3z=14,则 4x+y+2z 的值为. 显示解析 8.如果x=2 y=1是方程组ax+by=7 bx+cy=5的解,则 a 与 c 的关系是. 显示解析 9.方程1 2 (1 2 ( 1 2 (…( 1 2 x+2)+…+2))2001 层括号+2=4 的解是. 显示解析 10.若|3-x|-|x+2|的最小值为 a,最大值为 b,则 ab=. 显示解析 11.已知满足 2x-3y=11-4m 和 3x+2y=21-5m 的 x、y 也满足 x+3y=20-7m,则 m 的值为. 显示解析 12.已知 xyz≠0,且x+3y+5z=02x+3y+z=0,则x2+y2+z23x2+2y2+z2=. 显示解析 13.已知 a、b、c、d 满足方程组3a+b+c+d=1a+3b+c+d=9 a+b+3c+d=9 a+b+c+3d=5,则 abcd=. 显示解析 14.不等式|x|−12≤|x|+13的所有整数解之和是. 显示解析 15.若|x+5|+|x-2|=7,则 x 的取值范围是. 显示解析三、解答题(共 4 小题,满分 44 分)16.若 x1~x5 满足下列方程组:2x1+x2+x3+x4+x5=6x1+2x2+x3+x4+x5=12 x1+x 2+2x3+x4+x5=24 x1+x2+x3+2x4+x5=48 x1+x2+x3+x4+2x5=96;求 3x4+2x5 的值. 显示解析 17.把若干个苹果分给几只猴子,若每只猴分 3 个,则余 8 个,每只猴分 5 个,则最后的一只猴分得的数不足 5 个,问共有多少只猴子?多少个苹果? 显示解析 18.某次数学测验,共有 16 道选择题,评分办法是:答对一题给 6 分,答错一题扣 2 分,不答则不给分;某学生有一道题未答,那么这个学生至少要答对多少题,成绩才能不低 于 60 分? 显示解析 19.已知有理数 x 满足:3x−12− 7 3 = x− 5+2x 3,求 x 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 一次方程(组)和一次不等式(组)测试题
姓名______班级_______学号______得分 ______
一、 填空题(本大题共15小题,每小题2分,满分30分)
1. 方程2-3x=-1的解是______________.
2. 当x=_________ 时,
3
1
2-x =-3 . 3. 若3a b a 2=++y x 是关于x 、y 的二元一次方程,则a+2b=____________ 4. 不等式3x-2>4x 的解集是__________.
5. 不等式组⎩⎨⎧≤--<5
)1(21
3x x 的解是___________.
6. 已知y 与3的和的3倍等于y 与2的差的一半,列出方程___________.
7. 若x:y=4:6且y-x=4,则y=___________.
8. 方程组⎩⎨⎧=+=-1
3
y x y x 的解为____________.
9. 三元一次方程组⎪⎩
⎪
⎨⎧-=+=+=+402x z z y y x 的解集是_________.
10. 写出适合⎩⎨⎧==3
2
y x 的一个二元一次方程组是 __________.
11. 在二元一次方程3x+2y=15的解集中,x 和y 是相反数的解是__________. 12. 5x+6与3x+1值均大于零,则x 的最小整数解是___________.
13. 某市举办中学生足球比赛,规定胜一场得3分,平一场得1分。
新华中学足球队比赛
11场,没有输过一场,共得27分,求该球队胜几场,平几场.若设该球队胜x 场,根据题意,可得方程:__________________;若设该球队胜x 场,平y 场,可列方程组:________________.
14. 小王在银行里储蓄人民币4000元,一年到期扣除20%的利息税,得到本利和4072元,
则这次储蓄的年利率为_______________.
15. 一件衣服x 元,加上成本的60%作为售价,后因季节原因,按售价的七五折出售,降价
后每件185元,则可列方程为________________.
二、单项选择题(本大题共4小题,每小题3分,满分12分)
16. 下列方程组中,属于二元一次方程组的是-------------( )
(A) ⎩
⎨⎧=+=10323::2y x y x . (B)
⎪⎩
⎪
⎨⎧=-=y x x y 13
2. (C) ⎩⎨
⎧=-=+425y x y x . (D) ⎩⎨⎧=+=+4
5
2z y y x .
17. 二元一次方程2x+y=4的非负整数解有---------( )
(A) 一组. (B)二组. (C)三组. (D) 四组.
18. 若代数式5m+41与5(m-41
)是互为相反数,则m 的值为----------( )
(A) 0. (B) 203. (C) 201. (D)101
.
19. 如果(a-2)x <a-2的解集是x >1,那么a 的取值范围是-------( )
(A)a >0. (B) a <0.
(C) a <2. (D) a >2.
三、解方程(组)和不等式(组)(每题5分,满分30分)
20. 7x-5=3(2x+1) 21.6
33451x
x -=
--
.。
22.344231->+--x x . 23⎪⎩
⎪
⎨⎧≤--≥+.5)4(31
),32(2)2(3x x x
24.⎪⎪⎩
⎪⎪⎨⎧+-=+-+=-.16)2(4)(6,14
3)(2y x y x y
x y x 25.⎪⎪⎪
⎩
⎪⎪⎪⎨⎧
-=+-=+=-+.72,52,22z y x y x z y x
四、解答题(每小题5分,满分10分)
26. 方程组⎩⎨⎧=-=+8
5
2y x y x 的解也是方程3mx+2my=57的解,求m.
27. 求不等式组⎪⎩⎪
⎨⎧-≥++<-的整数解52)13
2(634)1(7x x x x .
五.应用题(每题6分,满分18分)
28.甲、乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才能追上甲车?
29.甲、乙两人计划五月份共同生产零件360个,由于各自改进了操作技术,结果甲完成了本人计划的112%,乙超额10%完成了本人计划,两人共生产了零件400个,求五月份甲、乙两人原计划各生产几个零件?
30.某车间有工人26人,生产甲、乙两种零件,每人每天可生产甲种零件15个,或生产乙种零件10个,某种仪器每套需甲种零件2个,乙种零件3个.如何安排劳动力,使每天生产的零件恰好配套?
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。