质粒DNA的制备和酶切
质粒DNA的提取、酶切及其琼脂糖凝胶电泳实验报告

(2) TAE和TBE均为常用的缓冲液。
TBE比TAE有相对高的缓冲能力。
(3)加样染料溴酚蓝可与长度约为0.5 kb的DNA一起迁移,可用于指示迁移率最高的片段。
(4) DNA的迁移速率取决于以下因素:①DNA的分子大小—分子量越小,迁移越快。
②琼脂糖浓度—浓度越低,迁移越快。
③DNA的构象—环状的或带切口环状的DNA通常比线状的DNA迁移要快。
④两个电极之间单位厘米的电压——电压越高,迁移越快。
(5)如果DNA条带不够窄且不够均匀,可能是内以下原因所引起:①DNA过载②电压过高③加样孔破损④凝胶中有气泡(6)在紫外灯下观察凝胶电泳所得结果应该戴上防护眼镜,因为紫外线对眼睛有伤害作用;二.实验内容1.实验现象与结果:将电泳后的凝胶放在紫外灯的照射下观察到的和用凝胶电泳成像系统进行拍照得到的DNA电泳条带图如下所示意:图注:x’:代表经过酶切的质粒DNA样品的电泳条带;x :代表未经过酶切的质粒DNA样品的电泳条带(x相同的互为对照组);marker:DNA相对分子质量标准物。
pUC19质粒DNA标准参照条带图像:2.对实验现象、实验结果的分析及其结论:(1)对实验现象的分析及其结论:从上述所示的DNA电泳条带图可以看出:不管在DNA Sample中还是在经过酶切处理后的DNA样品中均具有电泳迁移速率处于中间的线性质粒DNA。
而在此次试验中出现线性质粒DNA是因为pUc质粒DNA在提取的过程中DNA双链在相对应的两条链上同时产生切口。
这说明质粒制备过程个出现线性DNA说明存在核酸酶污染或实验操作有问题。
可能在其中混有少量的蛋白质(图中,位置在marker组最后一电泳条带后方的很可能就是蛋白质组分),或者在实验的提取过程中加入溶液Ⅱ所经历的时间过长,在碱性条件下基因组DNA片断会慢慢断裂,从而使提取的质粒DNA样品混入了基因组 DNA。
但是其中各组也存在超螺旋DNA(与marker组对照,电泳速率最快,跑在最前面的)。
质粒DNA的提取与酶切鉴定

4、加入200L新配制的溶液II, 盖紧管口,快速颠倒离心管, 以混匀 内容物,冰上放置3-5min;
溶液II中的NaOH与SDS可裂解细胞,使DNA变性以及SDS使蛋白变 性并形成交联的网状结构
5、加入150l溶液III, 加盖后颠倒6-7次混匀,冰上放置2~3min; 溶液III为低pH的醋酸钾缓冲液,中和NaOH,以便使部分变性的闭环
试剂: LB培养基 氨苄青霉素贮存液:浓度50-100mg/mL; 溶液I: 50mmol/L葡萄糖,10mmol/L EDTA (pH8.0),
25mmol/L Tris-HCl (pH8.0); 溶液II: 0.2mol/L NaOH, 1%SDS (现配现用); 溶液III: 乙酸钾溶液(3M, pH=4.8)( 60mL的5mol/L KAc, 11.5ml
冰醋酸,28.5mL H2O); RNase A: 10mg/ml; TE缓冲液: 10mmol/L,Tris-HCl, 1mmol/L,EDTA,pH8.0;
5×TBE缓冲液:0.45mol/L Tris-硼酸,0.01 mol/L EDTA, pH 8.0; 10×Loading buffer:1% SDS, 0.05%溴酚兰,50%的甘油; 无水乙醇;70%乙醇; 标准分子量片段; 核酸内切酶 EcoR I (TaKaRa); EcoR I酶解缓冲液(10× buffer H); 琼脂糖; 溴化乙啶(EB)染色液(10mg/ml)。
质粒复性,而细菌染色体DNA不能正确复性
6、12000 g离心6 min,将上清移入另一干净的Ep管中; 7、加2倍上清体积(约1mL)的无水乙醇, 振荡混匀,室温放 置2min. 8、12000g离心10min,弃上清液,再用70%的乙醇洗涤 一次, 12000g离心1min,离心管倒置于吸水纸上扣干, 然后在中空浓缩系统上干燥质粒; 9、加入40L含50 g/mL RNase A的灭菌蒸馏水或TE 缓 冲液溶解提取物,室温放置直到质粒完全溶解(约8min), 存于-20℃或直接用于酶切。
质粒DNA的提取、定量、酶切与PCR鉴定实验报告

质粒DNA的提取、定量、酶切与PCR鉴定一、实验目的1.学习并掌握用碱裂解法提取质粒DNA的方法;2.学习并掌握了解质粒酶切鉴定的方法;3.学习并掌握紫外吸收检测DNA浓度和纯度的原理和方法;4.学习并掌握PCR基因扩增的实验原理和操作方法;5.学习并掌握水平式琼脂糖凝胶电泳的原理和使用方法。
二、实验原理1.PCR(多聚酶链式反应)在DNA聚合酶催化下,可以DNA为模板,以特定引物为延伸起点,以dNTP为原料,通过变性、退火、延伸等步骤,在体外(缓冲液中)复制DNA,使目的DNA按2n方式呈指数形式扩增。
PCR一次循环的具体反应步骤为:A.变性:加热反应系统至95℃,使模板DNA在高温下完全变性,双链解链。
B.退火:逐渐降低溶液温度,使合成引物在低温(35-70℃,一般低于模板Tm值的5℃左右),与模板DNA互补退火形成部分双链。
C.延伸:溶液反应温度升至中温72℃,在Taq酶作用下,以dNTP为原料,引物为复制起点,模板DNA的一条单链在解链和退火之后延伸为一条双链。
2.质粒DNA的提取与制备(1).碱裂解法:染色体DNA与质粒DNA的变性与复性存在差异:A.高碱性条件下,染色体DNA和质粒DNA均变性;B.当以高盐缓冲液调节其pH值至中性时,变性的质粒DNA复性并保存在溶液中,染色体DNA不能复性而形成缠连的网状结构,可通过离心形成沉沉淀去除。
(2).离心层析柱:A.硅基质膜在高盐、低pH值状态下可选择性地结合溶液中的质粒DNA,而不吸附溶液中的蛋白质和多糖等物质;B.通过去蛋白液和漂洗液将杂质和其它细菌成分去除;C.低盐,高pH值的洗脱缓冲液将纯净质粒DNA从硅基质膜上洗脱。
3.质粒DNA的定量分析(紫外分光光度法):A.物质在光的照射下会产生对光的吸收效应,且其对光的吸收是具有选择性;B.各种不同的物质都具有其各自的吸收光谱:DNA分对波长260nm的紫外光有特异的吸收峰蛋白质对波长280nm的紫外光有特异的吸收峰碳水化合物对230nm的紫外光有特异的吸收峰C.A260/A280及A260/A230的比值可以反应DNA的纯度;A260/A280=1.8 DNA纯净A260/A280<1.8 表示样品中含蛋白质(芳香族)或酚类物质A260/A280>1.8 含RNA杂质,用RNA酶去除。
基础生物化学实验实验六 质粒DNA的提取(碱裂解法)及酶切分析)

(2) 挑选单菌落,在无菌条件下放入5 ml LB液体培养基中 (100 g /ml氨苄青霉素),200-300 rpm,37℃过夜培养。 (3) 取1.5 ml菌液(其余菌液加入25%的灭菌甘油,放入对 应编号的1.5 ml离心管中,-70℃ 下作菌种保存),5000 g离心5 min。 (4) 弃上清夜,加入100 l预冷的溶液I,悬浮沉淀,室温 放 置5 min。 (5) 加入200 l 新鲜的溶液II,边加边震荡,但不能剧烈, 冰上放置5 min。 (6) 加入75 l溶液III,震荡混匀,冰上放置5 min。 (7) 12000 g 离心5 min。 (8) 取上清液,加入两倍体积的预冷无水乙醇,12000 g离 心10 min。 (9) 用1 ml 70%的乙醇洗涤沉淀,空气中放置3-5 min。 (10) 用30-50 l TE溶解,用紫外分光光度计进行DNA含量 测定,EB琼脂糖(1.4%)凝胶电泳分析。
实验六 质粒DNA的提取(碱裂解法)及酶分析
(1) 溶液配制: 溶液 I 50 mmol/L 葡萄糖 25 mmol/L Tris-Cl (pH 8.0) 10 mmol/L EDTA (pH 8.0) 溶液 II 0.2 mol/L NaOH 0.5% SDS 溶液 III 3 mol/L KAc (用冰醋酸调 pH值至5.0)
质粒DNA的酶切分析参照相关酶的说明书 操作步骤进行
质粒dna的制备实验报告

质粒dna的制备实验报告质粒DNA的制备实验报告引言:DNA(脱氧核糖核酸)是生物体内负责遗传信息传递的重要分子。
质粒DNA是一种环状的双链DNA分子,广泛存在于细菌和其他一些原核生物中。
质粒DNA具有自主复制的能力,并携带了一些对细菌有益的基因信息。
因此,质粒DNA的制备对于基因工程研究和生物技术应用具有重要意义。
实验目的:本实验旨在通过离心、溶解、酶切及纯化等步骤,制备出高纯度的质粒DNA样品。
实验材料与方法:1. 细菌培养液:含有目标质粒DNA的细菌培养物。
2. 离心管:用于离心沉淀细菌。
3. 离心机:用于离心沉淀细菌和质粒DNA。
4. 细胞裂解缓冲液:含有细胞裂解所需的缓冲盐和酶切酶。
5. 酶切酶:用于切割质粒DNA。
6. 蛋白酶K:用于降解细胞中的蛋白质。
7. 酚/氯仿:用于提取DNA。
8. 异丙醇:用于沉淀DNA。
9. 纯化缓冲液:用于纯化DNA样品。
实验步骤:1. 收获细菌:将培养液离心10分钟,将菌体沉淀收集至离心管中。
2. 细胞裂解:加入适量的细胞裂解缓冲液,使菌体充分裂解,并加入蛋白酶K降解蛋白质。
3. DNA提取:加入等体积的酚/氯仿混合液,轻轻摇动离心管使两相混合,离心分离上下两相。
4. DNA沉淀:将上层水相转移至新的离心管中,加入等体积的异丙醇,轻轻摇动离心管使DNA沉淀。
5. DNA纯化:将DNA沉淀洗涤至纯化缓冲液中,离心沉淀DNA,去除上清液。
6. 测定DNA浓度:使用比色法或荧光法等方法测定DNA的浓度。
结果与讨论:经过上述步骤,我们成功制备出了高纯度的质粒DNA样品。
通过测定DNA浓度,我们可以得到质粒DNA的含量。
实验中使用的细菌培养物中含有目标质粒DNA,经过细胞裂解和酶切等步骤,我们成功地将质粒DNA从其他细胞组分中分离出来。
酚/氯仿提取和异丙醇沉淀的操作使得DNA得以纯化和浓缩。
最后,使用纯化缓冲液洗涤和离心沉淀,去除上清液,进一步提高了DNA的纯度。
质粒DNA提取与酶切方法的比较研究

结论总的来说,各种质粒DNA提取方法和酶切方法都有其优缺点。在选择方 法时,应根据具体的研究需求和实验条件进行选择。常规提取方法虽然操作繁琐, 但成本低廉且产量高;快速提取方法和生物素法则具有快速、简便和高纯度的优 点,但成本较高。对于酶切方法,单一酶切操作简便但适用范围有限;双酶切和 全酶切则能实现复杂切割,但操作较复杂且成本较高。
(2)双酶切
双酶切是使用两种不同的限制性内切核酸酶对DNA进行切割。该方法可实现 对复杂基因组或多个位点的精确切割,适用范围更广。但是,双酶切操作相对复 杂,需要更多时间进行优化和调整。
(3)全酶切
全酶切是使用一种或多种限制性内切核酸酶以及修饰酶等对DNA进行切割。 该方法可根据实验需求对DNA进行的优点是高度灵活,适用范围广泛。然而,全酶切需要更多的实验设计和操 作技巧,且成本较高。
比较研究
1、操作难易程度及成本
在操作难易程度方面,快速提取方法和生物素法相对简单,而常规提取方法 较为繁琐。在成本方面,生物素法和快速提取方法所需试剂和设备成本较高,而 常规提取方法成本较低。
2、纯度和产量
在纯度方面,生物素法和快速提取方法纯度较高,而常规提取方法纯度相对 较低。在产量方面,常规提取方法和快速提取方法产量较高,而生物素法产量较 低。
质粒DNA提取方法
1、常规提取方法
常规提取方法是一种经典的分步提取方法,包括裂解细胞、分离质粒DNA、 洗涤和纯化等步骤。该方法的主要优点是适用范围广,可从各种细胞中提取质粒 DNA。但是,该方法操作繁琐,提取周期较长,需要使用大量试剂和设备。
2、快速提取方法
快速提取方法是通过优化常规提取方法中的某些步骤,实现快速、简单的质 粒DNA提取。该方法主要优点是操作简便、快速,可减少试剂和设备的使用。但 快速提取方法可能会牺牲一些纯度或产量。
质粒DNA的制备和酶切

实验十五质粒DNA的制备和酶切一、实验目的及背景质粒时细菌内的共生型遗传因子,它能在细菌中垂直遗传并且赋予宿主细胞一些表型,是比病毒更简单的原始生命。
质粒通过细菌的结合作用,从雄性体转移到雌性体,是细菌有性繁殖的性因子,1952年由Lederburg正式命名为质粒。
质粒是携带外源基因进入细菌中扩增或表达的重要媒介物,这种基因运载工具在基因工程中具有极为广泛的应用价值。
本实验要求掌握最常用的质粒的提取方法。
从大肠杆菌中分离质粒DNA方法众多,目前常用的如碱变性法、煮沸法、SDS法、羟基磷灰石栏层析法等。
各个方法分离是依据宿主菌株类型,质粒分子大小,碱基组成及结构等特点加以选择的,其中碱变性法既经济且得率较高,获得的质粒可以用于酶切,连接与转化。
碱变性法基本原理是,在pH为12.0-12.6的碱性环境中,线性的大分子量细菌染色体DNA变性,而共价闭环质粒DNA仍为自然状态。
将pH调至中性并有高盐浓度存在的条件下,染色体DNA之间交联形成不溶性网状结构,大部分DNA 和蛋白质在去污剂SDS的作用下形成沉淀,而质粒DNA仍为可溶状态,通过离心可去除大部分细胞碎片,染色体DNA,RNA及蛋白质,质粒DNA尚在上清中,再用酚氯仿抽提进一步纯化质粒DNA。
在获得较纯的质粒后,我们常常会利用核酸限制性内切酶对质粒进行酶切,就可以达到在体外有目的地对遗传物质DNA进行改造。
核酸限制性内切酶,是一类能识别双链DNA中特定碱基顺序的核酸水解酶,能够以内切方式水解核酸链中的磷酸二酯键,产生的DNA片段5’端为P,3’端为OH。
根据限制酶的识别切割特性,催化条件及是否具有修饰酶活性可分为I/II/III型三大类,II型酶就是通常指的DNA限制性内切酶,他们能识别双链DNA的特异序列,并在这个序列内进行切割,产生特异的DNA片段。
II型酶分子量较小,仅需Mg2+作为催化反应的辅助因子,识别序列一般为4~6个碱基对的反转重复序列,可以切割DNA 产生三种不同的切口:①5’端突出②3’端突出③平末端。
质粒的提取及酶切实验报告

质粒的提取及酶切实验报告
一、实验目标
本实验旨在提取低分子量DNA、质粒,通过酶切实验检测质粒DNA片段长度,并处理实验结果。
二、实验原理
1、质粒DNA提取:使用特定的提取试剂,先提取溶菌酶凝胶中的质粒DNA;
2、质粒DNA酶切:采用酶切的方法,对质粒DNA进行切割,形成小片段;
3、质粒DNA测序:采用测序仪对质粒DNA片段进行测序,从而确定其长度。
三、实验材料
1、提取试剂:主要由蛋白酶、乙腈、缓冲液、EDTA等混合而成;
2、PCR反应液:主要由dNTP、聚合酶、反应缓冲液等组成;
3、酶:主要由DNA内切酶和DNA外切酶组成;
4、测序仪:用于测序质粒DNA的片段长度;
四、实验步骤
1、提取质粒DNA:将实验样品放入提取试剂中,加热30分钟,然后用混合物洗涤一次,最后离心得到清澈的液体,含有提取的质粒DNA;
2、进行PCR反应:将提取的质粒DNA作为反应液™添加到PCR管中,在适当温度下反应10分钟;
3、酶切:将PCR管中的反应液加入内切酶和外切酶中,在规定温度下酶切1小时;
4、离心质粒DNA片段:将酶切后的反应液离心,以得到质粒DNA片段;
5、进行测序:将质粒DNA片段放置于测序仪中,逐一测序后得到结果;
五、实验结果及分析
实验结果:
质粒DNA片段长度:
0.31kbp、0.48kbp、0.51kbp、0.58kbp、0.68kbp等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十五质粒DNA的制备和酶切
一、实验目的及背景
质粒时细菌内的共生型遗传因子,它能在细菌中垂直遗传并且赋予宿主细胞一些表型,是比病毒更简单的原始生命。
质粒通过细菌的结合作用,从雄性体转移到雌性体,是细菌有性繁殖的性因子,1952年由Lederburg正式命名为质粒。
质粒是携带外源基因进入细菌中扩增或表达的重要媒介物,这种基因运载工具在基因工程中具有极为广泛的应用价值。
本实验要求掌握最常用的质粒的提取方法。
从大肠杆菌中分离质粒DNA方法众多,目前常用的如碱变性法、煮沸法、SDS法、羟基磷灰石栏层析法等。
各个方法分离是依据宿主菌株类型,质粒分子大小,碱基组成及结构等特点加以选择的,其中碱变性法既经济且得率较高,获得的质粒可以用于酶切,连接与转化。
碱变性法基本原理是,在pH为12.0-12.6的碱性环境中,线性的大分子量细菌染色体DNA变性,而共价闭环质粒DNA仍为自然状态。
将pH调至中性并有高盐浓度存在的条件下,染色体DNA之间交联形成不溶性网状结构,大部分DNA 和蛋白质在去污剂SDS的作用下形成沉淀,而质粒DNA仍为可溶状态,通过离心可去除大部分细胞碎片,染色体DNA,RNA及蛋白质,质粒DNA尚在上清中,再用酚氯仿抽提进一步纯化质粒DNA。
在获得较纯的质粒后,我们常常会利用核酸限制性内切酶对质粒进行酶切,就可以达到在体外有目的地对遗传物质DNA进行改造。
核酸限制性内切酶,是一类能识别双链DNA中特定碱基顺序的核酸水解酶,能够以内切方式水解核酸链中的磷酸二酯键,产生的DNA片段5’端为P,3’端为OH。
根据限制酶的识别切割特性,催化条件及是否具有修饰酶活性可分为I/II/III型三大类,II型酶就是通常指的DNA限制性内切酶,他们能识别双链DNA的特异序列,并在这个序列内进行切割,产生特异的DNA片段。
II型酶分子量较小,仅需Mg2+作为催化反应的辅助因子,识别序列一般为4~6个碱基对的反转重复序列,可以切割DNA 产生三种不同的切口:①5’端突出②3’端突出③平末端。
在酶切反应中应当注意以下几个问题:内切酶的纯度和用量、内切酶底物(DNA)的纯度和浓度、反应缓冲液、酶解温度与时间。
二、实验试剂
1.LB培养基:胰化蛋白胨10g、酵母提取物5g、NaCl 10g,定容至1L,调节
pH至7.5
2.STE溶液:0.1M NaCl、10mM Tris-HCl(pH8.0)、1mM EDTA
3.Amp抗生素:50mg/ml
4.溶菌酶:10mg/ml(用10mM Tris- HCl pH8.0新鲜配制)
5.溶液I:50mM 葡萄糖、25mM Tris-HCl(pH8.0)、10mM EDTA
6.溶液II(新鲜配制):0.2M NaOH、1% SDS
7.溶液III:5M KAC 10mL、冰醋酸11.5mL、水28.5ml
8.TE溶液:10mM Tris-HCl(pH8.0)、1mM EDTA
9.酚氯仿
10.乙醇
11.RNase
12.琼脂糖
13.限制性内切酶
14.DNA(λDNA和质粒DNA)
15.100mmol/L NaCl溶液
16.10mmol/L MgCl2溶液
17.无菌水
三、实验方法
1、挑取琼脂培养板上的单菌落至5mL LB培养液中(含Amp 50μg/ml),37℃强
烈振摇过夜。
2、取1.5ml培养液至Eppendorf管中,12000g 4℃离心30秒,弃上清,用1mL
STE液悬浮菌体,再离心回收菌体,并重复一次,弃上清,取沉淀。
3、将细菌沉淀悬浮于100μl预冷溶液I中,加入10μl溶菌酶(10mg/ml),振
荡混匀,冰上放置1分钟。
4、加入200μl溶液II,盖上管盖,轻柔颠倒5次以混匀内容物,冰上放置3分
钟。
5、加入150μl溶液III,温和振荡数次,冰上放置5分钟。
6、12000g 4℃下离心5分钟,取上清移到一个新的Eppendorf管中。
7、加入等体积的酚/氯仿(1:1),振荡混匀,12000g 4℃下离心2分钟。
取上清
至另一个Eppendrof管中。
8、加入2倍体积无水乙醇,振荡混匀,-20℃沉淀过夜(或冰浴15min)。
9、12000g 4℃离心5分钟。
10、弃上清,加入1ml 70%乙醇振荡漂洗沉淀,12000g,4℃离心2分钟。
11、弃上清,抽干残余乙醇。
12、加入50μl TE溶液溶解DNA。
13、取10μl DNA溶解液用TE稀释至1000ul,并测定OD260、OD280,计算
OD260/OD280值,同时利用以下公式计算得率:
质粒DNA得率:稀释倍数×OD260×0.05×50/1.5mL
14、取10μl DNA溶解液,加入2μl Loading Buffer于1%琼脂糖凝胶,电泳
3小时,电压40伏。
15、电泳凝胶在投射式紫外检测仪上观察,记录结果。
16、限制性内切酶酶解:
①按照如下所示加入各试剂至Eppendorf中:DNA 1μg、10×buffer 2.5
μl、内切酶2μl、无菌水补至25μl,需要注意的是限制性内切酶最后
加入,且在冰上进行操作。
②将反应体系充分混匀,并于台式离心机上短暂离心。
③将Eppendorf管封上封口膜,置入37℃水浴中反应2小时。
④反应结束后加入EDTA至终浓度为10mmol/L以终止反应。
⑤取10μl反应液与2μl Loading buffer混匀,于1%琼脂糖凝胶上40伏电
压进行电泳,时间约为2-3小时。
⑥紫外透射仪上检查实验结果。
四、结果与分析
1、质粒DNA OD260,OD280的值,由此计算得率和DNA纯度。
2、记录质粒电泳结果并说明结果内容。
3、记录酶切后质粒在琼脂糖凝胶上的电泳结果,并分析实验结果的成因。
五、问题与讨论
1、简要叙述溶液I,溶液II,溶液III的作用,以及实验中分别加入上述溶液
后,反应体系出现的现象及其成因。
2、简要叙述酚氯仿抽提DNA体系后出现的现象及其成因。
3、沉淀DNA时为什么要用无水乙醇及在高盐、低温条件下进行?
4、在整个酶切反应过程中应注意哪些问题?
5、如何选择DNA和限制性内切酶的用量?
6、反应体系中为何内切酶用量不能超过整个反应体系的10%?。