建筑力学李前程教材第十一章习题解
合集下载
11建筑力学与结构(第3版)第十一章砌体结构

3.蒸压灰砂砖
蒸压灰砂砖是以石英砂和石灰为主要原料,加入其他 掺合料后压制成型,蒸压养护而成。使用这类砖时受 到环境的限制。
4.蒸压粉煤灰砖
蒸压粉煤灰砖是以粉煤灰、石灰为主要原料,掺加适 量石膏和集料,经坯料制备、压制成型,高压蒸汽养 护而成的实心砖。
5.混凝土小型空心砌块
砌块是指用普通混凝土或轻混凝土及硅酸盐材料制 作的实心和空心块材。
2.混合砂浆
在水泥砂浆掺入适量的塑性掺合料,如石灰膏、黏土 膏等而制成的砂浆叫混合砂浆。混合砂浆具有保水 性和流动性较好、强度较高、便于施工且质量容易 保证等特点,是砌体结构中常用的砂浆。
3.非水泥砂浆
非水泥砂浆是指不含水泥的砂浆,如石灰砂浆、石膏 砂浆等。非水泥砂浆具有强度不高、耐久性较差等 特点,适用于受力不大或简易建筑、临时性建筑的砌 体中。
(4)应考虑施工队伍的技术条件和设备情况,而且应方 便施工。
(5)应考虑建筑物的使用性质和所处的环境因素。
2.《砌体规范》对块体和砂浆的选择的规定
5层及5层以上房屋的墙以及受振动或层高大于6 m 的墙、柱所用的块体和砂浆最低强度等级:砖为 MU10、砌块为MU7.5、石材为MU30、砂浆为M5。 地面以下或防潮层以下的砌体、潮湿房间的墙,所用 材料的最低强度等级应符合要求。
砌体轴心受压从加荷开始直到破坏,大致经历以下三 个阶段:
(1)当砌体加载达极限荷载的50%~70%时,单块砖内产 生细小裂缝。
(2)当加载达极限荷载的80%~90%时,砖内有些裂缝连 通起来,沿竖向贯通若干皮砖。
(3)当压力接近极限荷载时,砌体中裂缝迅速扩展和贯 通,将砌体分成若干个小柱体,砌体最终因被压碎或 丧失稳定而破坏。
(二)砌块砌体
砌块砌体可用于定型设计的民用房屋及工业厂房的 墙体。由于砌块重量较大,砌筑时必须采用吊装机具, 因此在确定砌块规格尺寸时,应考虑起吊能力,并应 尽量减少砌块类型。砌块砌体具有自重轻、保温隔 热性能好、施工进度快、经济效果好的特点。目前, 国内使用的砌块高度一般为180~600 mm。
蒸压灰砂砖是以石英砂和石灰为主要原料,加入其他 掺合料后压制成型,蒸压养护而成。使用这类砖时受 到环境的限制。
4.蒸压粉煤灰砖
蒸压粉煤灰砖是以粉煤灰、石灰为主要原料,掺加适 量石膏和集料,经坯料制备、压制成型,高压蒸汽养 护而成的实心砖。
5.混凝土小型空心砌块
砌块是指用普通混凝土或轻混凝土及硅酸盐材料制 作的实心和空心块材。
2.混合砂浆
在水泥砂浆掺入适量的塑性掺合料,如石灰膏、黏土 膏等而制成的砂浆叫混合砂浆。混合砂浆具有保水 性和流动性较好、强度较高、便于施工且质量容易 保证等特点,是砌体结构中常用的砂浆。
3.非水泥砂浆
非水泥砂浆是指不含水泥的砂浆,如石灰砂浆、石膏 砂浆等。非水泥砂浆具有强度不高、耐久性较差等 特点,适用于受力不大或简易建筑、临时性建筑的砌 体中。
(4)应考虑施工队伍的技术条件和设备情况,而且应方 便施工。
(5)应考虑建筑物的使用性质和所处的环境因素。
2.《砌体规范》对块体和砂浆的选择的规定
5层及5层以上房屋的墙以及受振动或层高大于6 m 的墙、柱所用的块体和砂浆最低强度等级:砖为 MU10、砌块为MU7.5、石材为MU30、砂浆为M5。 地面以下或防潮层以下的砌体、潮湿房间的墙,所用 材料的最低强度等级应符合要求。
砌体轴心受压从加荷开始直到破坏,大致经历以下三 个阶段:
(1)当砌体加载达极限荷载的50%~70%时,单块砖内产 生细小裂缝。
(2)当加载达极限荷载的80%~90%时,砖内有些裂缝连 通起来,沿竖向贯通若干皮砖。
(3)当压力接近极限荷载时,砌体中裂缝迅速扩展和贯 通,将砌体分成若干个小柱体,砌体最终因被压碎或 丧失稳定而破坏。
(二)砌块砌体
砌块砌体可用于定型设计的民用房屋及工业厂房的 墙体。由于砌块重量较大,砌筑时必须采用吊装机具, 因此在确定砌块规格尺寸时,应考虑起吊能力,并应 尽量减少砌块类型。砌块砌体具有自重轻、保温隔 热性能好、施工进度快、经济效果好的特点。目前, 国内使用的砌块高度一般为180~600 mm。
《建筑力学》高版本 教学课件 建筑力学 第十一章 (最终)

(a)
(b)
图 11-4
4. 超静定结构的类型 常见的超静定结构的类型有梁、刚架、拱、桁架及组合结构等,如 图11-5 所示。
图 11-5
11.1.2 超静定次数的确定
超静定结构具有多余约束,因而具有相应的多余未知力。通常将多 余约束的数目或多余未知力的数目称为超静定结构的超静定次数 。
超静定结构的超静定次数常采用去掉多余约束的方法来确定。该方 法就是去掉结构中的多余约束,代之以相应的多余未知力,使原结构变 成静定结构,则
由于原结构在支座 B 处与Fx1相应的竖向位移 1等于零,所以,要使 基本结构的受力与原结构完全一致,那么基本结构在荷载 q 和多余未知力
Fx1 共同作用下产生的 B点的竖向位移1也应等于零,这就要求 Fx1具有某 一确定的数值。只有当 Fx1的值能保证 1= 0时,基本结构才能还原成原结 构。所以,超静定结构只有唯一的一组解能同时满足静力平衡条件和变形
协调条件,这就是超静定结构解的唯一性定理。
根据上述 1 =0 的条件基本结构,可列写出求解多余未知力 Fx1 的力法 方程。
设 11和 1P 分别表示基本结构在多余力 Fx1 和载荷 q 单独作用下 B 点沿 Fx1方向的位移,如图11-14b、c 所示,并规定与所设 Fx1正方向相同者为正。 根据叠加原理,则有
量,梁会产生向上弯曲变形,故梁会因温度改变而产生内力。
(a)
(b)
图 11-3
除上述主要特征外,超静定结构还具有整体性强、变形小、受力较为 均匀等特点,因而这种结构在实际工程中被广泛采用。例如,图11-4a 所 示的两跨连续梁较图11-4b 所示的两跨简支梁,在力 F 作用点处的弯矩和 挠度均为小。
解:① 选取力法的基本结构 去掉 C 支座支杆,代之以多余 未知力Fx1,得到如图11-15b 所示基 本结构。 ② 建立力法方程 以建立在 C 点处无竖向位移 (或 沿Fx1方向总位移 1 = 0) 为条件,建 立其力法方程,有
《建筑力学》课件 第十一章

建筑力学
第十一章
静定结构的位移计算
第一节 概述 第二节 刚体虚功原理及应用 第三节 变形体虚功原理及应用 第四节 荷载作用下静定结构的位移计算 第五节 图乘法计算位移
第一节 概述
建筑结构在施工和使用过程中,由于荷载作用、温度变化、支座沉降、 装配误差等因素的影响会发生变形。变形时,结构中各杆件横截面的位置会 发生变动,这种位置的变动称为结构的位移。结构的位移分线位移和角位移 两类。
结构位移计算的方法以刚体虚功原理为理论基础。
第二节 刚体虚功原理及应用
一、刚体虚功原理
当体系在位移过程中,不考虑材料应变,各杆件只发生刚体运动时,
则该体系属于刚体体系。
功是代数量,当力与位移的方向相同时,功为正值;当力与位移的方
向相反时,功为负值;当功与位移相互垂直时,功为零。做功的力可以是
一个集中力,也可以是一个力偶,有时也可能是一个力系。用一个统一的
刚片DBC可以绕铰支座B做自由转动,D位移到D1,C位移到C1;因 为AD刚片与DBC刚片是用两个平行于杆轴的链杆相连,位移后AD2仍应 与D1BC1平行,点A因有竖向支杆竖向位移为零,故得到一虚设的可能位 移状态,如下图所示。令上图所示的平衡力系在下图的虚位移上做虚功,
得虚功方程如下: FX X FF 0
q
FQC
2l
q (b a) 2
2.虚设一平衡力系,求静定结构的位移——虚力原理即单位荷载法
上图为一伸臂梁,支座 A 向下移动距离为 c1,现在拟求点
C 竖向位移 。
上图中位移状态是给定的,为了 应用虚功原理,应该虚设一平衡力 系。为了能在点C竖向位移上做虚 功,即与拟求的点C竖向位移对应, 在点C加一竖向力F,则支座A的反 力为Fb/a。F与相应的支座反力组成 一平衡力系,如下图所示,这是一 个虚设的力系状态。
第十一章
静定结构的位移计算
第一节 概述 第二节 刚体虚功原理及应用 第三节 变形体虚功原理及应用 第四节 荷载作用下静定结构的位移计算 第五节 图乘法计算位移
第一节 概述
建筑结构在施工和使用过程中,由于荷载作用、温度变化、支座沉降、 装配误差等因素的影响会发生变形。变形时,结构中各杆件横截面的位置会 发生变动,这种位置的变动称为结构的位移。结构的位移分线位移和角位移 两类。
结构位移计算的方法以刚体虚功原理为理论基础。
第二节 刚体虚功原理及应用
一、刚体虚功原理
当体系在位移过程中,不考虑材料应变,各杆件只发生刚体运动时,
则该体系属于刚体体系。
功是代数量,当力与位移的方向相同时,功为正值;当力与位移的方
向相反时,功为负值;当功与位移相互垂直时,功为零。做功的力可以是
一个集中力,也可以是一个力偶,有时也可能是一个力系。用一个统一的
刚片DBC可以绕铰支座B做自由转动,D位移到D1,C位移到C1;因 为AD刚片与DBC刚片是用两个平行于杆轴的链杆相连,位移后AD2仍应 与D1BC1平行,点A因有竖向支杆竖向位移为零,故得到一虚设的可能位 移状态,如下图所示。令上图所示的平衡力系在下图的虚位移上做虚功,
得虚功方程如下: FX X FF 0
q
FQC
2l
q (b a) 2
2.虚设一平衡力系,求静定结构的位移——虚力原理即单位荷载法
上图为一伸臂梁,支座 A 向下移动距离为 c1,现在拟求点
C 竖向位移 。
上图中位移状态是给定的,为了 应用虚功原理,应该虚设一平衡力 系。为了能在点C竖向位移上做虚 功,即与拟求的点C竖向位移对应, 在点C加一竖向力F,则支座A的反 力为Fb/a。F与相应的支座反力组成 一平衡力系,如下图所示,这是一 个虚设的力系状态。
建筑力学第十一章静定结构的内力分析ppt课件

11.1.1 结 构 计 算 简 图
11.1 概述
2)杆件的简化
在计算简图中,用轴线表示杆件,忽略截面形状 和尺寸。
11.1.1 结 构 计 算 简 图
11.1 概述
3)节点的简化
铰结点
杆件连接汇交点叫结点。
铰结点的特征是汇交于结点的各杆可绕结点自由转
动,但不能相对移动,铰结点能传递力不能传递力偶,不 能产生杆端弯矩,只能产生杆端轴力和剪力。
建筑力学
第11章 静定结构的内力分析
11.1 概述 11.2 多跨静定梁 11.3 静定平面刚架 11.4 三铰拱
第11章 静定结构的内力分析
11.5 静定平面桁架 11.6 组合结构的计算 11.7 静定结构的一般特性
第11章 静定结构的内力分析
学习目标 (1)熟悉各种静定结构对应的内力。 (2)掌握多跨静定梁、刚架、拱、桁架及组合结构的内力分析方法
F NK F S 0K sin KH coKs
轴力的符号规定以压力为正.
K 在图示坐标系中左半拱取
正,右半拱取负。
11.4.2 三 铰 拱 支 座 反 力 和 内 力
11.4 三铰拱
3.三铰拱的受力特征
与相应的简支梁相比,三铰拱与梁竖向 反力相等,且与拱轴形状和拱高无关, 只取决于荷载的大小和位置。 在竖向荷载作用下,梁无水平推力,而 拱有水平推力,且水平推力与拱高成反 比。 拱的截面弯矩比简支梁小,故拱的截面 尺寸可比简支梁的小,所以说拱比简支 梁更经济实惠,能跨越更大跨度。
平 面
以绘在杆件的任一侧,但必须注明正负号。
钢
杆端内力的两个角标:第一个表示内力所属截面, 架
第二个表示该截面所属杆的另一端.
的 内
建筑力学第十一章

上一页 下一页 返回
第二节 圆轴扭转时横截面上的内力
• 设G 点至横截面圆心的距离为ρ,由图11-13(a)所示的几何关系得 式(11-7).
• 式(11-7)中dφ/dx 为扭转角沿杆长的变化率,对于给定的横截面是 个常量,因此,式(11-7)表明切应变γρ 与ρ 成正比,即切应变沿半径按 直线规律变化.
上一页 下一页 返回
第二节 圆轴扭转时横截面上的内力
• 三、圆轴扭转时横截面上的切应力 • 在小变形条件下,圆轴扭转时横截面上也只有切应力.为求得圆轴扭转
时横截面上的切应力计算公式,先观察其变形,从几何方面和物理方面 求得切应力在横截面上的变化规律,再结合静力学知识求解. • (一)几何方面 • 为研究横截面上任一点处切应变随点的位置而变化的规律,如图1-1 2(a)所示,在圆轴表面上作出任意两个相邻的圆周线和纵向线.当轴的 两端施加一对矩为Me 的外力偶后,可以发现:两圆周线绕轴线相对旋 转了一个角度,圆周线的大小和形状均未改变;在小变形情况下,圆周线 的间距未发生变化,纵向线如图11-12(b)所示,倾斜了一度γ.根
上一页 下一页 返回
第二节 圆轴扭转时横截面上的内力
• 单元体处于平衡状态,由平衡条件ΣFy = 0可知,单元体左、右两侧面 上的内力元素τxdydz 为大小相等、指向相反的一对力,并组成一个力 偶,其矩为(τxdydz)dx.为了满足另两个平衡条件ΣFx =0和ΣMz =0, 在单元体的上、下两个平面(即杆的径向截面上)必有大小相等、指向 相反的一对力τydxdz,并组成力偶矩(τydxdz)dy,即
上一页 下一页 返回
第二节 圆轴扭转时横截面上的内力
• 式(11-13)即圆轴扭转时横截面上任一点处切应力的计算公式. • 由式(11-13)及图11-13(b)可知,当ρ 等于横截面半径r 时,即横
第二节 圆轴扭转时横截面上的内力
• 设G 点至横截面圆心的距离为ρ,由图11-13(a)所示的几何关系得 式(11-7).
• 式(11-7)中dφ/dx 为扭转角沿杆长的变化率,对于给定的横截面是 个常量,因此,式(11-7)表明切应变γρ 与ρ 成正比,即切应变沿半径按 直线规律变化.
上一页 下一页 返回
第二节 圆轴扭转时横截面上的内力
• 三、圆轴扭转时横截面上的切应力 • 在小变形条件下,圆轴扭转时横截面上也只有切应力.为求得圆轴扭转
时横截面上的切应力计算公式,先观察其变形,从几何方面和物理方面 求得切应力在横截面上的变化规律,再结合静力学知识求解. • (一)几何方面 • 为研究横截面上任一点处切应变随点的位置而变化的规律,如图1-1 2(a)所示,在圆轴表面上作出任意两个相邻的圆周线和纵向线.当轴的 两端施加一对矩为Me 的外力偶后,可以发现:两圆周线绕轴线相对旋 转了一个角度,圆周线的大小和形状均未改变;在小变形情况下,圆周线 的间距未发生变化,纵向线如图11-12(b)所示,倾斜了一度γ.根
上一页 下一页 返回
第二节 圆轴扭转时横截面上的内力
• 单元体处于平衡状态,由平衡条件ΣFy = 0可知,单元体左、右两侧面 上的内力元素τxdydz 为大小相等、指向相反的一对力,并组成一个力 偶,其矩为(τxdydz)dx.为了满足另两个平衡条件ΣFx =0和ΣMz =0, 在单元体的上、下两个平面(即杆的径向截面上)必有大小相等、指向 相反的一对力τydxdz,并组成力偶矩(τydxdz)dy,即
上一页 下一页 返回
第二节 圆轴扭转时横截面上的内力
• 式(11-13)即圆轴扭转时横截面上任一点处切应力的计算公式. • 由式(11-13)及图11-13(b)可知,当ρ 等于横截面半径r 时,即横
建筑力学第11章静定结构的内力计算

2)联合桁架 由几个简单桁架按几何不变规律 联合组成的桁架(图 11.28(c)所示)。 3)复杂桁架 不按上述两种方式组成的其他形 式的桁架(图 11.28(d)所示)。 46
11.4.2 静定平面桁架的内力计算 (1)结点法 结点法是以桁架的结点为研究对象,适用于计 算简单桁架。当截取桁架中某一结点为隔离体后, 得到一平面汇交力系,根据平面汇交力系的平衡条 件可求得各杆内力。又因为根据平面汇交力系的平 衡条件,对于每一结点只能列出两个平衡方程,因 此每次所选研究对象(结点)上未知力的个数不应 多于两个。
13
图 11.9
14
图 11.10
15
图 11.11 静定多跨梁与简支梁的受力比较
16
11.2 静定平面刚架 11.2.1 刚架的特征 刚架是由若干根梁和柱主要用刚结点组成的结 构。当刚架各杆轴线和外力作用线都处于同一平面 内时称为平面刚架,如图 11.12(b)所示。 在刚架中,它的几何不变性主要依靠结点 刚性来维持,无需斜向支撑联系,因而可使结构内 部具有较大的净空便于使用。如图 11.12(a)所 示桁架是一几何不变体系,如果把 C 结点改为刚 结点,并去掉斜杆,则该结构即为静定平面刚架, 如图 11.12( b)所示。
6
图 11.3
7
图 11.4
8
(3)斜梁的内力图 在建筑工程中,常会遇到杆轴倾斜的斜梁,如 图11.5所示的楼梯梁等。 当斜梁承受竖向均布荷载时,按荷载分布情况 的不同,可有两种表示方式。一种如图 11.6 所示 ,斜梁上的均布荷载 q按照沿水平方向分布的方式 表示,如楼梯受到的人群荷载的情况就是这样。另 一种如图 11.7所示,斜梁上的均布荷载 q′按照沿 杆轴线方向分布的方式表示,如楼梯梁的自重就是 这种情况。
11.4.2 静定平面桁架的内力计算 (1)结点法 结点法是以桁架的结点为研究对象,适用于计 算简单桁架。当截取桁架中某一结点为隔离体后, 得到一平面汇交力系,根据平面汇交力系的平衡条 件可求得各杆内力。又因为根据平面汇交力系的平 衡条件,对于每一结点只能列出两个平衡方程,因 此每次所选研究对象(结点)上未知力的个数不应 多于两个。
13
图 11.9
14
图 11.10
15
图 11.11 静定多跨梁与简支梁的受力比较
16
11.2 静定平面刚架 11.2.1 刚架的特征 刚架是由若干根梁和柱主要用刚结点组成的结 构。当刚架各杆轴线和外力作用线都处于同一平面 内时称为平面刚架,如图 11.12(b)所示。 在刚架中,它的几何不变性主要依靠结点 刚性来维持,无需斜向支撑联系,因而可使结构内 部具有较大的净空便于使用。如图 11.12(a)所 示桁架是一几何不变体系,如果把 C 结点改为刚 结点,并去掉斜杆,则该结构即为静定平面刚架, 如图 11.12( b)所示。
6
图 11.3
7
图 11.4
8
(3)斜梁的内力图 在建筑工程中,常会遇到杆轴倾斜的斜梁,如 图11.5所示的楼梯梁等。 当斜梁承受竖向均布荷载时,按荷载分布情况 的不同,可有两种表示方式。一种如图 11.6 所示 ,斜梁上的均布荷载 q按照沿水平方向分布的方式 表示,如楼梯受到的人群荷载的情况就是这样。另 一种如图 11.7所示,斜梁上的均布荷载 q′按照沿 杆轴线方向分布的方式表示,如楼梯梁的自重就是 这种情况。
建筑力学11静定结构内力分析

c
d
q=20KN/m 10KN
FNae= F = – 35KN
Nea
Fax
a
b
4m
FNec= FNce= – 35KN
FNcd=FNdc=0
FN图 KN
35
Fay
Fay
45
31
2m
e
2m
5.作FN图
c
d
6、验算
20
c
35
35
c c
45
20
20 50
10
45 FQ图
M图
c 20 35
KNm
20 35
q=20KN/m
c
d
10KN
Fby=45KN
2.分析各段杆的 内力图形。
F ax
a
b
4m Fay FBy
28
2m
Fay=35KN
e
2m
Fax= – 10KN
q=20KN/m
10KN
Mae=0
Mea=Mec=10×2=20KNM
Fax
a
b
4m
Mce=10×4 – 10×2=20KNM Mcd=10×4 – 10×2=20KNM Mdb=0 Mbd=0
38
11.3 静定平面桁架的内力分析 11.3.1 概述 三点假定: 1、桁架的节点都是光滑的理想饺。 2、各杆的轴线都是直线,且在同一平面内,并 通过饺的中心。 3、荷载和支座反力都作用于节点上,并位于桁 架的平面内。杆自重忽略不计。 特点——按理想桁架计算的各杆的内力只 有轴力
39
11.3.2 简单平面桁架内力求解 1、内力计算方法 (1)节点法—以节点为隔离体,从只有二个未 知力的节点开始,逐个节点进行。利用节点的 静力平衡方程计算节点上截断杆的内力。 (2)截面法—用以截面(平面或曲面)截取桁 架的某一部分为隔离体,利用该部分的静力 平衡方程计算截断杆的轴力。
d
q=20KN/m 10KN
FNae= F = – 35KN
Nea
Fax
a
b
4m
FNec= FNce= – 35KN
FNcd=FNdc=0
FN图 KN
35
Fay
Fay
45
31
2m
e
2m
5.作FN图
c
d
6、验算
20
c
35
35
c c
45
20
20 50
10
45 FQ图
M图
c 20 35
KNm
20 35
q=20KN/m
c
d
10KN
Fby=45KN
2.分析各段杆的 内力图形。
F ax
a
b
4m Fay FBy
28
2m
Fay=35KN
e
2m
Fax= – 10KN
q=20KN/m
10KN
Mae=0
Mea=Mec=10×2=20KNM
Fax
a
b
4m
Mce=10×4 – 10×2=20KNM Mcd=10×4 – 10×2=20KNM Mdb=0 Mbd=0
38
11.3 静定平面桁架的内力分析 11.3.1 概述 三点假定: 1、桁架的节点都是光滑的理想饺。 2、各杆的轴线都是直线,且在同一平面内,并 通过饺的中心。 3、荷载和支座反力都作用于节点上,并位于桁 架的平面内。杆自重忽略不计。 特点——按理想桁架计算的各杆的内力只 有轴力
39
11.3.2 简单平面桁架内力求解 1、内力计算方法 (1)节点法—以节点为隔离体,从只有二个未 知力的节点开始,逐个节点进行。利用节点的 静力平衡方程计算节点上截断杆的内力。 (2)截面法—用以截面(平面或曲面)截取桁 架的某一部分为隔离体,利用该部分的静力 平衡方程计算截断杆的轴力。
材料力学课后习题答案11章

S z (η2 ) = 2.5 × 10 − 5 + (0.010η2 )(0.050 −
S z ,max (η 2 ) = 3.75 × 10 −5 m 3
η2
2
)
τ1 =
FSy S z , max (η1 ) 5 × 103 × 2.5 × 10 −5 N = = 3.75 × 106 Pa = 3.75MPa I zδ 3.333 × 10 − 6 × 0.010m 2 FSy S z , max (η2 ) I zδ 5 × 103 × 3.75 × 10 −5 N = = 5.63 × 106 Pa = 5.63MPa −6 2 3.333 × 10 × 0.010m
2 = 2.5 × 10 −5 + 2.5 × 10 −4 η 2 − 5 × 10 −3 η 2
τ 1, max =
FSy S z , max (η1 ) I zδ 1
=
5 × 103 × 1.25 × 10 −5 N = 3.00 ×106 Pa = 3.00MPa 2.08 × 10 − 6 × 0.010m 2
S z , A (ω ) =
δ
2 yA =
0.010 × 0.050 2 m 3 = 1.25 × 10 − 5 m 3 2
= 1.875 × 10 −4 m 3
据公式
τ (η ) =
得
FS S z (ω ) I zδ
40 × 10 3 × 1.25 × 10 −5 N τA = = 1.499 × 10 6 Pa = 1.499MPa −5 2 3.335 × 10 × 0.010m
[
]
11-6
试指出图示截面的剪心位置。
题 11-6 图 解: (a)双对称截面,剪心与形心重合; (b)角钢形截面,剪心在二边条中心线相交处; (c)T 形截面,剪心在翼缘中心线与腹板中心线相交处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 5 [(2P 2) ( P ) EI 2 3 1 2 (P ) (P ) ( P )] 2 3 23P 3EI
Pl 2Pl M P图
Pl
2l
l
P=1 2l M图 l l
【11-15】求刚架横梁中点C的竖向位移,各杆长同为l,EI相同。 【解】先求支座反力 C P 由∑X=0:XA=P 由∑M=0:YA=YB=P 作荷载作用下刚架的弯矩图, A X =P B 在刚架C点施加一单位荷载, 作单位荷载作用下刚架的弯矩图, Y =P Y =P 应用图乘法得:
A A B
C
A B 2
1 C M( x )M( x )dx EI 11q 4 1 1 2 1 2 q / 8 2 / 6 q / 8 / 2 3 / 8 EI 2 3 384EI
(b) 】(a)求支座反力 YA=P/2 , YB=3P/2 作荷载作用下的M图。 在外伸梁C点加一单位荷载,作 作单位荷载作用下的M图,用M图 的面积乘以单位荷载的M图的竖坐 标,得
1 1 P EI 2 4 2
P=1 Pl
Pl
P 3 16EI
M P图
M图
【11-16】求悬臂折杆自由端的竖向位移,各杆长同为l,EI相同。 【解】可不求支座反力, 直接作荷载作用下悬臂折杆 P 悬臂折杆的弯矩图, 在自由端施加一单位荷载, 2Pl Pl 作单位荷载作用下的弯矩图, 应用图乘法得:
P A B
Hale Waihona Puke C l/2 YB=3P/2
l YA=P/2
Pl/2 M图
l/3 l/3 M图 l/2 P=1
1 C M( x )M( x )dx EI P 3 1 1 1 11 P / 3 P / 2 / 3 EI 2 2 22 8EI
建筑力学第十一章习题解
梁和结构的位移
【11-10】用单位荷载法(图乘法)求外伸梁C点的竖向位移, EI=常数。 q 【解】(a)求支座反力 B A C YA=ql/8 , YB=5ql/8 l l/2 作荷载作用下的M图。 Y =5ql/8 Y =ql/8 在外伸梁C点加一单位荷载,作 ql /8 M图 作单位荷载作用下的M图,用M图 3l/8 的面积乘以单位荷载的M图的竖坐 l/3 l/2 P=1 M图 标,得
Pl 2Pl M P图
Pl
2l
l
P=1 2l M图 l l
【11-15】求刚架横梁中点C的竖向位移,各杆长同为l,EI相同。 【解】先求支座反力 C P 由∑X=0:XA=P 由∑M=0:YA=YB=P 作荷载作用下刚架的弯矩图, A X =P B 在刚架C点施加一单位荷载, 作单位荷载作用下刚架的弯矩图, Y =P Y =P 应用图乘法得:
A A B
C
A B 2
1 C M( x )M( x )dx EI 11q 4 1 1 2 1 2 q / 8 2 / 6 q / 8 / 2 3 / 8 EI 2 3 384EI
(b) 】(a)求支座反力 YA=P/2 , YB=3P/2 作荷载作用下的M图。 在外伸梁C点加一单位荷载,作 作单位荷载作用下的M图,用M图 的面积乘以单位荷载的M图的竖坐 标,得
1 1 P EI 2 4 2
P=1 Pl
Pl
P 3 16EI
M P图
M图
【11-16】求悬臂折杆自由端的竖向位移,各杆长同为l,EI相同。 【解】可不求支座反力, 直接作荷载作用下悬臂折杆 P 悬臂折杆的弯矩图, 在自由端施加一单位荷载, 2Pl Pl 作单位荷载作用下的弯矩图, 应用图乘法得:
P A B
Hale Waihona Puke C l/2 YB=3P/2
l YA=P/2
Pl/2 M图
l/3 l/3 M图 l/2 P=1
1 C M( x )M( x )dx EI P 3 1 1 1 11 P / 3 P / 2 / 3 EI 2 2 22 8EI
建筑力学第十一章习题解
梁和结构的位移
【11-10】用单位荷载法(图乘法)求外伸梁C点的竖向位移, EI=常数。 q 【解】(a)求支座反力 B A C YA=ql/8 , YB=5ql/8 l l/2 作荷载作用下的M图。 Y =5ql/8 Y =ql/8 在外伸梁C点加一单位荷载,作 ql /8 M图 作单位荷载作用下的M图,用M图 3l/8 的面积乘以单位荷载的M图的竖坐 l/3 l/2 P=1 M图 标,得